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Faraday pattern formations in temporally driven Rydberg-dressed Bose-Einstein condensates
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We investigate both analytically and numerically the dynamics of Rydberg-dressed Bose-Einstein condensates
subjected to periodic modulation of the nonlocal repulsive interactions in time through temporally modulated
control laser field. We show that, by utilizing such a control laser field, the nonlocal nonlinear interactions may
be tuned actively, and hence a plane-wave state of matter wave can undergo a roton instability (RI) and Faraday
instability (FI) simultaneously or separately, depending on the choice of the system parameters. Specifically,
based on Floquet stability analysis, we find the evolution of small perturbations of the background allows the
instability growth, thereby identifying instability regions with respect to density waves. Furthermore, we find
that among other modes of the system the roton mode is most effectively excited due to a significant contribution
of subharmonics of the excitation frequency. From the direct numerical simulations of nonlocal Gross-Pitaevskii
equation (GPE) and the Fourier analysis on profile of the density waves, we further show the frequency of
temporal oscillations of density waves coincides with half of the driving frequency, which, therefore, is the
evidence of the parametric resonance and is characteristic of Faraday waves. In addition, an interesting possibility
would be to generate a steady stand-wave in the condensate which can persist after the creation even though
canceling the modulation, and finally the two-dimensional Faraday waves are excited through manipulating
local or nonlocal nonlinear coefficients in the system.
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I. INTRODUCTION

Pattern formations in extended and driven systems through
some dynamical instabilities are important phenomena ap-
pearing widely in nature and in literature, ranging from
physics, chemistry, biology, cosmology to economics and
even sociology, and so on [1,2]. Well-known examples include
convection cells, fluid rolls, nematic liquid crystals, Faraday
waves, snowflake pattern, Turing pattern, optical patterns, and
so on [3–12]. One of the oldest and most well-known phe-
nomena are the so-called Faraday waves [7], which refer to
nonlinear standing waves appearing on liquids enclosed by a
vibrating receptacle when the vibration frequency exceeds a
critical value, the flat hydrostatic surface becomes unstable.
Generally, in Faraday’s experiment, the uniform state loses
its stability against spatially or temporally modulated wave
forms whose dominant length scale is determined by the in-
trinsic properties of the system. Advancing such research to
cold atomic system is of much interest for both fundamental
physics and practical applications.

In the past few decades, considerable efforts were made on
the study of the above phenomena for driven pattern formation
system. Bose-Einstein condensates (BECs) work as one of the
ideal platform for such experimental exploration since their
experimental tunability permits one to create such parametric
resonance phenomena in a multiplicity of ways. One is driven
by temporally modulated trap confining the system [13,14],
the other is driven by modulating the scattering length by
means of Feshbach resonances [15,16]. Consequently, a va-
riety of Faraday waves are found in one or two-dimensional
BECs [16–18], single or multi-component BECs [19,20], one

or two-frequency driven BECs [21,22], dipolar BECs [23,24],
Fermi-Bose mixtures [25], and so on.

On the other hand, over the last two decades a large
amount of research works focused on the investigation of cold
Rydberg gases [26,27], where a strong long-range (nonlo-
cal) van der Waals interaction from highly excited Rydberg
atoms leads to a wide range of applications in quantum tech-
nology and science, many-body physics, synthetic quantum
magnets, and quantum computation [27–30]. However, the
investigation of spontaneous pattern formation induced by
Faraday instabilities in the Rydberg-dressed BECs is still lack-
ing. This motivated us to study the novel Faraday waves in
Rydberg-dressed BECs with the strong long-range interaction
of Rydberg atoms.

In this paper, we propose and analyze a scheme to in-
vestigate the dynamics of Rydberg-dressed BECs subject
to periodic modulation of the nonlocal interactions in time
through temporally modulated control laser field. The actual
realization of the temporally modulated patterns arose in a
somewhat different way in comparison to what described in
the above studies [13–16] since the nonlocal nonlinearity is
modulated. Through detailed analytical and numerical anal-
ysis, we find that by utilizing temporally modulated control
laser field, the nonlocal nonlinear interactions may be tuned
actively, and hence a plane-wave state of matter wave can
undergo a roton instability (RI) and Faraday instability (FI)
simultaneously or separately, depending on the choice of the
system parameters.

Specifically, based on Floquet stability analysis, we find
the evolution of small perturbations of the background allows
the instability growth, thereby identifying instability regions
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with respect to density waves. Meanwhile, Floquet analy-
sis reveals that a series of resonances exist, consisting of
a main resonance at half the driving frequency, and higher
resonance tongues at integer multiples of half the driving
frequency. Furthermore, we find that among other modes of
the system the roton mode is most effectively excited due to
a significant contribution of subharmonics of the excitation
frequency. From the direct numerical simulations of nonlocal
Gross-Pitaevskii equation (GPE), we further show the fre-
quency of temporal oscillations of density waves coincides
with half of the driving frequency, which, therefore, is the
evidence of the parametric resonance and is characteristic of
Faraday waves. In our numerical simulation, we can observe
that the Faraday patterns emerge in a much shorter time.
Interestingly, for our system, it is possible to generate a steady
stand-wave in the condensate which can persist once cre-
ated even after canceling the modulation. Moreover, we also
realized the two-dimensional Faraday waves in our system.
These investigations enriched our understanding on the driven
pattern formation mechanisms of the related pattern formation
in systems with repulsive long-range interactions, which has
the potential applications in fundamental physics along with
the practical implications.

The remainder of the article is arranged as follows. In
Sec. II, we describe the physical model, drive the nonlocal
GPE, and obtain the effective response function contributed
from Rydberg interaction. In Sec. III, we investigate the RI
of a plane-wave state and derive a Mathieu-type equation for
study the FI by utilizing Floquet stability analysis. In Sec. IV,
we solve numerically the GPE and find the various one-
and two-dimensional Faraday density waves. The last sec-
tion (Sec. V) gives a summary of our main research results.

II. PHYSICAL MODEL

We consider a system with N identical atoms, whose
motion of the center of mass is quantized. The atoms
have multiple internal states |α〉 (α = 1, 2, 3). As shown in
Fig. 1(a), the probe laser field Ep (blue, with Rabi frequency
�p) couples the ground state |1〉 and excited state |2〉, the
control laser field Ec (purple, with Rabi frequency �c) couples
the state |2〉 and high-excited Rydberg state |3〉. �2(3) is the
one-(two-)photon detuning, �12 and �23 are the spontaneous
emission decay rates from |2〉 to |1〉 and |3〉 to |2〉, respec-
tively. The second-quantization Hamiltonian of the system is
given by

Ĥ =
∫

d3r�̂†(r)

[
− h̄2∇2

2m
+ V (r) −

∑
α=2,3

h̄dα|α〉〈α|

− h̄�p|2〉〈1| − h̄�c|3〉〈2| + h.c.

