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Flux-induced reentrant dynamics in the quantum walk of interacting bosons
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We study the quantum walk of two interacting bosons on a two-leg ladder lattice in the presence of an artificial
magnetic field. By considering a uniform flux piercing through the ladder, we show that in the limit of strong on-
site repulsion and dominant rung hopping, an initially slow dynamics becomes fast, then slow and fast again with
increase in the flux strength, indicating a re-entrant dynamics. This unusual behavior is found to be associated
with the formation, breaking, and reformation of a bound pair state along the rung of the ladder. In addition
to this we also find a reentrant behavior in the chiral dynamics where the chirality in the system first increases
and then decreases with increase in interaction. We establish this unusual reentrant behavior in the dynamics by
analyzing the radial velocity, spreading of correlation, center-of-mass shearing, and energy band diagrams.
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I. INTRODUCTION

The study of dynamical evolution of a quantum state fol-
lowing a sudden quench of the system parameter has been a
topic of paramount interest in recent years [1-3]. The quan-
tum walk (QW) [4], which is a unitary time evolution of a
few-particle quantum state, provides a bottom-up approach
to understand such dynamics [5-8]. Due to their versatility,
the QW of particles on a lattice has found its application in a
wide range of systems ranging from fundamental physics to
quantum technologies [9-15], leading to their experimental
observation in various lattice systems [16-22]. Apart from
the noninteracting particles, the QW of more than one par-
ticle have been investigated to understand the effect of strong
correlation and quantum statistics on the dynamics. Recent
studies have revealed various interesting scenarios from the
QW of interacting particles such as the Hanburry-Brown
and Twiss type interference, bunching and antibunching of
particles [20,23,24], spin-charge deconfinement [25,26], dy-
namics of magnon bound states [27], many-body localization
[28-31], pairing due to competing interactions [32—34], chiral
dynamics [35,36] and topological properties [37—42], Bloch
oscillation [20,24,28,43-45], etc.

Primarily, the dynamics of a quantum state is defined by
the spreading of the wave packet and the correlation function
in the QW. While the single-particle QW exhibits a faster
spreading of the wave packet in a uniform lattice, addition of
perturbation such as disorder, topological effects, or geometric
frustration leads to slower spreading [28,39,46-56]. On the
other hand, in the QW of two identical particles, interaction
and the choice of initial conditions play a crucial role, which
often results in interesting phenomena. The simplest exam-
ple is the QW with an initial state of two bosons located
at the same (nearest-neighbor) site in a one-dimensional lat-
tice exhibits a fast-to-slow dynamics with an increase in the

“mishratapan @ gmail.com

2469-9926/2023/108(6)/063319(6)

063319-1

on-site (nearest-neighbor) interaction due to the formation
of the onsite (nearest-neighbor) bound state. When the two
particles are initially at the nearest-neighbor sites, then the
spreading does not slow down as a function of on-site inter-
action due to fermionization [20,23,57,58]. However, the QW
of identical bosons residing on the rung of a two-leg ladder
exhibits a fast-to-slow spreading as a function of on-site in-
teraction due to the rung-pair formation or rung localization
[59,60]. In all these cases, the QW exhibit a unidirectional
or monotonous dynamics where an initially fast spreading
becomes slow. However, in this paper we show that strongly
interacting bosons on a two-leg ladder subjected to an artificial
gauge field—a system known as the flux ladder [61-75]—can
exhibit a drastic deviation from this monotonous dynamics.
By considering an initial state with two bosons residing on
the central rung of the ladder, we show that in the regime of
dominant rung hopping and strong on-site repulsion, an initial
slow dynamics becomes fast, then slow and fast again as a
function of flux piercing through the ladder. This indicates an
interesting reentrant behavior in the dynamics which resem-
bles a situation where an initial state transforms to another
state that is microscopically similar or identical to the initial
state. Furthermore, due to the presence of flux, we also find
a reentrant behavior in the chiral dynamics as a function
of interaction for fixed flux strengths. In the following, we
elaborate on these findings in detail.

