
PHYSICAL REVIEW A 108, 063318 (2023)

Dressed-molecule theory for the quasi-two-dimensional quantum anomaly
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In this work the dressed-molecule theory is used to describe the two-dimensional quantum anomaly of
breathing mode in a recent experimental system [M. Holten et al., Phys. Rev. Lett. 121, 120401 (2018); T. Peppler
et al., Phys. Rev. Lett. 121, 120402 (2018)]. With the aid of a beyond-mean-field Gaussian pair fluctuation
theory, we employ the dressed-molecule states to characterize the axial excited states and the Feshbach molecular
states and propose a low-energy effective theory. We show that, in the whole crossover from a BCS superfluid
to a Bose-Einstein condensate, our theory can describe the two-dimensional experimental systems precisely
in the low-energy region. We explain the puzzling experimental observations of the smaller than expected
breathing-mode frequency. Our establishment of the dressed-molecule theory for two-dimensional fermions can
help in the understanding of the conformal anomaly in quasi-low-dimensional quantum systems.
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I. INTRODUCTION

The study of the conformal anomaly in low-dimensional
systems has received considerable attention in recent years.
Due to the quantum effect, the symmetry of the classical
theory can be destroyed; this is called a quantum anomaly.
One of the best-known anomalies is the conformal anomaly,
associated with the violation of scale invariance by quantum
corrections or quantified in renormalization. Since renormal-
ization or quantum corrections introduce a distance scale, the
classically scale-invariant symmetry has been broken. This is
ubiquitous in quantum field theory, such as quantum electro-
dynamics, quantum chromodynamics, and the Gross-Neveu
model [1].

In the two-dimensional system, these quantum anomalies
can be observed by measuring the breathing mode of two-
component interacting Fermi gases [2,3]. The breathing-mode
frequency has a weak dependence on the scattering length
and deviates from the classical value ωB = 2ω⊥ within a
range of 5%–10% [2,4,5]. Many previous articles predicted
the observed quantum abnormal breathing mode from the-
oretical calculations and quantum Monte Carlo simulations
[6–22]. However, two recent experimental results show that
even in the deep two-dimensional region, the predicted results
are still quite different from the experimental data [21,22].
The observed frequency is far lower than the well-established
theoretical prediction in the strong-interaction region [2,4].

The purpose of this work is to provide a different theory
of the quasi-two-dimensional quantum anomaly to explain
the experimental observations of the quantum anomaly of the
breathing-mode frequency. In a previous work we established
a minimal model to describe ultracold interacting fermions

*These authors contributed equally to this work.

confined in two dimensions and solved it at zero temperature
with the help of existing auxiliary-field quantum Monte Carlo
results [23]. In the BCS superfluid region, this minimal model
resolves to a certain extent the puzzling experimental obser-
vations of the smaller than expected equations of state and
breathing-mode frequency. However, the agreement between
the theoretical calculation and experimental data becomes
worse in the Bose-Einstein condensate (BEC) region, sug-
gesting the inadequacy of our theory towards the limit of a
BEC. This makes it necessary to put forward an alternative
theory to describe the two-dimensional interaction ultracold
fermions in the experimental system with the whole BCS-
BEC crossover. An alternative theory to explain experimental
observations needs to meet the following conditions. First,
this theory must be able to characterize the quantum anomaly
of the breathing-mode frequency, so it must be a beyond-
mean-field theory. Second, because of the strong-interaction
region, the energy of the z-axis potential cannot always be
much larger than other energy index scales. This means the
axial excited-state fermion effect cannot be neglected. Finally,
in the BEC region, the properties of the Feshbach molecular
states will be dominant.

In this work, by using the Gaussian pair fluctuation theory
to describe the quantum properties of the system and em-
ploying the dressed-molecule states [24] to characterize the
axial excited states and the Feshbach molecular states, we
develop an alternative theory. We show that, in the whole
crossover from a BCS superfluid to a BEC, our theory can
describe the two-dimensional experimental systems more pre-
cisely in the low-energy region. The paper is organized as
follows. In Sec. II we establish the dressed-molecule model by
fitting the two-body parameters with the two-channel model
of the three-dimensional experimental system. We also ver-
ify the completeness of this model in the whole BCS-BEC
crossover. In Sec. III we formulate the many-body theory of
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the dressed-molecule model and give the calculation method
of the breathing-mode frequency. In Sec. IV we show the re-
sults of the many-body calculations. We summarize in Sec. V.