]
�̂(r) + 1

2

∫∫
d3rd3r′

×
3∑

α,β=1

ψ̂†
α (r)ψ̂†

β (r′)Uαβ (r, r′)ψ̂β (r′)ψ̂α (r), (1)

where d3r = dxdydz, ∇ is three-dimensional (3D) nabla
operator on coordinate r = {x, y, z}, dα = �α + iγα/2 (α =
2, 3) with γα the damping, V (r) = 1

2 mω2
⊥(x2 + y2) +

1
2 mω2

z z2, with m, ω⊥, and ωz the center of mass of

FIG. 1. Schematics of the model. (a) Ladder-type three-level
atomic configuration for realizing the Rydberg-dressed BECs. The
two laser fields with half Rabi frequencies �p (blue) and �c (purple)
drive the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉, respectively; |1〉, |2〉,
and |3〉: ground state, excited state, and highly excited Rydberg state;
�2(3): the one-(two-) photon detuning; �12 and �23: the spontaneous
emission decay rates from |2〉 to |1〉 and |3〉 to |2〉, respectively.
(b) Possible experimental geometry for disk-shaped BECs. (c) Re-
sponse function U1D(ξ ) (black spot) and its fitting result (solid red
line) as a functions of the dimensionless ξ = x/Rc.

the atom and the trap frequencies in the xy plane and
in the z axis, respectively. Uαβ (r, r′) is the interaction
potential. The atomic annihilation operator is �̂(r) =∑

α ψ̂α (r)|α〉 [�̂†(r) = ∑
α ψ̂†

α (r)〈α|] with ψ̂α (r) the annihi-
lation operator of αth component. The half Rabi frequencies
of the probe and control fields are, respectively, �p = (ep ·
p21)Ep/h̄ and �c = (ec · p32)Ec/h̄, with pαβ the electric
dipole matrix element associated with the transition between
the |α〉 and |β〉.

The Heisenberg equations of motion for ψ̂α (α = 1, 2, 3)
can be reduced into a Gross-Pitaevskii (quantum nonlinear
Schrödinegr) equation for ψ̂1, with a nonlocal nonlinear term
representing the Rydberg-Rydberg interaction between the
atoms. For details, see Appendix A. Under mean-field approx-
imation, we have the nonlocal, c-number GPE

ih̄
∂

∂t
�(r, t ) =

[
− h̄2∇2

2m
+ V (r) + W |�(r, t )|2

+
∫

Ueff (r − r′)|�(r′, t )|2dr′
]
�(r, t ). (2)

Here �(r, t ) is the condensate wave function, which is nor-
malized under N = ∫ |�(r, t )|2dr, and W = 4π h̄2as/m is the
coefficient of the local interaction with as the s-wave scatter-
ing length. The effective long-range vdW interaction between
Rydberg-dressed ground-state atoms is

Ueff (r − r′) = h̄C̃6

|r − r′|6 + R6
c

, (3)

where the effective dispersion parameter and block-
ade radius are C̃6 = |�c|4|�p|4C6/|D|4 and Rc =
(NC6d2|�c0|2|�p|2/|D|2D)1/6, respectively. The detailed
derivation is given in Appendix A. Equation (2) can be cast
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into the dimensionless form

i
∂

∂τ
ψ3D(ρ, τ )

=
[
−1

2
∇̃2 + V (ρ)

]
ψ3D(ρ, τ ) + w|ψ3D|2ψ3D

+ w2

∫
U3D(ρ − ρ′)|ψ3D(ρ′, τ )|2d3ρ ′ψ3D(ρ, τ ), (4)

where �(r, t ) = ψ3D(ρ, τ )
√

N/R3
c , τ = t/τ0 (τ0 = mR2

c/h̄),
ρ = (ξ, η, s) = (x, y, z)/Rc, ∇̃2 = ∂2/∂ ξ 2 + ∂2/∂η2 + ∂2/

∂s2, V (ρ) = 1
2 τ 2

0 [ω2
x ξ 2 + ω2

yη
2 + ω2

z s2], w = 4 π asN/Rc,

w2 = NmC̃6/(h̄R4
c ), and U3D(ρ) = 1/(1 + |ρ|6).

To further simplify the analysis, we consider a one-
dimensional (1D) geometry which assumes a strong confine-
ment in the radial (yz) plane, i.e., ωy,z � ωx. In this case,
the dynamics of the BEC in the radial plane is confined
in the ground state, φ(η, s) = 1

σz
√

π
exp[−(η2 + s2)/(2σ 2

z )].
Now, we have the wave function ψ3D(ρ, τ ) = φ(η, s)ψ (ξ, τ ),
where ψ (ξ, τ ) is the effective 1D wave function for the radial
dynamics. To derive the effective 1D equation for the Rydberg
dressed BEC, we insert ansatz into Eq. (4), multiply by the
ground-state wave function φ(η, s) and integrate over η and s
to get the 1D equation

i
∂

∂τ
ψ (ξ, τ ) =

[
−1

2

∂2

∂ξ 2
+ V (ξ ) + w1|ψ |2

]
ψ (ξ, τ )

+ w2

∫
U1D(ξ − ξ ′)|ψ (ξ ′, τ )|2dξ ′ψ (ξ, τ ),

(5)

where V = 1
2τ 2

0 ω2
xξ

2, w1 = 2asN/(Rcσ
2
z ) could be positive

or negative, depending on the choice of s-wave scattering
length as, which can be adjusted actively by optically [31] or
magnetically [32,33] induced Feshbach resonance. U1D(ξ ) =∫

U3D(ρ)|φ(η, s)|2dηds is the one-dimensional effective re-
sponse function, and the linear term bψ with b = 1

4 [ 2
σ 2

z
+

τ 2
0 (ω2

y + ω2
z )σ 2

z ] is eliminated by using a phase transformation
ψ → ψe−ibτ . Here we choose as < 0 for attractive contact
interaction to guarantee the roton instability to happen easily
(which will be discussed in the following) and w2 depends on
the Rydberg state.