II. MODEL

The model describing the system of interacting bosons in
a two-leg ladder subjected to uniform flux (Fig. 1) is given by
the Hamiltonian

U
H=> Ian,a(n,,U —1)—J ZZ (b} ,bi+1.0 +Hee.)

—KY (b sbrse™ + He), (1
/
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FIG. 1. Figure depicting a two-leg Bose-Hubbard ladder in the
presence of uniform flux. J and K denote the intra- and interleg
hopping strengths and U is the on-site two-body interaction. & is
the flux piercing through each plaquette.

where, b; , (b ) are bosonic annihilation (creation) operators
on the rung / w1th the leg indices o € A, B and n; , is the cor-
responding number operator. J and K denote the amplitudes of
the intraleg and interleg hopping strengths, respectively. Due
to the presence of the gauge field, the interleg hopping term
is complex in nature and acquires a phase ¢ = 7 fr rf dr.A(F),
where A(F) is the magnetic vector potential. We perform our
calculations in the Landau gauge A(¥) = Bxy with the phase
¢ =ad/Py, where & is the magnetic flux through each
plaquette and ®y = &/e is the magnetic flux quantum.

We study the QW following the standard protocol of uni-
tary time evolution as

() =

where U(t) = e /" and |W(0)) is an initial state at time
t = 0. The analysis is done by obtaining the exact numerical
solution of Eq. (2). In our calculations, we use the hopping
strengths J = 1 and K = 3 as considered in the experiment
of Ref. [35] and study the QW by varying U and ¢. Here,
the choice of J = 1 sets the energy scale in our studies. The
calculations are done with a ladder of L = 25 rungs which is
a system of 50 lattice sites.

U 1)\ (0)), 2)

III. RESULTS

In this section we present our main results. For the QW, we
consider the initial state [ (0)) = bgAbg glvac), which corre-
sponds to a state with two particles created at the central rung
of the ladder with one particle at each site of the rung. It is to
be noted that the dynamics of this state under the influence of
uniform flux (¢) and fixed on-site interaction strength (U) and
fixed rung-to-leg hopping ratio (K/J) has been discussed in
Ref. [35], where the focus was primarily on the chiral motion
of the particles. In this work we systematically investigate the
combined role of flux and interaction in both weak and strong
regimes on the two-particle dynamics, where we focus on both
the radial as well as the chiral dynamics.

First of all, to understand the radial dynamics, we ex-
amine the density evolution of the particles. In Figs. 2(a)
and 2(b), we show the time evolution of the total on-site
density in a rung, i.e., n;(t) = (n;o(t)) + (m p(t)) for U =4
and U = 20, respectively, and for each case we have con-
sidered ¢ =0, /4, 7 /2, 37 /4, and 7. In the presence of
weak interaction (U = 4), we find the spreading of density
is suppressed with an increase in flux strengths as shown in
Fig. 2(a). However, when the interaction is strong, we see
a nonmonotonous behavior in the spreading of the densities
with an increase in ¢ as shown in Fig. 2(b) for U = 20. In or-
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FIG. 2. n(t) at each rung plotted as a function of time ¢ (in
units of J~!) with the initial state |¥(0)) = b} ,b 4lvac). (a) and
(b) Density evolution for interaction strength U =4 and U = 20,
respectively, for different values of ¢.

der to clearly understand this behavior, we compute the radial
velocity, V = W, from the slope of the linear region
in the radius of expansion [see Figs. 3(a) and 3(b)] defined as
R,(t)y=1[)_,( — 10)%(n;())]"/* (where [, is the index of the
central rung of the ladder) for different U and plot them as a
function of ¢ /7 in Fig. 4(a). This figure depicts two important
pieces of information:

(i) For small values of U, i.e., U = 0 (black circle), U = 4
(red stars), and U = 6 (blue hexagons), the radial velocity
V decreases smoothly as a function of ¢/m. However, for
stronger interactions, i.e., U = 10 (green diamonds) and U =
20 (magenta triangles), V first increases, then decreases and
increases again with an increase in ¢, indicating a reentrant
behavior in the radial dynamics.