II. DRESSED-MOLECULE MODEL

A. System description

In order to obtain a different theory describing the
quasi-two-dimensional quantum anomaly, we need to get an
effective model that can characterize the few-body physics of
the quasi-two-dimensional system. So first we focus on the
two-body problem in the three-dimensional two-component
Fermi gases with s-wave interaction by a one-dimensional
z-directional harmonic trap. This two-body Hamiltonian is
taken in the two-channel form

H = H0 + Hbf + Hint,

H0 =
∑

σ=↑,↓

∫
d3r ψ†

σ

(
− h̄2∇2

2m f
+ 1

2
m f ω

2
z z2

)
ψσ

+
∫

d3r φ†

(
− h̄2∇2

4m f
+ m f ω

2
z z2 + ν̄b

)
φ,

Hbf = ḡb

∫
d3r(φ†ψ↓ψ↑ + H.c.),

Hint = Ūb

∫
d3r ψ

†
↑ψ

†
↓ψ↓ψ↑, (1)

where ψσ and φ are the atomic and molecular field operator,
ωz is the trap frequency of the z-directional harmonic trap, and
ν̄b, ḡb, and Ūb are the bare detuning, the bare atom-molecule
coupling constant, and the bare background scattering am-
plitude, respectively. These bare scattering parameters are
related to the physical ones (just like Ūp) via the renormal-
ization relations [25]

U −1
c = −

∫
d3k

(2π3)

1

2ε̄k
, 	−1 = 1 + Up

Uc
,

Up = 	−1Ūb, gp = 	−1ḡb, νp = ν̄b + 	
g2

p

Uc
. (2)

The physical parameters are determined from the scattering
data as

Up = 4π h̄2abg

m f
, gp =

√
4π h̄2μcoW |abg|

m f
,

νp = μco(B − B0), (3)

where abg is the background scattering length, W is the reso-
nance width, μco is the difference in the magnetic moments
of the closed and open channels, and B0 is the resonance
position.

To better understand this Hamiltonian, we use harmonic
modes and plane waves to expand the field operators in the
trapped z direction and the untrapped x-y plane. Here we
consider just the center of mass as the zero case as it is
decoupled from the relative momentum in the two-body case.

The Hamiltonian is taken as

H0 =
∑

m,k,σ

εm,kc†
m,k,σ cm,k,σ + νbb†

0b0,

Hbf = gb

∑
m,n,k

γmn(b†
0cm,−k,↓cn,k,↑ + H.c.),

Hint = Ub

∑
m,n,k,m′,n′,k′

c†
m,k,↑c†

n,−k,↓cn′,−k′,↓cm′,k′,↑. (4)

Here the Hamiltonian is the dimensionless Hamiltonian with
the energy unit E0 = h̄ωz and the length unit at =

√
h̄/m f ωz .

The bosonic field b0 represents the molecular state with trans-
verse momentum k = 0 and axial harmonic mode m = 0.
The atomic relative energy εm,k = 1

4 + m + k2
x + k2

y . For the
coefficient γmn, when m + n is odd, γmn = 0; when m + n is
even,

γmn = (−1)(m−n)/2

(2π3)1/4
√

m!n!
	

(
m + n + 1

2

)
. (5)

For the bare parameter, gb = ḡba−3/2
t /h̄ωz, Ub = Ūba−3

t /h̄ωz,
and νb = ν̄b/h̄ωz.

We find that, in the Hamiltonian (4), there are three types
of states: fermions in the axial ground state, fermions in axial
excited states, and Feshbach molecular states. In order to fully
characterize these states, we use the two-dimensional (2D)
dressed-molecule model. It is a two-channel model in which
the particles in the open channel are fermions, representing
the fermions in the axial ground state, and the particles in
the closed channel are the dressed bosons, representing the
fermions in axial excited states and the Feshbach molecules
[24,26–30]. This effective Hamiltonian is also written in di-
mensionless form with length unit at and energy unit h̄ωz:

Heff =
∑
k,σ

εka†
k,σ ak,σ +

∑
q

(δb + εq/2)d†
qdq

+ αb

∑
k,q

(d†
qak+q/2,↑a−k+q/2,↓ + H.c.)