To realize the model, one may choose a cold 87Rb
atom as a realistic example. The assigned atomic levels
are [34] |1〉 = |5S1/2, F = 1, mF = 0〉, |2〉 = |5P3/2, F =
1, mF = 0〉, and |3〉 = |nS1/2〉. The system parameters
are �23 = 2π × 3.1 MHz, �12 = 2π × 1.0 kHz,�2 = 2π ×
100 MHz, �3 = 2π × 30 MHz, �c = 2π × 14 MHz, and
�p = 2π × 5 MHz, respectively. For principle quantum
number n = 60, C6 = −2π × 140 GHzμm6 (the Rydberg-
Rydberg interaction is repulsive) [35].

For the sake of convenience and clarity in discussion, the
effective 1D response function U1D(ξ ) is fitted by U1D(ξ ) ≈
0.78/(0.80 + |ξ |6). Figure 1(c) shows the effective one-
dimensional response function with the variation of ξ . Here
the black dotted line is for the analytic result, which is fitted
approximately as shown in red solid line.

III. ROTON INSTABILITY AND FARADAY INSTABILITY

The density waves in Rydberg dressed BECs can be in-
duced by periodic modulation of the parameter w1 or w2 in
Eq. (5), through as (via Feshbach resonance of magnetic field)
and control field �c (called an optical Feshbach resonance),
respectively, which is well known in fluid, i.e., Faraday waves
[7]. The methods are independently tunable, next we assume
that the nonlocal interactions w2 is modulated periodically,
which takes the form

w2 = w20[1 + 2α cos(2ωτ )]. (6)

Here α characterizes modulated amplitude and 2ω represents
the modulated frequency. In the absence of modulation (α =
0), the system returns to plane-wave state due to the repulsive
interaction.

Meanwhile, we note that there are two types of instability
that may occur in the system. One is roton instability, which
occurs when system parameters satisfies some conditions due
to the long-range, repulsive Rydberg-Rydberg interaction be-
tween atoms, already considered in Refs. [36–40]; the other
one is Faraday instability, which occurs when periodic modu-
lation of the parameter is applied even when the atom-atom
interaction is not long-ranged (but repulsive) one, already
considered before for conventional BECs in Ref. [15]. Here
we are interested in both the RI and FI in Rydberg-dressed
BECs.

A. Roton instability

We first assume V (ξ ) = 0 in GPE (5) to explore the
RI. In this case the GPE has the homogenous plane wave
solution: ψpw(ξ, τ ) = A0 exp(iτα), where A2

0 = 1/
∫

dξ and
α = −A2

0[w1 + w2
∫

U1D(ξ )dξ ]. Since any perturbation can
be expanded as a superposition of many Fourier modes, we
make the RI analysis of the plane wave by taking only a
periodic mode as the perturbation. Therefore, the perturbation
solution can be expressed as ψ̃ (ξ, τ ) = [A0 + a1eiβξ−iλτ +
a∗

2e−iβξ+iλ∗τ ]eiατ , where a1 and a2 are small complex ampli-
tudes of the perturbation, β ≡ Rckx is the non-dimensional
wave vector (kx is wave number in the x direction), and λ is
the growth rate of the perturbation, to be determined yet.

Substituting the perturbation solution into Eq. (5) and
keeping only linear terms of a1 and a2, we obtain

λ2 = β2
{

1
4β2 + A2

0 [w1 + w20U1D(β )]
}
, (7)

where U1D(β ) is the response function of U1D in momentum
space. We see from the above expression that the property
of the growth rate λ depends on the plane-wave amplitude
A0, the local and nonlocal nonlinear coefficients w1 and
w20. To illustrate them, Fig. 2 has shown the growth rate
−λ2 for different sets of parameters β, A0, w1, and w20.
First, when A0 = 1.5, w20 = 1, and choosing different w1 =
−0.6,−0.9,−1.03,−1.1, λ2 is dramatically changed with
w1 as shown in Fig. 2(a). When |w1| is small, the curve is
monotonic, however, it describe a nonmonotonic behavior as
|w1| increases. Specifically, it has a connect point with x axis
at βrot ≈ 2.73 and λ = 0 when w1 = −1.03. With the further
increase in |w1|, the growth rate becomes pure imaginary
(λ2 < 0) and RI appears, which is the main reason for the
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FIG. 2. λ2 of a Rydberg-dressed BECs as a function of the dimensionless wave number β = kRc for different sets of parameters A0, w1,
and w20. (a) A0 = 1.5, w20 = 1, and w1 = −0.6, −0.9, −1.03, −1.1; (b) w1 = −1, w20 = 1, and A0 = 1, 1.4, 1.53, 1.61; and (c) A0 = 1.5,
w1 = −1, and w20 = 0.95, 0.9, 0.87, 0.8. They are represented, respectively, by dashed red, dashed-dotted purple, dotted black, and solid blue
lines.

formation of patterns in long-range repulsive nonlinear inter-
action systems [41–44]. Furthermore, we also see that it is a
short-wave instability.

To obtain further insight of the RI, we adjust the pa-
rameters A0 and w20 and fix other parameters to obtain the
growth rate λ, which are shown in Fig. 2(b) with w1 = −1,
w20 = 1, A0 = 1, 1.4, 1.53, 1.61 and Fig. 2(c) with A0 = 1.5,
w1 = −1, w20 = 0.95, 0.9, 0.87, 0.8, respectively. They are
represented by dashed red, dashed-dotted purple, dotted black,
and solid blue lines. According to RI analysis, we know the
state of matter wave depends on the choice of parameters,
which will be discussed in the following sections.

B. Faraday instability

We now study the FI. To study the emergence and dynam-
ics of density waves, we introduce weak perturbation of the
uniform state [by setting V (ξ ) = 0] given by Eq. (5) and look
for a solution in the form

ψ = [A0 + εA1(ξ, τ )] exp(iατ ), A1 � A0, (8)

where A1 is a complex function of ξ and τ . The equation for
the perturbation is obtained by substituting Eq. (8) into Eq. (5)
and keeping only the linear terms on A1, which satisfies

i
∂A1

∂τ
= −1

2

∂2A1

∂ξ 2
+ A2

0w1(A1 + A∗
1 )

+ A2
0w2

∫
U1D(ξ − ξ ′)[A1(ξ ′) + A∗

1(ξ ′)]dξ ′. (9)

By representing A1 = B1 + iB2 and separating the real and
imaginary parts, we can cancel the component B2 and get the
Mathieu-type equation for B1 in momentum space, i.e.,

d2B̃1

dτ 2
+ [

λ2 + 2αA2
0w20β

2U1D(β ) cos(2ωτ )
]
B̃1 = 0, (10)

where B̃1 and U1D are the Fourier transform of B1 and U1D.
Remarkably, when α �= 0, the system is driven by a periodic
force with frequency 2ω and amplitude A2

0w20αβ2U1D. A
similar equation in the context of Faraday waves in general
BECs was derived in Ref. [15], but here we extended the result
of that work by taking into consideration the long-ranged
Rydberg-dressed atom-atom interactions.