(ii) For fixed values of ¢, V decreases monotonously with
U when ¢ is small. After a certain value of ¢, it first decreases
and then increases with an increase in U, indicating another
reentrant behavior, which is depicted in Fig. 4(b).

From the above results it is clear that the dynamics as a
function of ¢ when U = 0 is similar to the single-particle
case. In this case, all the available states are scattering states
that contribute to a fast dynamics when ¢ = 0. An increase
in ¢ increases the flatness of the band, or in other words,
decreases the band width, resulting in the slow dynamics
[64,71,75,76]. However, the reentrant feature in V in the
strong interaction regime can be understood by first under-
standing the decrease in V' as a function of U in the absence
of flux. As depicted in Fig. 4(a), V smoothly decreases as a
function of U when ¢ = 0 [also see Fig. 4(b)]. This slow-
ing down of dynamics happens solely due to the effect of
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FIG. 3. (a) and (b) Radius of the expansion plot as a function of
time 7 (in units of J~!) for interaction strength U = 4 and U = 20.
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FIG. 4. (a) and (b) Radial velocity V of the wave function as a
function of ¢ /7 and U in the presence of uniform flux for different
values of U and ¢. For the calculation of V we consider #; = 5J7!
andt; = 2.

interaction, and this can be attributed to the formation of some
kind of bound state in the system. In order to gain insights
about such possibilities, we plot the two-particle energy band
diagram in Fig. 5 (upper panel). To determine the band struc-
ture, we consider the periodic boundary condition and perform
an exact diagonalization (ED) calculation in the momentum
space [24,77].

For U =1, two well-defined bands of scattering states
exist as shown in Fig. 5(a). As U increases, isolated bands
corresponding to the bound states start to appear above each
scattering state band, which are shown in Figs. 5(b) and 5(c)
for U =4 and U = 20, respectively. These isolated bands
shift towards higher energies with increase in U and become
more and more flat [compare Figs. 5(b) and 5(c)]. The flatness
of the bound state bands with increase in U causes the slowing
down of dynamics or decrease in the radial velocity V.

To identify this bound state, we compute the time-evolved
two-particle correlation function defined as I'; ; = <bj‘b;bjbi>,

where bi(bj) is the particle annihilation(creation) operator
and i, j are the site index of the ladder. For this calculation,
the indexing starts from the leftmost site of leg B of the
ladder such that even (odd) indices are on leg B (leg A). In
Figs. 5(d)-5(f), we plot I'; ; for U =1, 4, 20, respectively, at
t = 4J~! of the time evolution of the two-particle initial state

o
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FIG. 5. (a)—(c) Energy band diagram of the two-particle system
for U =1, U =4, and U = 20, respectively, in the absence of ¢
with ¢ as the quasi-momentum. (d)—(f) Two-particle correlation T'; ;
attime ¢ = 4J~! for the same parameters used respectively in (a)—(c).
Here, i and j are the site indices.

|W(0)). This clearly shows that for U = 1, the two particles
perform an independent particle quantum walk exhibited by
symmetric distribution of the correlation matrix elements as
shown in Fig. 5(d) [20,23,33]. However, with finite and small
interaction (U = 4), the correlation matrix elements I'; ; =
(bj'bj.b ;bi) become dominant when i and j sites are on same
rung, which can be seen as the dark spots in Fig. 5(e). This fea-
ture indicates the dynamics of a bound state formed between
the particles on the two sites of the rung, which we call the
rung-pair state. At this moderate interaction strength, we also
see signatures of finite off-diagonal matrix elements which
are the contributions from the single-particle dynamics that
arise due to the presence of the nearby scattering state band
[see Fig. 5(c)]. For very strong values of interaction (U =
20), we see a clear dominance of the rung-pair state in the
dynamics as shown in Fig. 5(f). Formation of this rung-pair
state is the reason behind the slow dynamics as a function
of interaction. Note that the other bound state band at higher
energy does not have significant contribution in the dynamics.