+ Vb

∑
k,k′,q

a†
k+q/2,↑a†

−k+q/2,↓a−k′+q/2,↓ak′+q/2,↑. (6)

Here εk = k2/2; δb, αb, and Vb are the three bare scattering
parameters; a†

k,σ (ak,σ ) are fermionic creation (annihilation)
operators; and d†

q (dq) are bosonic creation (annihilation) op-
erators. Here the dressed molecules are structureless, because
all short-range details associated with the fermions in axial
excited states and the Feshbach molecules are irrelevant in
the low-energy region. The bare scattering parameters can
be linked to physical ones by use the 2D renormalization
analogous to Eq. (2):

V −1
c = −

∫
d2k
4π2

1

2ε̄k + 1
, −1 = 1 + Vp

Vc
,

Vp = −1Vb, αp = −1αb, δp = δb + 
α2

p

Vc
. (7)

B. Parameter fitting

Here we set the physical scattering parameters in the
dressed-molecule model. To ensure the low-energy efficiency
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of the dressed-molecule model, we use the T matrix as the
benchmark to do the parameter fitting.

From the Hamiltonian (4) we can get the T matrix of the
three-dimensional system

T3D(E3D)−1 =
√

2π

⎡
⎣(

Up − g2
p

νp − E3D

)−1

− Sp(E3D)

⎤
⎦.

(8)

Here Sp(E3D) is the two-particle bubble function of the sys-
tem. We can get it by solving the two-body bound-state
equation with the general two-body state ansatz involving the
atoms and the molecule. The two-particle bubble function is

Sp(E3D) ≡
∑
m,n,k

γ 2
mn

(
E−1

m,n,k + 1

2εk

)

= −1

4
√

2π

∫ +∞

0
ds

(
	(s + 1

4 − E3D/2)

	(s + 3
4 − E3D/2)

− 1/
√

s

)
,

(9)

where Em,n,k = E3D − k2 − 1 − m − n and E3D is the energy
of the two-body system in the Hamiltonian (4). This is equiv-
alent to the quasi-2D bubble function calculated by Petrov
and Shlyapnikov [31], the details of which are given in the
Appendix. Similarly, for the Hamiltonian (6) of the dressed-
molecule model, the T matrix and the two-particle bubble
function are

T2D(E2D)−1 =
(

Vp − α2
p

δp − E2D

)−1

−
√

2πσp(E2D), (10)

σp(E2D) =
∫

d2k
(2π )5/2

(
1

E2D − 2εk
+ 1

1 + 2εk

)

= ln(−E2D)

4π
√

2π
, (11)

where E2D is the energy of the two-body system in the
dressed-molecule model.

Now we do the parameter fitting. First, from Eqs. (4) and
(6) for the vacuum state, the energy of the vacuum state in
the quasi-two-dimensional Hamiltonian is E3D = 1

2 ; for the
dressed-molecule model it is E2D = 0. So we can get E3D =
E2D + 1

2 . For convenience, we define the two-body energy as
E = E2D.

Second, we consider the νp → ∞ case. We define E inf
b

as the bounding energy in the dressed-molecule model with
νp → ∞. We obtain

U −1
p =Sp

(
E inf

b + 1
2

)
. (12)

From this equation we can solve the bounding energy E inf
b and

we also have V −1
p = √

2πσp(E inf
b ). We define Cp = Sp(E inf

b +
1
2 ) − σp(E inf

b ) and then we can fit the parameter Vp by the
equation

V −1
p =

√
2π

(
U −1

p − Cp
)
. (13)

Third, we know that the T matrix has simple poles when E
is equal to a two-body bound state of the Hamiltonian. By

matching the pole of the T matrix in Eqs. (8) and (10), we get(
Vp − α2

p

δp − Eb

)−1

=
√

2πσp(Eb). (14)

Here Eb is the solution of the equations Ueff (E )−1 = Sp(E +
1
2 ) and Ueff (E ) = Up − g2

p/[νp − (E + 1
2 )]. By matching the

first derivative of T −1 around the pole, we get

∂

∂Eb
Veff (Eb)−1 =

√
2π∂

∂Eb

[
Ueff (Eb)−1

− Sp

(
Eb + 1

2

)
+ σp(Eb)

]
, (15)

where Veff (Eb) = Vp − α2
p/(δp − Eb). Then we can fit the pa-

rameters δp and αp by the equations

δp = Eb − σp(Eb)�(EB)
∂

∂Eb

[
Ueff (Eb)−1 − Sp

(
Eb + 1

2

) + σp(Eb)
] ,

α2
p = �(EB)2

√
2π ∂

∂Eb

[
Ueff (Eb)−1 − Sp

(
Eb + 1

2

) + σp(Eb)
] , (16)

where �(EB) = [1 − σp(Eb)/(U −1
p − Cp)].