Since the coefficient of the differential equation is a peri-
odic function with a minimal period T = π/ω, one can use
the Floquet theory to analyze the stability properties of this
system (10) (the detailed method is given in Appendix B).
Furthermore, we know from Eq. (10) that the FI depends
on the parameters A0, w1, α, and β. For different values of
these parameters, we can find the domains of instability in the
parameter space against the generation of patterns in Rydberg
BECs.

Figure 3 shows the phase diagram of the domains of Fara-
day instability in the space of two typical parameters α and
ω by varying A0. Figure 3(a1) is the unstable regions (red
regions) as a function of α and ω for A0 = 1.4, w1 = −1,
w20 = 1, and β = 2.73. One can see that there are different
FI regions around ω ≈ 0.748, ω ≈ 0.497, and ω ≈ 0.37. For
the appearance of FI, a larger driven amplitude α is needed

FIG. 3. Phase diagram of the domains of the Faraday instability
(red regions) in the parameter space of the amplitude α and the
dimensionless frequency ω of the periodic drive. (a1)–(a3): w20 = 1,
w1 = −1, β = 2.73, and varying A0 = 1.4, A0 = 1.5, and A0 = 1.53.
(b1)–(b3): w20 = 1, w1 = −1, A0 = 1, and varying β = 1, β = 2,
and β = 2.5. (c1)–(c3): w20 = 1, β = 2.73, A0 = 1, and varying
w1 = −0.6, w1 = −0.9, and w1 = −1.03.
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in case of the smaller driven frequency ω. Here the colorful
region is the one that FI appears. We furthermore increase A0

to 1.5 and 1.53, many new FI regions appear, as shown in
Figs. 3(a2) and 3(a3). A comparison of these figures indicates
that FI occurs easily in low (high)-frequency region when
A0 is large (small). In addition, the whole parameter space
becomes FI when A0 = 1.53 [Fig. 3(a3)]. This is because
under these circumstances, the RI also happens, which can be
seen from Fig. 2(b). Therefore, under the circumstances, the
system allows RI and FI, which can take action in the system
jointly and simultaneously.

The FI is also affected by other system parameters. Next,
we plot the FI regions as functions of α and ω for different
β = 1, 2, and 2.5, respectively, when A0 = 1, w20 = 1, and
w1 = −1 in Figs. 3(b1) to 3(b3). It represents that FI happens
in low (high)-frequency region when β is small (large). In
addition, we can control Faraday instability by changing w1,
which are drawn as functions of α and ω for different w1 =
−0.6, −0.9, and −1.03, respectively, when A0 = 1, w20 = 1,
and β = 2.73 in Figs. 3(c1) to 3(c3).

Therefore, due to the long-ranged Rydberg-Rydberg inter-
actions and the Faraday driving, the system allows both RI
and FI, which can take action in the system jointly and simul-
taneously. The cooperation and competition between the RI
and FI may display very rich and interesting phases. Further
comparing Figs. 2 and 3, we find that in the limiting case of
very small α, the system displays only RI; on the contrary, in
the limiting case of not large A0, the system displays only FI.
Further, for the intermediate case, the system displays a new
kind of instability (joint RI-FI) that different from both the RI
and FI. In the following, we will explore the output of RI and
FI, respectively.

IV. FARADAY PATTERN FORMATION

A. 1D Faraday pattern formation through manipulating w2

Based on Faraday instability analysis, we solved Eq. (5)
numerically. The starting point is the perturbed ground state
of Eq. (8), which is numerically obtained by the split Fourier
method under the periodic boundary conditions. The number
of Fourier modes and time step are NF = 212 and �τ =
0.0001, respectively. The integration domain is selected to
be sufficiently large ξ ∈ [−75π, 75π ] to accommodate many
periods of emerging waves on average. When the amplitude
of a density wave starts to increase rapidly due to a parametric
resonance, typically exceeding 20% of the background am-
plitude, we interrupt the numerical simulation and analyze
the resulting spatial pattern. As a rule, the spatial pattern
represents a superposition of waves with different spatial pe-
riods and displays as a high-frequency component modulated
by a low-frequency envelope. Modulation of the amplitude
originates from constructive and destructive interference of
emerging density waves with different periods.

As an example, we first solve the Eq. (5) with parameters
A0 = 1.4, w20 = 1, w1 = −1, ω = 0.748 [which is obtained
from Fig. 3(a), the most unstable frequency component], and
α = 0.05. The corresponding density waves are illustrated in
Fig. 4(a). Here for obtaining the result, we plot the difference
|ψ (ξ, τ )| − A0 as a function of ξ and τ , where the red (blue)

FIG. 4. Creation of density waves by time modulated periodi-
cally nonlocal interaction with parameters A0 = 1.4, w20 = 1, w1 =
−1, ω = 0.748, and α = 0.05. (a) |ψ (ξ, τ )| − A0 as functions of
ξ = x/Rc and τ = t/τ0, where the red (blue) region represents the
large (small) value. (b1) Density wave |ψ (ξ = 0, τ )| − A0 at cen-
tral position ξ = 0 as a function of time τ , and (b2) its power
spectrum F (|ψ (ξ = 0, τ )| − A0) as a function of frequency ω,
which consists mainly of three frequencies, i.e., ω1 = 0.748 (half of
driven frequency), ω2 = 1.496 ≈ 2ω1, and ω3 = 2.24 ≈ 3ω1. (c1)–
(c5) Density wave at some particular time instances, i.e., τ = 0, 64,
128, 192, and 256.

region represents the large (small) value. It suggests that the
GPE (5) may have a superposition of the different periodic
solutions. To verify this conjecture, we pick a density wave at
some particular space, namely, at ξ = 0 [shown in Fig. 4(b1)],
and at some particular time instances, i.e., τ = 0, 64, 128,
192, and 256 [shown in Figs. 4(c1)–4(c5)]. We can see that
the density wave is periodic both in time and space, and it
consists of multiple harmonics. Furthermore, the amplitude of
the waves increases with the duration of the driving. Specif-
ically, we plot the power spectrum of Fig. 4(b1) for density
wave at ξ = 0 in Fig. 4(b2), which mainly includes three
frequencies, i.e., ω1 = 0.748 (the half of driven frequency),
ω2 ≈ 2ω1, and ω3 ≈ 3ω1. It illustrates that the wave consists
of three harmonics in time, and is evidence of the parametric
resonance phenomenon [45].