From the insights obtained from the above analysis, we can
now understand the reentrant behavior in V as a function of
¢ in the regime of strong interaction as already depicted in
Fig. 4(a). In this regime, when a small flux is introduced into
the system, there is a finite probability of rung-pair breaking
due to the onset of the chiral dynamics [35], and therefore both
rung pair and independent particle QW is expected. This can
be seen as the finite elements in the time-evolved correlation
matrix I'; ; away from the main diagonal, along with the con-
tribution from the rung-pair dynamics, as shown in Fig. 6(b)
for U = 20 and ¢ = 7 /4 [see Fig. 6(a) for comparison]. As a
result of this contribution from the independent particle QW,
V increases as a function of ¢ in the weak flux regime [see
Fig. 4(a) for U = 20]. However, with a further increase in
¢ the independent particle QW gets affected due to the band
flattening [64,71,75,76] and V decreases—a situation similar
to the case of U = 0, as depicted in Fig. 4(a). Note that at
¢/m ~ 0.75, V reaches a minimum where it is smaller than
the value at ¢ = 0. This reduction in velocity can be inferred
from the behavior of I'; ; shown in Figs. 6(c) and 6(d) for
¢ =m/2 and ¢ = 3w /4, respectively, where the elements
far from the diagonal become smaller and smaller with ¢.
Interestingly, further increase in ¢ favors the formation of the
rung pair again, as can be seen from Fig. 6(e) for ¢ = .
This time the contributions from the free particle dynamics
is suppressed and we see an increase in the nearest-neighbor
elements along the diagonal of the correlation matrix, indi-
cating a strong rung-pair dynamics again. This feature reveals
that the higher values of ¢ favor the formation of the rung-pair
state in the regime of strong interaction and strong rung-to-leg
hopping ratio. As a result of this, V increases again, leading
to the reentrant behavior [Fig. 4(a) for U = 20]. The increased
probability of the rung-pair state formation can be attributed to
the formation of closely spaced vortices in the ladder [61,74]
in the limit of strong flux, due to which the probability of
finding a boson pair delocalized on the rungs increases. Note
that due to the closely spaced vortices in the system, we expect
finite correlations along the rungs and also along the diagonals
of the plaquettes, which are shown in Fig. 6(e) for ¢ = 7, and
this feature is absent in Fig. 6(a) for ¢ = 0. It is to be noted
that this reentrant dynamics in the strong interaction limit is
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FIG. 6. Figure shows the two-particle correlation I'; ; for different values of ¢ and U = 20 plotted at time 4/~! of the evolution. In each
case we have normalized the correlation as I'; ; /(I'; j Jmax for clarity. Here, i and j are the site indices.

possible only when K 2 2J at which the band corresponding
to the rung-pair state starts to separate from the scattering
bands (not shown)—a condition favorable for the rung-pair
formation.

We now proceed to investigate the chiral nature intro-
duced by ¢ and U in the two-particle dynamics [35]. To
quantify the chirality, we calculate the shearing along the y

direction of the ladder Yo = Ngr — Np [35,78], where Ny =
[g(:](nLB_"l,A) %("LB—VH,A)

St N = S

of time for different values of U (i.e., U =0, 4, 6, 10, 14)
in Fig. 7(a) for a fixed value of ¢ = 7 /2. The figure shows
that Yom = 0 when U = 0 (black circle), which indicates the
absence of chirality in the system [35]. However, for U # 0,
a finite oscillation in Ycy starts to appear due to the onset
of chirality in the dynamics. Interestingly, the amplitude of
oscillation in Youm gradually increases and then decreases with
increase in U in the short time dynamics. To quantify this,
we plot the maximum value of Yom (YAT*) after a short time
evolution as a function of U for different values of ¢ in
Fig. 7(b). The increase and then decrease in the value of YA{*
with interaction U for ¢ = m /4 (magenta hexagons), m /2
(green diamonds), and 37 /4 (blue squares) is an indication of
a reentrant chiral dynamics. Note that the chirality is absent
for ¢ = 0 (black circles) and ¢ = 7 (cyan triangles).