In Fig. 1 we plot the parameters of the dressed-molecule
model responding to the quasi-two-dimensional system [21].
Here Veff is the effective interaction defined before; it will
play an important role in the many-body calculation dis-
cussed below. The horizontal axis parameter as is the effective
2D scattering length as ≡ az

√
π/B exp −√

π/2az/a3D, with
a3D = (Up − g2

p/νp)/4π and B ∼ 0.905 [31]. We also show
the effective range of the dressed-molecule model in Fig. 2;
compared to the effective theory in our previous article [23],
the properties of the two curves with an effective range are
consistent. However, as the parameter approaches the BEC
limit, the difference between these two curves begins to
appear. This occurs, on the one hand, because the model
for the effective theory in our previous work is a concise
model, but the dressed-molecule model is a better model
in the low-energy region. On the other hand, in this paper,
the three-dimensional Hamiltonian is described in the two-
channel form, so on the BEC side, this description is more
physical than that in our previous work [23].

We have introduced an effective dressed-state 2D Hamil-
tonian by matching the two-body physics with three-
dimensional systems. This effective theory is a better model
in the low-energy region. By grouping the axial excited-state
fermions and Feshbach molecules to define a dressed-
molecule state, we can keep the correction of the low-energy
many-body physics. Because of the matching conditions of
the pole of the two-body T matrix and the first derivative of
T −1 around the pole, when the fermionic chemical potential is
not far away from the bound-state energy, just |2μ + |Eb|| �
1, the T matrix of the three-dimensional Hamiltonian can be
well approximated by that of the dressed-molecule model.
Considering the fact that |2μ + |Eb|| � EF through the BCS-
BEC crossover, where EF is the Fermi energy and the Fermi
energy is proportional to the number density EF ∝ n, for the
diluteness and the quasi-2D systems we consider in this paper,
this effective dressed-state theory is approximately valid. This
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FIG. 1. Evolution curve of the two-body interaction parameters
in the dressed-molecule model with the change of ln(kF as ). Here δp is
the effective energy difference between open and closed channels, αp

is the effective coupling strength between open and closed channels,
Veff is the effective interaction strength, and the unit of the two-body
interaction parameters E0 = h̄ωz.

FIG. 2. Effective 2D effective range Reff change with the 3D
interaction strength az/a3D. Here the unit of Reff is the 2D effective
range in the BCS limit R(0)

s = (− ln 2)a2
z . The black solid line is the

result of our dressed-molecule theory and the blue dotted line is the
data of our previous work [23].

is also the reason why we overlooked the impact of the closed-
channel molecules beyond the ground state in our model.

III. GAUSSIAN PAIR FLUCTUATION THEORY

We carry out the many-body simulation based on this
dressed-molecule model. Through Eq. (6), in the imaginary-
time path-integral formalism, the partition function Z is given
by

Z =
∫

D[�†
σ ,�σ ,�†,�]e−Seff [�†

σ ,�σ ,�†,�], (17)

where �σ and � are the real-space atomic and molecular field
operators corresponding to ak,σ and dq in Eq. (6) and Seff is
the effective action

Seff [�
†
σ ,�σ ,�†,�]

=
∫ β

0
dτ

{ ∫
d2r
S

[
�†

σ (r)

(
∂

∂τ
− μ

)
�σ (r)

+ �†(r)

(
∂

∂τ
− 2μ

)
�(r)

]
+ Heff

}
. (18)

Here τ is the imaginary time after the replacement t →
−iτ , β = 1/kBT is the inverse temperature, and the effective
Hamiltonian Heff is the real-space form of Eq. (6). Through
the Gaussian integral, fermions can be directly integrated out
and we obtain

Z =
∫

D[�†,�]e−Seff [�†,�], (19)