Next, the driven frequency is adjusted to ω = 0.497 [cor-
responding to the second Faraday unstable band in Fig. 3(a)]
while other parameters remain unchanged, and we solved
Eq. (5) again. Here we also plot the difference |ψ (ξ, τ )| − A0

as a function of ξ and τ , where the red (blue) region represents
the large (small) value in Fig. 5(a). We choose a density
wave at some particular space, namely, at ξ = 0 [shown in
Fig. 5(b1)], and at some particular time instances, i.e., τ = 0,
200, 300, 350, and 424.5 [shown in Figs. 5(c1) to 5(c5)]. The
density wave is also periodic both in time and space, and it
consists of multiple harmonics. Specifically, we plot the power
spectrum of Fig. 5(b1) for density wave at ξ = 0 in Fig. 5(b2),
which mainly includes two frequencies, i.e., ω1 = 0.497 (the
half of driven frequency) and ω2 ≈ 2ω1. It illustrates that
the wave consists of two harmonics with approximately same
amplitudes in time.

Comparing the simulation results illustrated in Figs. 4 and
5, we identified distinct features of the density waves. For
instance, the later effective excitation needs a much longer
time. While the amplitudes of two excitation frequencies are
basically equal to each other for later case but different for the
previous. In addition, the distribution of wave patterns is also
different with each other.
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FIG. 5. Creation of density waves by time modulated periodi-
cally nonlocal interaction with dimensionless parameters A0 = 1.4,
w20 = 1, w1 = −1, ω = 0.497, and α = 0.05. (a) Density difference
|ψ (ξ, τ )| − A0 as functions of ξ = x/Rc and τ = t/τ0, where the red
(blue) region represents the large (small) value. (b1) Density wave
|ψ (ξ = 0, τ )| − A0 at central position ξ = 0 as a function of time τ ,
and (b2) the corresponding power spectrum F (|ψ (ξ = 0, τ )| − A0)
as function of frequency ω, which consists mainly of two frequen-
cies, i.e., ω1 = 0.497 (half of driven frequency), and ω2 = 1.496 ≈
2ω1. (c1)–(c5) Density wave at some particular time instances, i.e.,
τ = 0, 200, 300, 350, and 424.5.

We further carry out the simulation with a much lower
driven frequency ω = 0.372 [corresponding to the third Fara-
day unstable band in Fig. 3(a)] and other parameters remains
unchanged, which are shown in Fig. 6. A new kind of den-
sity wave pattern appears here, which shapes the prismatic
structures. Here |ψ (ξ, τ )| − A0 as functions of ξ and τ are
shown in Fig. 6(a) with the red (blue) region representing the
large (small) value. Meanwhile, we plot |ψ (ξ = 0, τ )| − A0 in
Fig. 6(b1) and its power spectrum in Fig. 6(b2) for the density
wave. This pattern consists principally of one frequency ω1 =
ω = 0.372. By choosing a density wave at some particular
time instances, i.e., τ = 0, 200, 300, 350, and 424.5, we obtain
some profiles shown in Figs. 6(c1) to 5(c5).

The patterns can be controlled not only by the driven fre-
quency, but also the parameters of the system, e.g., A0. We
now simulate numerically GPE (5) by increasing A0 to 1.5
and changing the driven frequency ω = 0.72 [corresponding
to Fig. 3(b)]. Figure 7 displays the density wave and some

FIG. 6. Creation of density waves by time modulated periodi-
cally nonlocal interaction with A0 = 1.4; w20 = 1, w1 = −1, ω =
0.372, and α = 0.05. (a) Density difference |ψ (ξ, τ )| − A0 as func-
tions of ξ = x/Rc and τ = t/τ0, where the red (blue) region
represents the large (small) value. (b1) |ψ (ξ = 0, τ )| − A0 at central
position ξ = 0 as a function of time τ , and (b2) its power spectrum
F (|ψ (ξ = 0, τ )| − A0 ) as a function of frequency ω, which consists
principally of one frequency, i.e., ω1 = 0.372 (half of driven fre-
quency). (c1)–(c5) Density wave at some particular time instances,
i.e., τ = 0, 450, 500, 550, and 610.

FIG. 7. Creation of density waves by time modulated peri-
odically nonlocal interaction with A0 = 1.5; w20 = 1, w1 = −1,
ω = 0.72, and α = 0.01. (a) Density difference |ψ (ξ, τ )| − A0 as
functions of ξ = x/Rc and τ = t/τ0, where the red (blue) region rep-
resents the large (small) value. (b1) Density wave |ψ (ξ = 0, τ )| − A0

at central position ξ = 0 as a function of time τ , and (b2) the
corresponding power spectrum F (|ψ (ξ = 0, τ )| − A0) as function
of frequency ω, which consists principally of one frequency, i.e.,
ω1 = 0.72 (half of driven frequency). (c1)–(c5) Density wave at
some particular time instances, i.e., τ = 0, 22, 32, 42, and 49.

particular profile in space and time. Here |ψ (ξ, τ )| − A0 as
a function of ξ and τ is shown in Fig. 7(a), which is very
different from Figs. 4–6. We find that it just needs a driv-
ing with very short duration. Meanwhile, it suggests that the
GPE (5) may have a standing-wave-type spatially periodic
solution under these conditions. Furthermore, it creates an
effective driving with oscillating frequency ω1 = ω = 0.72,
which are shown in Figs. 7(b1) and 7(b2). For clarity, we also
plot the specific wave profile at different time τ = 0, 140,
190, 240, and 290 in Figs. 7(c1) to 7(c5). We see clearly
that the emerging density wave represents a superposition
of many wave components. Constructive and destructive in-
terference of these components produce a picture where a
high-frequency wave appears to be modulated by a low-
frequency envelope. From the FI analysis in Fig. 3, one can
also generate some other novel density wave patterns by
varying the amplitude A0, nonlinear coefficient w1 and w2,
modulated wave number β, and so on. For saving space, we
do not display them here.

