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Persistent-current states originating from the Hilbert-space fragmentation in momentum space
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Hilbert space fragmentation (HSF) is a phenomenon wherein the Hilbert space of an isolated quantum system
splits into exponentially many disconnected subsectors. The fragmented systems do not thermalize after long-
time evolution because the dynamics are restricted to a small subsector. Inspired by recent developments of the
HSF, we construct the Hamiltonian that exhibits the HSF in momentum space. We show that persistent-current
(PC) states emerge due to the HSF in the momentum space. We also investigate the stability of the PC states
against the random potential, which breaks the structure of the HSF, and find that the decay rate of the PC is

almost independent of the current velocity.
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I. INTRODUCTION

Persistent current (PC) states, which have an infinitely long
lifetime, are one of the most counterintuitive phenomena in
quantum many-body physics. These phenomena have been
studied in various contexts, such as superfluid helium [1,2],
superconductors [3,4], mesoscopic physics [5-7], and super-
fluids of ultracold bosonic and fermionic gases [8—16]. The
PC states are discussed in the ground state for the mesosropic
systems [5—7] and superfluid 3He [17,18], and in the excited
states for superconductivity and superfluidity. In the latter
case, the macroscopic currents flow persistently without any
external drive [18,19]. In such a situation, the PC is a kind of
nonequilibrium phenomenon.

In superconductors and superfluids, the emergence of PCs
can be attributed to the existence of a large energy barrier,
which prevents the supercurrent from decaying. In this case,
the lifetime of the supercurrent is much longer than the ex-
perimental timescales [see Fig. 1(a)]. However, the situation
changes when quantum and/or thermal fluctuations are sig-
nificant in low-dimensional systems. In these situations, the
supercurrent decays due to macroscopic quantum tunneling
[20-26] and/or thermally activated phase slips [27-29]. The
decay rate depends on the current velocity and system temper-
ature [20-22,25].

The issue of thermalization in isolated quantum many-
body systems has become a realistic problem thanks to the
developments of various quantum simulators, such as cold
atoms or molecules in optical lattices [30-32], Rydberg atoms
in optical tweezers [33,34], trapped ions [35,36], and su-
perconducting qubits [37-39]. The eigenstate thermalization
hypothesis (ETH) is an essential concept of thermalization in
isolated systems [40—42]. If the strong version of the ETH is
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satisfied, i.e., all eigenstates are thermal, the system thermal-
izes after long-time unitary evolution starting with any initial
conditions [43,44]. It is also known that some systems do not
satisfy the strong ETH. Such types of systems are referred
to as nonergodic systems. Typical examples are quantum
integrable systems [45-49] and Anderson or many-body lo-
calized systems [50-52]. Recently, quantum many-body scar
[53-57] and Hilbert space fragmentation (HSF) [57-63] have
been found as novel ergodicity-broken systems. The HSF
occurs due to nontrivial conserved quantities such as dipole
operator [59,60] and domain wall number operator [64,65].
These operators work as kinetic constraints to the systems.
Consequently, the Hilbert space splits into an exponential
number of small subsectors, leading to the break down of the
ergodicity [see Fig. 1(b)]. The minimum dimension among the
fragmented subsectors is one. A subsector with the minimum
dimension is referred to as a frozen subsector or frozen state
because the dynamics are completely frozen if we choose the
frozen state as an initial state.

In this paper, we show an alternative mechanism of PCs
inspired by the recent developments of understanding of non-
ergodic systems. In the typical PCs, the decay of the current
is suppressed due to the large energy barrier [see Fig. 1(a)].
On the other hand, in our mechanism, the decay of the current
is prohibited by the HSF in the momentum space, which is
caused by the kinetic constraints in the momentum space (see
Fig. 1(b) and Ref. [66]). This is in stark contrast to the ordi-
nary HSF, in which the particles or spin degrees of freedom
are localized in the real space so that PC states are absent.
Using the exact diagonalization (ED) method, we numerically
show that the HSF indeed occurs in the momentum space and
a PC state can be analytically constructed. We investigate the
stability of the PC states against the disorder, and find that
the decay rate of the PC states hardly depends on the current
velocity, making a clear contrast with the behavior of the
conventional PCs.