Seff [�
†,�] = −

∫
dx �† 1

Veff
� − Tr ln G−1[�,�†],

(20)

where x = (τ, r),
∫

dx = ∫ β

0 dτ
∫

dr, and � = αb� +
Vb�↓�↑ is the auxiliary field. By Fourier transforming,
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the effective action can be written in the momentum
space with dimensionless form (length unit at and
energy unit h̄ωz). Then we can get Veff → Veff (iql , q) =
Vp − α2

p/(−iql + q2/4 + δp − 2μ) and the fermion matrix

G−1[�,�†] =
(

iωn − ξk �

�† iωn + ξk

)
. (21)

In the mean-field level at zero temperature �(x) =
�0 = αb〈d0〉 + Vb

∑
k〈a−k,↓ak,↑〉, the grand potential  =

−(T/V ) lnZ can be evaluated as

MF = − �2
0

Veff (0, 0)
+

∑
k

(
ξk − Ek + �2

0

k2 + 1

)
, (22)

where ξk = k2/2 − μ and Ek =
√

ξ 2
k + �2 . However, the

mean-field theory is not enough to describe the quantum

anomaly, and the quantum fluctuation in the system cannot
be ignored. To have a more quantitative description, we con-
sider quantum fluctuations around the saddle point by writing
�(x) = �0 + η(x). An exact analytical treatment of the fluc-
tuation contribution is impossible. In our theory, we use the
Gaussian pair fluctuation approximation to calculate the quan-
tum fluctuation [32,33]. The fluctuation grand potential can be
written as

GF =
∑
q,iql

lnM11 + 1

2
ln

(
1 − M2

12

M11M22

)
. (23)

While using the renormalization condition, we express M11

and M12 as

M11 = − 1

Veff (iql , q)
+ 1

2

∑
k

{
2

k2 + 1
−

[(
1 + ξk

Ek

ξk+q

Ek+q

)
Ek + Ek+q

(Ek + Ek+q)2 + q2
l

−
(

ξk

Ek
+ ξk+q

Ek+q

)
iql

(Ek + Ek+q)2 + q2
l

]}
,

(24)

M12 =1

2

∑
k

�2

EkEk+q

Ek + Ek+q

(Ek + Ek+q)2 + q2
l

. (25)

In this work we use the local-density approximation and
adopt the commonly used sum-rule method to calculate the
breathing-mode frequency [4,34]. Due to the neglect of the
influence of highly excited states in the breathing mode in
this sum-rule approach, it can only give the upper bound of
the breathing-mode frequency. When the total particle number
is fixed, the relation between the total particle number and
particle density can naturally be written as

μ = μc − 1
2 m f ω

2
⊥r2, (26)

N =
∫ ∞

0
dr n(μ). (27)

Here ω⊥ is the trap frequency of the harmonic trap in the
transverse direction and m f is the mass of the fermion. By
using the sum-rule approach [35,36], we can calculate the
breathing mode at zero temperature

h̄2ω2
B = −2〈r2〉

(
d〈r2〉
d (ω2

⊥)

)−1

, (28)

where 〈r2〉 = N−1
∫ ∞

0 dr r2n(μ). Finally, we find the relation
between the ground-state energy in the center of the potential
and the particle number

MF + GF = −Nm f ω
2
⊥

2π
. (29)

IV. MANY-BODY CALCULATION RESULTS

Now we focus on the many-body calculation results. First,
we focus on the results of the region near the resonance
point. In Fig. 3 we plot the breathing-mode frequency change
with the number of the fermions in the trap compared to the
experimental data at ln(kF as) ∼ −0.1 [21]. Due to the fact

that the temperature in these two experiments almost meet the
requirement of being much lower than the Fermi temperature,
we have neglected the temperature effect in the experiment
and directly compared it with our zero-temperature calcula-
tion. The equation-of-state calculation of the quantum Monte
Carlo (QMC) at this point is quite different from the ex-
perimental data even for N/N2D = 0.2 [37]. Because of that,
when ln(kF as) ∼ −0.1, the corresponding effective strength
of the interaction Veff/h̄ωz ∼ −15 (see Fig. 1), which exceeds