An interesting possibility would be to generate a steady
wave in the condensate, which can persist once created even
after canceling the modulation. To serve the purpose, we
performed numerical experiments in which the periodic mod-
ulation in GPE (5) was kept until some time instance τ0

and after that was set to zero, i.e., α = 0 when τ > τ0. For
example, we set τ0 = 30, and other parameters are the same
as that in Fig. 7, which is illustrated in Fig. 8(a). The result
for the density wave is shown in Fig. 8(b). As can be seen, the
density waves are preserved after creation, provided that the
modulation of the coefficient of α ceases at some point in time
τ = 30. It is the expected outcome since the original model
GPE (5) is conservative. However, we should stress that in real
experimental settings some dissipation effects may be present,
leading to a damping of density waves, but these issues are
beyond of the scope of present work.

B. 2D Faraday pattern formation through manipulating w2

When we relax the confinement in y direction, Eq. (5)
becomes a (2 + 1)D GPE with the nonlocal nonlinear
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FIG. 8. (a) Profile of the modulated parameter α. (b) Creation
of density wave |ψ (ξ, τ )| − A0 by time modulated periodically non-
local interaction with A0 = 1.5; w20 = 1, w1 = −1, ω = 0.72, and
α = 0.05 when τ < 30, which as functions of ξ = x/Rc and τ =
t/τ0, where the red (blue) region represents the large (small) value.

modulation in temporal [replace ∂2/∂ξ 2 by ∂2/∂ξ 2 +
∂2/∂η2]. We now investigate the dynamics of the system
by solving the (2 + 1)D GP equation numerically through
the pseudo-spectral method and random initial conditions.
In the simulation, the corresponding parameters are chosen
as A0 = 1.5; w20 = 1, w1 = −1, ω = 0.72, and α = 0.05.
Figure 9 displays the results of two-dimensional density
waves |ψ (�ζ , τ )|2 as a function of ξ and η for different times
τ = 50, 196, 332, and 375 in the top row [Figs. 9(a1) to
9(a4)] and their Fourier transform in the momentum space
|ψ̂ (�β, τ )|2 in the bottom row [Figs. 9(b1) to 9(b4)]. Here the
red (blue) region represents the large (small) value. It can be
seen that the homogenous density wave is modulated first in
the η direction to form the stripe structure [Fig. 9(a2)] and
then modulated in the ξ direction to form the square structure
[Fig. 9(4a)].

Furthermore, we simulate the (2 + 1)D GP equation nu-
merically through choosing the parameters A0 = 1.0; w20 =
1, w1 = −0.6, ω = 2.73, and α = 0.05, some novel Faraday
waves are found, which are illustrated in Fig. 10. Specifically,

FIG. 9. Creation of two-dimensional density wave |ψ (�ζ , τ )|2
by time modulated periodically nonlocal interaction with A0 =
1.5; w20 = 1, w1 = −1, ω = 0.72, and α = 0.05 for different time
τ = 50, 196, 332, and 375 in (a1)–(a4), and that in the momentum
space |ψ̂ (�β, τ )|2 with �β ≡ (β1, β2) = Rc(k1, k2) in (b1)–(b4), where
the red (blue) region represents the large (small) value.

FIG. 10. Creation of two-dimensional density wave |ψ (�ζ , τ )|2
by time-modulated periodically nonlocal interaction with A0 =
1.5; w20 = 1, w1 = −0.6, ω = 2.73, and α = 0.05 for different time
τ = 50, 100, 150, and 250 in (a1)–(a4), and that in the momentum
space |ψ̂ (�β, τ )|2 with �β ≡ (β1, β2) in (b1)–(b4), where the red (blue)
region represents the large (small) value.

the results of two-dimensional density waves |ψ (�ζ , τ )|2 as
functions of ξ and η with varying time τ = 50, 196, 332, and
375 in the top row [Figs. 10(a1) to 10(a4)] and their Fourier
transform in the momentum space |ψ̂ (�β, τ )|2 in the bottom
row [Figs. 10(b1) to 10(b4)]. Here the red (blue) region repre-
sents the large (small) value. For other parameters, some new
pattern can also appear, which are not shown here for space.

C. 2D Faraday pattern formation through manipulating w1

In the previous section, we assumed that the nonlocal
nonlinearity is modulated periodically in time and keeping
the scattering lengths (i.e., local nonlinearity) fixed. Here,
we study the Faraday wave through manipulating the local
nonlinearity, i.e., assuming w1 = w10[1 + 2α cos(2ωτ )]. Per-
forming the analysis similar to the previous section, we obtain
the Mathieu-type equation for B1 in momentum space, which
is of the form

d2B̃1

dτ 2
+ [

λ2 + 2αA2
0w10β

2 cos(2ωτ )
]
B̃1 = 0, (11)

where B̃1 is modulated periodically with modulation ampli-
tude 2αA2

0w10β
2 and period 2ω. Figure 11 shows the phase

diagram of the domains of Faraday instability in the space
of two typical parameters α and ω with other parameters
A0 = 1.4, w1 = −1, w20 = 1, and β = 2.73, where the red
regions present the unstable regions. One can see that there are
different FI regions around ω ≈ 0.71, ω ≈ 0.35, ω ≈ 0.24,
ω ≈ 0.18, and so on. For the appearance of FI, a larger
driven amplitude α is needed in case of the smaller driven
frequency ω.

Based on the FI analysis, we carry out the simula-
tion directly on the (2 + 1)D GPE with the local nonlin-
ear modulation in temporal by w1 = w10[1 + 2α cos(2ωτ )].
Figures 12–14 display the results of two-dimensional density
waves |ψ (�ζ , τ )|2 as a function of ξ and η under the different
conditions. Specifically, Fig. 12 is for A0 = 1.5, w20 = 1,
w1 = −1.3, ω = 0.35, and α = 0.05 for time τ = 0, 40, 50,
and 60 in the top row [Figs. 12(a1) to 12(a4)] and their
Fourier transform in the momentum space |ψ̂ (�β, τ )|2 in the
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FIG. 11. Phase diagram of the domains of the FI (red regions) in
the parameter space of the amplitude α and the frequency ω of the
periodic drive with w2 = 1, w10 = −1, β = 2.73, and A0 = 1.5.

bottom row [Figs. 12(b1) to 12(b4)]. Here the red (blue)
region represents the large (small) value. It can be seen that
the homogenous density wave is modulated gradually to form
the droplet structure.

When local nonlinearity w1 is adjusted to −1.28 and
other parameters are fixed, a new structure appears, which
are shown in the top row in Fig. 13 for different time τ =
0, 75, 100, and 150, and the bottom row are for the corre-
sponding results in momentum space. A new way to achieve
the Faraday waves is to change the modulation frequency ω

to 0.72. Furthermore, the production of the new pattern is
illustrated in Fig. 14 with A0 = 1.5, w20 = 1, w1 = −1.2,
ω = 0.72, and α = 0.05.