This paper is organized as follows: In Sec. II, we explain
how to construct the Hamiltonian that exhibits the HSF in
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FIG. 1. (a) Schematic of the typical energy landscape of su-
perfluids as a function of the current v. Ey is the energy barrier
and W is the winding number. The W 4 1 winding number state is
metastable due to a large energy barrier. (b) Schematic of the matrix
representation of the fragmented Hamiltonian. The square regions
surrounded by dotted lines represent the symmetry sectors and the
red blocks represent disconnected subsectors. The transition between
the disconnected subsectors is prohibited.

the momentum space. In Secs. IIl A and III B, we show the
ED results for the soft-core bosons and spinless fermions,
respectively. In Sec. IIIC, we show that the PC states due
to the HSF exist in our model. In Sec. III D, we investigate
the stability of the PC state against the random potential. In
Sec. IV, we summarize our results.

II. MODEL

We consider soft-core bosons or spinless fermions on a
one-dimensional periodic chain. An annihilation (creation)
operator at site j is defined by a; (&j.), where j =1,2,...,M
and M is the number of lattice sites. From the periodic bound-
ary condition, we can introduce the annihilation operator
in the momentum space as 51 = (l/m) Z]]W:l e_z’”lj/Mflj,
where [ =0,1,...,M — 1 is a crystal momentum. For sim-
plicity, we consider an even-M case only.

Here, we construct a model that exhibits the HSF in the
momentum space. To do this, recall that if the dipole op-
erator like > j j&j& ; commutes with the Hamiltonian, the
HSF occurs in the real space [59-61]. We may think we
can expect that the Hamiltonian commutes with an operator
K=Y, ll;jl;l, the HSF occurs in the momentum space. This
might be true, but we want to avoid this situation because K
breaks space-inversion and time-reversal symmetries. Instead
of considering the operator K, we consider the operator

QZ(

which preserves the space-inversion and time-reversal sym-
metries.

First, we consider the kinetic term of the Hamiltonian. It
is easily shown that the standard nearest-neighbor hopping
Hamiltonian commutes with Q:

) b by, (1)

M
Hy=—J Z(&jﬂaj +ala)
j=1
M-1
—2J ) " cos(2rl /M)bjb,. )
=0

Therefore, we adopt Hy as a kinetic term of the system.
Next, we consider a two-body interaction term H;,.. Let us
assume that H;,, has a term bl'] bL by, by,. To satisfy the commu-

tation relation [Q, Al =0, 112,34 must satisfy the condition
(I —MJ2)? + (b, — M/2)* = (I — M/2)* + (I, — M/2)?. In
addition to this requirement, we assume that the interaction
Hamiltonian has the space inversion symmetry, i.e., the rela-
tion [7:', Hi.] = 0 is satisfied. Here 7 is the space-inversion
operator, which is defined by Za jf_l = ay—; for real space
and Zh, 27! = by_, for momentum space. From the above
considerations, we adopt the following two-body interaction
Hamiltonian that commutes with Q and 7 ,

Z(bw% byresibuppisiibup s+ Hel), 3)

where V represents the interaction strength and H.c. denotes
the hermitian conjugate. The prefactor 1/M is introduced be-
cause the total energy should have extensiveness. The total
Hamiltonian is given by H=Hy+ H,. We emphasize that
the interaction Hamiltonian (3) is not a unique choice for
satisfying the relation [Q, Hin] = 0.