FIG. 3. Breathing-mode frequency change with the number of
the fermions in the trap. The black solid line is the result of our
dressed-molecule theory and the blue dots are the experimental data
of Holten et al. at 0.10 ∼ 0.18TF [21]. Here N2D � (ωz/ω⊥)2 is the
2D threshold for an ideal gas.
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FIG. 4. Breathing-mode frequency change with the interaction
ln(kF as ) of the systems for a different total number of atoms.
The black solid line is the result of our dressed-molecule theory,
the blue dots are the experimental data of Holten et al. [21] at
0.10 ∼ 0.18TF , and the red pluses are the experimental data of Pep-
pler et al. at 0.14 ∼ 0.22TF [22]; for these three data sets the total
number N/N2D ∼ 0.2. The red dot-dashed line is the auxiliary-field
quantum Monte Carlo (AFQMC) simulation data for N/N2D → 0
[37] and the blue dashed line is the result of our dressed-molecule
theory for N/N2D = 0.02. The inset shows the mean-field calculation
of our dressed-molecule model at N/N2D = 0.2.

the energy gap between the axial excited states and the ax-
ial ground state. This makes it that the axial excited-state
fermions cannot be neglected even in the case of the par-
ticle number N/N2D = 0.2. It should be noted that, even in
the strong-interaction region, |2μ + |Eb|| � EF � 1 is also
valid for the diluteness and the quasi-2D systems we consider,
which makes the approximation of our dressed-molecule the-
ory still effective. With the increase of the particle number, the
proportion of the axial excited states will increase; the axial
excited states will play an important role in the systems, which
could make the breathing-mode frequency ωB/ω⊥ decrease.
As these dressed states represent the three-dimensional prop-
erties in two-dimensional systems, the difference between the
experimental data and the calculation of the QMC would be-
come bigger for a larger number of particles. For our theory, as
it covers the three types of states of the system, i.e., fermions
in the axial ground state, fermions in axial excited states, and
Feshbach molecular states, our calculation is in good agree-
ment with the experimental results in the strong-interaction
region even for a larger-number case.

In Fig. 4, which plots the breathing-mode frequency chang-
ing with the interaction of the systems compared to the
experimental data and the QMC calculation, we show that our
theory is a better low-energy effective theory as it can explain
the experimental observations of the quantum anomaly for the
whole BCS-BEC crossover, not only in the strong-interaction
region [21,22,37]. At the BCS limit, the system can be con-
sidered as a noninteracting two-dimensional Fermi gas. The
breathing-mode frequency ωB must be twice ω⊥, which is
the classical conclusion for the two-dimensional system; this

phenomenon can be seen in our results or other data. As the
system changes from the BCS limit to the resonance point, due
to the effect of the axial excited-state fermions as explained
above, the divergence between the experimental data and the
QMC calculation becomes larger, which can be corrected in
our theory. This divergence also existed in the previous two-
dimensional polytropic fit and sum-rule results [2,4,38].

When the system enters the BEC part, the critical role
of the fermions in terms of the properties of the system is
replaced by the Feshbach molecules. This requires that the
theory describing the quasi-2D system must include the prop-
erties of the Feshbach molecular states. Under this condition,
the system can be approximately understood as a 3D one-
component interacting Bose gas in a tight-binding harmonic
trapping potential. This 3D molecular scattering length is
am

3D � 0.6a3D [33]. The energy shift between those Bose gases
and the original Fermi system is Es ∼ Eb. In the BEC region,
this energy shift cannot be neglected. This makes the effective
models, which are based on the vacuum energy of the Fermi
system, not applicable in this case. For our dressed-molecule
theory, both the physics of 3D Feshbach molecular states
and the effect of the energy shift are fully considered in the
dressed-molecule model, so it can still describe the quasi-
two-dimensional system well in the BEC region. In the BEC
limit, it is equivalent to a quasi-2D weakly interacting BEC,
for which the effective 2D molecular scattering length is

am
2D =

√
h̄2π

2m f ωzB
exp

⎛
⎝−

√
h̄2π

4m f ωz

1

am
3D

⎞
⎠, (30)

with B � 0.905 [31]. We can also get it from Eq. (8). For our
dressed-molecule model, as discussed before, it can describe
the physics around the bound-state energy well. At the limits
a3D → 0+ and am

2D → 0+, the interaction energy is far lower
than the trap energy level, so the property of the system is
a weak-interaction 2D Bose gas and the breathing-mode fre-
quency ωB/ω⊥ will tend to 2. This phenomenon can be found
from Fig. 4, especially our mean-field result. Therefore, we
provide a theory that can better describe the quantum anomaly
of the breathing mode in the whole BCS-BEC crossover pro-
cess in an experimental system. We also plot N/N2D = 0.02 in
Fig. 4. Even in this case, there is still a big difference between
our prediction and the dimensional QMC data. This shows
that the experimental system cannot be described by a purely
two-dimensional theory.