V. DISCUSSION AND SUMMARY

To achieve such modulated parameters at current exper-
iment conditions, on the one hand, we can modulate the

FIG. 12. Creation of two-dimensional density wave |ψ (�ζ , τ )|2
by time-modulated periodically nonlocal interaction with A0 =
1.5; w20 = 1, w1 = −1.3, ω = 0.35, and α = 0.05 for different time
τ = 0, 40, 50, and 60 in (a1)–(a4), and that in the momentum space
|ψ̂ (�β, τ )|2 with �β ≡ (β1, β2) in (b1)–(b4), where the red (blue) re-
gion represents the large (small) value.

FIG. 13. Creation of two-dimensional density wave |ψ (�ζ , τ )|2
by time-modulated periodically nonlocal interaction with A0 =
1.5; w20 = 1, w1 = −1.28, ω = 0.35, and α = 0.05 for different
time τ = 0, 75, 100, and 150 in (a1)–(a4), and that in the mo-
mentum space |ψ̂ (�β, τ )|2 in (b1)–(b4), where the red (blue) region
represents the large (small) value.

parameter w2 by adjusting the control laser field �c ≡ �c(t )
or dispersion parameters C6 [47]. On the other hand, one can
modulate the scattering length by means of Feshbach reso-
nances [15,16,31–33]. Under these conditions and by setting
suitable system parameters, the matter wave will undergo FI
and then be transformed into the Faraday patterns along with
the time.

In summary, we investigated both analytically and numer-
ically the dynamics of Rydberg-dressed BECs subjected to
periodic modulation of the nonlocal repulsive interactions in
time through temporally modulated control laser field. We
showed that the interactions may be tuned actively by utilizing
such control laser field, and hence a plane-wave state of matter
wave can undergo a RI and FI simultaneously or separately,
depending on the choice of the system parameters. Based on
Floquet stability analysis, we also found the evolution of small
perturbations of the background allows the instability growth,
thereby identifying instability regions with respect to density
waves and among other modes of the system the roton mode
is most effectively excited due to a significant contribution

FIG. 14. Creation of two-dimensional density wave |ψ (�ζ , τ )|2
by time-modulated periodically nonlocal interaction with A0 =
1.5; w20 = 1, w1 = −1.2, ω = 0.72, and α = 0.05 for different time
τ = 0, 150, 250, and 400 in (a1)–(a4), and that in the momentum
space |ψ̂ (�β, τ )|2 with �β ≡ (β1, β2) in (b1)–(b4), where the red (blue)
region represents the large (small) value.
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of subharmonics of the excitation frequency. From the direct
numerical simulations of nonlocal GPE, we observed that
the Faraday patterns emerge in a much shorter time both in
one- and two-dimensional space. Finally, an interesting steady
stand-wave in the condensate can persist after the creation
even though canceling the modulation. These investigations
enriched our understanding on the driven pattern formation
mechanisms of the related pattern formation in systems with
repulsive long-range interactions, which has the potential ap-
plications in fundamental physics along with various other
practical implications.
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APPENDIX A: DERIVATION NONLOCAL GP EQUATION
IN RYDBERG-DRESSED BECs

We consider a system with N identical atoms whose
center-of-mass motion is quantized. The atoms have
multiple internal states |α〉. The atomic annihilation
operator is �̂(r) = ∑

α ψ̂α (r)|α〉 [�̂†(r) = ∑
α ψ̂†

α (r)〈α|]
with ψ̂α (r) the annihilation operator of αth compo-
nent (α = 1, 2, 3, . . . , M). Here the base vectors are
|1〉 = (1, 0, . . . , 0)T, |2〉 = (0, 1, . . . , 0)T, . . . , |M〉 =
(0, . . . , 0, 1M )T. The second-quantization Hamiltonian of
the atoms is given by Ĥ = Ĥ0 + Ĥint, with

Ĥ0 =
∫

d3r�̂†(r)

[
− h̄2

2m
∇2 + V (r) −

3∑
α=1

h̄dα|α〉〈α| − h̄�p|2〉〈1| − h̄�c|3〉〈2| + H.c.

]
�̂(r), (A1a)

Ĥint = 1

2

∫∫
d3rd3r′

3∑
α,β=1

ψ̂†
α (r)ψ̂†

β (r′)Uαβ (r, r′)ψ̂β (r′)ψ̂α (r), (A1b)

where d3r = dxdydz and dα = �α + iγα/2 (α = 1, 2, 3). From the Heisenberg equation of motion ih̄ ∂
∂t �̂(r, t ) =

[�̂(r, t ), Ĥ ] + iF̂ with F̂ = ∑3
α=1 F̂α|α〉 noise operator, we obtain

ih̄
∂

∂t
ψ̂1 =

(
− h̄2

2m
∇2 + V (r) − h̄d1

)
ψ̂1 − h̄�pψ̂2 +

∑
β

∫
d3r′U1β (r, r′)ψ̂†

β (r′)ψ̂β (r′)ψ̂1(r) + iF̂1, (A2a)

ih̄
∂

∂t
ψ̂2 =

(
− h̄2

2m
∇2 + V (r) − h̄d2

)
ψ̂2 − h̄�pψ̂1 − h̄�∗

cψ̂3 +
∑

β

∫
d3r′U2β (r, r′)ψ̂†

β (r′)ψ̂β (r′)ψ̂2(r) + iF̂2, (A2b)

ih̄
∂

∂t
ψ̂3 =

(
− h̄2

2m
∇2 + V (r) − h̄d3

)
ψ̂3 − h̄�cψ̂2 +

∑
β

∫
d3r′U3β (r, r′)ψ̂†

β (r′)ψ̂β (r′)ψ̂3(r) + iF̂3. (A2c)