Now, we discuss the conserved quantities of the system.
By construction, O and 7 are conserved. Moreover, since
there is the U(1) symmetry with respect to the global ro-
tation of the phase of the field operator, the total particle
number N = Y% 1&‘& 5= Y05 biby is conserved. We de-
fine the Hilbert subspace with ﬁxed particle number; Hy =
{I¢)IN|¢) = N|¢)}, where N is the total particle number of
the system. We adopt |n) = |ng, ny, ..., ny—1) as a basis set
in Hy, where n; = 0, 1, 2, ..., Npax 1S an occupation number
of the crystal momentum [/, and Ny iS the maximum oc-
cupation number. In the case of bosons Np,x = N whereas
in the spinless fermion case Np,x = 1. In addition to these
conserved quantities, Neyen = Dm0, B;El is a conserved
quantity. Given these four conserved quelntities, the symmetry
sector is defined by Hn,o N,z = {[9)IN]§) = NId), Ql¢) =
Ol#), Neven|®) = Neven|®), Z|¢) = Z|p)}, where Q, Neven, and
T = #£1 are an eigenvalue of O, Neyen, and Z, respectively.
In this paper, we analyze the above system using the ED
method [67,68]. To perform the ED calculations, we use a
basis set incorporating the symmetries. We introduce a ba-
sis |i;N, Q, Neven, L) = [q(n)/2](|In) + TL|ir)), where |it)
is the representative state [67,68] and |i2) satisfies N|in) =
N|i), O|it) = Qlit), and Neyen|i2) = Neven|72). The definition of
q(n) depends on the particle statistics. In the soft-core boson
case, g(it) is 1 for Z|it) = |a) or 2 for Z|it) # |@). In the
spinless fermion case, owing to the Fermionic sign, we obtain

Iin) = Zing, ny, ... ny—1)
= (=)™ ng, my—1, ny—2, ... m2,m),  (4)
S(n) = L(N — no)(N —ny — 1). )

From this result, when g(z) = 1, we have f|i1) = %|i) in
contrast to the bosonic case. For example, flO, 1,0,1) =
—10,1,0,1) and Z|1,0,1,0) =11,0,1,0) hold. There-
fore, we define g(n) =1 for 7|y = +|i) and qn) =2
for Z|i) o |it).
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FIG. 2. ED results for the soft-core bosons. (a) von Neumann entanglement entropy as a function of the eigenenergy for M = N = 12
and V = 0.1J. The dimension of Hy is 1 352 078. The blue solid line represents the Page value of the maximum symmetry sector
(N, Q, Neven, Z) = (12,134, 6, +1) whose dimension is 3477. (b) Distribution of the subsector size for various system sizes. (c) Site-number
dependence of the number of frozen states. The blue solid line represents the fit to an exponential function. (d) Site-number dependence of the
ratio max(Dgyy )/ Dsym. The blue solid line represents the fit to an exponential function.

III. RESULTS
A. Soft-core bosons

Here, we verify that the Hamiltonian H = Hy + Hiy for the
soft-core bosons exhibits the HSF in the momentum space.
Figure 2(a) shows the bipartite entanglement entropy (EE) in
the momentum space for M = N = 12 [69,70]. The subsys-
tem A(B) is defined by  =0,1,...,M/2 -1 (M/2,M/2 +
1,...,M —1). We can see a broad distribution of the EE.
There are many low-entangled eigenstates even in the center
of the spectra. This behavior is in contrast to the ergodic
systems. In addition to this property, the maximum value of
the EE is significantly lower than the Page value [71]. Thisis a
signature of ergodicity breaking. To verify the HSF that occurs
in this system quantitatively, we investigate the distribution
of the subsectors. Figure 2(b) shows the distribution of the
subsector size for various system sizes. We find a broad distri-
bution of the subsectors. Here, we focus on the number of the
frozen states whose subsector dimension is one. Figure 2(c)
shows the system size dependence of the number of frozen
states. We find that the number of frozen states scales as an
exponential function of the system size. In Appendix B, we
analytically estimate the number of frozen states. We also plot
the ratio max(Dgyp )/ Dsym in Fig. 2(d), where max(Dyyp,) is the
dimension of the maximum subsector within the full Hilbert
space and Dgyp, is the dimension of the symmetry sector that
the maximum subsector belongs to. The ratio max(Dsup)/Dsym
decreases as an exponential function of the system size. This
behavior is consistent with the strong version of the HSF

[59]. From these results, we conclude that the Hamiltonian
(3) exhibits the HSF in the momentum space.