To understand this behavior in chirality we analyze the
energy eigenstates of the system. As already discussed in
Ref. [35], for the choice of the initial state |W(0)), when
U = 0, the two bosons do not exhibit chiral motion in their
QW due to the symmetric population of the chiral bands. In
contrast, finite interaction U breaks this symmetry and the
chiral motion sets in. This can be understood by calculating
the overlap of the initial state |W(0)) with all the two-particle

We plot Yy as a function

(a)2.0
1.5
1.0 N

Eo.s |
0.0
-0.5

FIG. 7. (a) The shearing Yoy is plotted as a function of time 7 (in
units of J~!) for different values of U at ¢ = 7. (b) The maximum of
the shearing Y7 is plotted as a function of U for different ¢ values.

energy eigenstates ({|x;)}) of the Hamiltonian defined as O =
[{xi [ W(0))].

We plot O as a function of ¢/m in Figs. 8(a)-8(c) for
U =0, 4, and 14, respectively. In each cases we obtain three
scattering bands, namely, the S1, S2, and S3 bands. As already
known, the chiral dynamics is mainly due to the contribution
from the S1 and S3 scattering bands, whereas the S2 scattering
band does not contribute to chirality [35]. It can be seen that
for U = 0 [Fig. 8(a)] and U = 4 [Fig. 8(b)], the overlap O
with the S1 and S3 bands are significant. While the overlap
with the S1 and S3 bands for U = 0 is symmetric, for U = 4
an asymmetric overlap is seen which sets in the chirality in the
system (compare with Fig. 7). This asymmetry in O increases
as the interaction increases, further resulting in the increase
in chirality. However, with further increase in U, the overlap
O with the S2 band starts to become finite, as can be seen
from Fig. 8(c) for U = 14. This reduces the chirality in the
system, and as a result a reentrant feature in chiral dynamics
appears. Note that three bound state bands (B1, B2, and B3)
also appear for finite U but they do not contribute to the chiral
dynamics.

IV. CONCLUSION

In this work, we have investigated the QW of two inter-
acting bosons on a two-leg ladder in the presence of uniform
flux. Starting from an initial state having one particle on each
site of the central rung of the ladder, we have shown that in
the regime of dominant rung hopping and strong interaction,
an interesting reentrant dynamics occurs which exhibits a
slow spreading wave packet becoming fast, then slow and
fast again as a function of the flux strength. However, in
the limit of weak interaction the dynamics is monotonous.
Moreover, we have obtained a reentrant feature in the two-
particle chiral dynamics as a function of interaction, where

05
o/n
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0.5 1.0 0.0

o/n

. 1 -10
0.5 1.0 0.0

o/n

-1
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FIG. 8. Two-particle energy spectrum of the ladder as a function
of ¢. The color scale represents the overlap O of the initial state
|w(0)) = bg, Aba glvac) with all the energy eigenstates of the system.
(a)—(c) Uniform flux with U = 0, 4, and 14, respectively.
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we have found that the center-of-mass shearing first increases
and then decreases for different values of flux strengths. Note
that although the reentrant dynamics in the interacting QW has
been predicted in systems with two competing interactions by
tuning the interaction strength [32,33,44,79], in our work we
have predicted a reentrant dynamics mediated by an external
gauge field and not by any interaction.

Our study reveals a non-trivial phenomenon in the context
of quench dynamics in a two-leg flux ladder, which is one the
most discussed models in recent years and has been studied
extensively both theoretically and experimentally. The QW
of interacting bosons on a two-leg flux ladder has also been
analyzed in a recent experiment using cold atoms in optical

lattices [35]. Therefore, our findings can be observed as an
existing experimental setup and also may open up different
directions where investigations can be made to understand this
reentrant dynamics with different types of initial conditions as
well as perturbations such as interaction and disorder.
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