Note that the above model includes the atom-atom interactions between all internal states. For simplicity, we assume that for
atom-atom interaction only two parameters U11 and U33 are nonzero. Then the above equations are reduced into

ih̄
∂

∂t
ψ̂1 =

(
− h̄2

2m
∇2 + V (r) − h̄d1

)
ψ̂1 − h̄�pψ̂2 +

∫
d3r′U11(r, r′)ψ̂†

1 (r′, t )ψ̂1(r′, t )ψ̂1(r, t ) + iF̂1, (A3a)

ih̄
∂

∂t
ψ̂2 =

(
− h̄2

2m
∇2 + V (r) − h̄d2

)
ψ̂2 − h̄�pψ̂1 − h̄�∗

cψ̂3 + iF̂2, (A3b)

ih̄
∂

∂t
ψ̂3 =

(
− h̄2

2m
∇2 + V (r) − h̄d3

)
ψ̂3 − h̄�cψ̂2 +

∫
d3r′U33(r, r′)ψ̂†

3 (r′, t )ψ̂3(r′, t )ψ̂3(r, t ) + iF̂3, (A3c)

where the term related to U11 is due to the mean-field interaction between the atoms in the BEC, while term related to U33 is
due to the Rydberg-Rydberg interaction between the atoms at Rydberg states. In the following the time variable t in ψ̂α will be
omitted for simplicity. Assuming h̄d2 and h̄d3 are large, we have

d2ψ̂2 ≈ −�pψ̂1 + �∗
cψ̂3, h̄d3ψ̂3 ≈

∫
d3r′U33(r, r′)ψ̂†

3 (r′)ψ̂3(r′)ψ̂3(r) − h̄�cψ̂2. (A4)
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Since the interaction U33(r, r′) changes much slowly than
that of the operator ψ̂1(r′), and the particles populate mainly
in ground state |1〉, and applying the iteration method to
Eqs. (A4), we have

ψ̂2 = ψ̂
(1)
2 + ψ̂

(3)
2 + ψ̂

(5)
2

≈ −d3

D
�pψ̂1 − |�c|4|�p|2�p

h̄|D|4

×
∫

d3r′U33(r, r′)ψ̂†
1 (r′)ψ̂1(r′)ψ̂1(r)

1 + Nd2|�c|2|�p|2U33(r, r′)/(h̄|D|2D)
, (A5)

where D = d2d3 − |�c|2. Substituted Eq. (A5) into Eq. (A3a),
it gives the closure equation about ψ̂1:

ih̄
∂

∂t
ψ̂1 =

(
− h̄2

2m
∇2 + V (r) − h̄d1

)
ψ̂1 + h̄d3|�p|2

D
ψ̂1

+
∫

d3r′U11(r, r′)ψ̂†
1 (r′)ψ̂1(r′)ψ̂1(r) + iF̂1

+
∫

d3r′ h̄|�c|4|�p|4U33(r, r′)ψ̂†
1 (r′)ψ̂1(r′)ψ̂1(r)

h̄|D|4 + Nd2|�c|2|�p|2D∗U33(r, r′)
.

(A6)

We now apply the Bogoliubov ansatz [46] ψ̂1(r) =
ψ1(r) + φ̂1(r). Here ψ1(r) = 〈ψ̂1(r)〉 is the so-called con-
densate wave function, a classical field that represents the
wave function of particles in the BECs, which is normalized
to 〈ψ1|ψ1〉 = ∫

d3r|ψ1(r)|2 = N . φ̂1(r) describes fluctuations
and vanishes on average 〈φ̂1(r)〉 = 0. Eventually, by using the
mean-field approximation, we have

ih̄
∂

∂t
ψ1 =

(
− h̄2

2m
∇2 + V (r) − h̄d1

)
ψ1 + h̄d3|�p|2

D
ψ1

+
∫

d3r′U11(r, r′)|ψ1(r′)|2ψ1(r)

+
∫

d3r′ h̄|�c|4|�p|4U33(r, r′)|ψ1(r′)|2ψ1(r)

h̄|D|4 + Nd2|�c|2|�p|2D∗U33(r, r′)
,

(A7)

where U33(r, r′) = h̄C6/|r − r′|6, d1 = �1 + iγ1/2 ≈ 0, and
U11(r, r′) = W δ(r − r′) with W = 4π h̄2a/m. We can convert
Eq. (A7) into

ih̄
∂

∂t
ψ1 =

(
− h̄2

2m
∇2 + V (r)

)
ψ1 + h̄d3|�p|2

D
ψ1

+ W |ψ1(r′)|2ψ1(r) +
∫

d3r′ h̄C̃6|ψ1(r′)|2ψ1(r)

R6
c + |r − r′|6 .

(A8)

Introducing � = ψ1 exp{id3|�p|2t/D}, we have

ih̄
∂

∂t
� =

[
− h̄2

2m
∇2 + V + W |�(r)|2

+
∫

d3r′ h̄C̃6|�(r′)|2
R6

c + |r − r′|6
]
�, (A9)

where C̃6 = |�c|4|�p|4
|D|4 C6 and R6

c = NC6d2|�c|2|�p|2
|D|2D .

APPENDIX B: FLOQUET ANALYSIS FOR FARADAY
INSTABILITY

In the main text, we obtained the Mathieu-type equation for
B1, i.e.,

d2B̃1

dτ 2
+ [

λ2 + 2αA2
0w20β

2U1D(β ) cos(2ωτ )
]
B̃1 = 0. (B1)

Equation (B1) can be written into the form of system of two
first-order ordinary differential equations,

d

dτ

[B1

B′
1

]
=

[ 0 1
− f (τ ) 0

][B1

B′
1

]
, (B2)

where B′
1 = dB1/dτ , and f (τ ) = −λ2 + 2A2

0αβ2U1D cos
(2ωτ ). We note that the coefficient matrix is periodic with pe-
riod T = π/ω. Using Floquet theory, we create a fundamental
solution matrix M with the form

M =
[bi1(T ) b j1(T )
bi2(T ) b j2(T )

]
, (B3)

where bi1(T ), bi2(T ) and b j1(T ), b j2(T ) are, respectively, the
two fundamental solution vectors of Bi and Bj . Furthermore,
the initial conditions Bi and Bj satisfy that Bi = (1, 0) and
Bj = (0, 1). We now solve for the eigenvalues of M by the
characteristic equation for matrix M,

κ2 − Tr(M )κ + Det(M ) = 0. (B4)

It is easy to show that the d Det(M )/dτ = 0, thus we obtain
Det(M ) = 1. The characteristic Eq. (B4) becomes

κ2 − Tr(M )κ + 1 = 0. (B5)

We hence have κ1,2 = Tr(M )±
√

Tr(M )2−4
2 and κ1κ2 = 1. Any

κ1,2 > 1 indicates instability. Thus we have the neutrally sta-
ble domain by |Tr(M )| = 2. Baesd on the proposed theoretical
approach, it allows one to identify the domains of instability
in the parameter space by numerical integration the Eq. (B2)
in the interval [0, T ] and to find the critical domain by
Eq. (B5).
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