V. SUMMARY

We have developed a theory to describe the two-
dimensional quantum anomaly of the breathing mode in an
experimental system. Within our effective theory, the dressed
molecules were used to characterize the axial excited-state
fermions and the Feshbach molecules, which resulted in a
good description of the high-dimensional effect in the strong-
interaction region and the Feshbach molecular properties in
the BEC part. On the other hand, with the aid of a beyond-
mean-field Gaussian pair fluctuation theory, the quantum
anomalous properties of the system could be explained. Our
establishment of the dressed-molecule theory for 2D fermions
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is crucial to the understanding of the conformal anomaly in
the quasi-low-dimensional quantum systems and paves the

way to investigate the quantum physics in other quasi-low-
dimensional many-body systems.
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APPENDIX: QUASI-2D BUBBLE FUNCTION

Here we will prove that the two-particle bubble function for the three-dimensional two-component Fermi gases with s-wave
interaction by a one-dimensional z-directional harmonic trap in this paper is equivalent to that in Petrov and Shlyapnikov’s work
[31]. From Eq. (9) we have

Sp(E ) =
∑
m,n,k

γ 2
mn

(
E−1

m,n,k

) +
∑

k

1

2εk

=
∑

n,i=(1∼n),k

[2 − δ(i)](2n − 1)!!2

22n(2π )1/2(n + i)!(n − i)!

1

E − 2εk − (1 + 2n)
+

∑
k

1

2εk
. (A1)

By using the formula

N∑
i=0

[2 − δ(i)](2N )!

(2)2N (N + i)!(N − i)!
= 1, (A2)

the quasi-2D scattering amplitude can be written as

Sp(E ) =
∑
n,k

(2n − 1)!!2

(2n)!(2π )1/2

1

E − 2εk − (1 + 2n)
+

∑
k

1

2εk

= lim
N→∞

1

2(2π )3/2

(
N∑

n=1

(2n − 1)!!

(2n)!!
ln(n + 1

2
− E ) − 2

√
N

π
[ln(N ) − 2]

)
. (A3)

This is the quasi-2D bubble function in Petrov and Shlyapnikov’s work [31]. Here S is the quantum area and m is the mass of
the fermion. To complete this proof, we need to apply the formula

N∑
n=0

(2n − 1)!!

(2n)!!
= 2	

(
N + 3

2

)
N!

√
π

. (A4)

The proof is as follows. For the N = 0 case we get

0∑
n=0

(2n − 1)!!

(2n)!!
= 1 = 2

1

2

√
π√
π

= 2
1

2

	
(

1
2

)
√

π
= 2

	
(
N + 3

2

)
N!

√
π

. (A5)

So if for the N = M − 1 case we have
∑N

n=0
(2n−1)!!

(2n)!! = 2	(N+3/2)
N!

√
π

and for the N = M case

M∑
n=0

(2n − 1)!!

(2n)!!
= 2	

(
M + 1

2

)
(M − 1)!

√
π

+ (2M − 1)!!

(2M )!!

= 2	
(
M + 1

2

)
(M − 1)!

√
π

+ 	
(
M + 1

2

)
√

π (M )!
= 2	

(
M + 1

2

)
(M )!

√
π

(
M + 1

2

)

= 2	
(
M + 3

2

)
(M )!

√
π

, (A6)
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we arrive at the conclusion that for any N we have
∑N

n=0
(2n−1)!!

(2n)!! = 2	(N+ 3
2 )

N!
√

π
. We also know that for the N � 1 case

	(N+ 3
2 )

N!
√

N
≈ 1.

Combining these two equations, we arrive at the conclusion

lim
N→∞

N∑
n=0

(2n − 1)!!

(2n)!!
= 2	

(
N + 3

2

)
N!

√
π

= lim
N→∞

2

√
N

π
. (A7)
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