B. Spinless fermions

Here, we show the exact diagonalization results for the
spinless fermion case. The Hamiltonian is the same as
Sec. IIT A, except that the operators are spinless fermions.
Figure 3 shows the numerical results of the von Neumann
entanglement entropy, distribution of the subsector size, the
number of frozen states, and max(Dgyp)/Dsym for V = 0.1J,
M = 26, and N = 13. We find that all results are qualitatively
the same as the case of the soft-core bosons. Therefore, we
conclude that the HSF in the momentum space also occurs in
the case of the spinless fermion.

C. Persistent current states
Here, we show that the system has PC states, which have
macroscopic current and infinite lifetime. In the following, we
consider the soft-core bosons only. Before discussing the PC
states, we define the expression of the current operator ¥:

(6)

D = Dyin + Dine,

15 N
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FIG. 3. ED results for the spinless fermions. (a) von Neumann entanglement entropy as a function of the eigenenergy for M = 26 and
N =13, and V = 0.1J. The dimension of Hy is 10 400 600. (b) Distribution of the subsector size for various system sizes. The particle
number is fixed to N = M/2. (c) Site-number dependence of the number of frozen states. The blue solid line represents the fit to an exponential
function. (d) Site-number dependence of the ratio max(Dgyp)/Dsym. The blue solid line represents the fit to an exponential function.

(foel et e — He),
(8)

(_1)1[_% — %cot(n’l/M)], )

—%, [ =0modM,

! # 0mod M,

-

where d is the lattice spacing, ¢; = BM/2+Z' Since our Hamilto-
nian has nontrivial interaction terms, the current operator from
the interaction part ¥j,, exists unlike the typical situations.
Here, we derive the expression of the current operator. To do
this, we introduce the Hamiltonian with a uniform phase twist

H®)=0"0)HU ), (10)
00) = e %, (11)
M
X = Zjaja,, (12)
j=1

where 6 is a real number. From Eqgs. (11) and (12), the fol-
lowing relation holds: U'(0)a;U () = e%/a;. The current
operator is defined by

(13)
0=0
Using this definition, we obtain the expressions of the current
operator (6), (7), and (8).
Now, we focus on the frozen states. Because the sub-
sector dimension is one in the frozen subsector, the state
[72; N, Q, Neyen, Z) is an eigenstate of the Hamiltonian. There

are two kinds of frozen states. One is the case g(i7) = 1. In
this case, |i2) is an eigenstate of the space inversion operator.
From the space inversion symmetry, the current must be zero
because the current operator ¥ has odd parity under the space
inversion, i.e., 29Z7' = —9. In the case of q(in) = 2, the
frozen state is a superposition of |iz) and Ta). Utilizing these
facts, we can show that the state |#z) can have a finite current
and infinite lifetime. To show this, we use the relations

1
|ﬁ) = _(|ﬁ;N7 Q7 Nevena +1> + |il;N7 Qa Nevena

-1
5 )

(14)

If we choose the initial condition as |y (0)) = |&), the expec-
tation value of the current operator is given by

WO @) = 2 EEI M4 p]-) + c.c., (15)

where E4 is the eigenvalue of the states |£). This result
implies that if £y = E_ and (+|0|—) # 0, the expectation
value of the current is finite and time independent. When
the expectation value of the current has macroscopic value,
this is equivalent to the PC state. For example, the state
|n) = |0, N, O, ...,0) satisfies the above conditions. The ex-
pectation value of the current operator scales as O(N/M),
which survives in the thermodynamics limit. We also find

063316-4
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FIG. 4. Expectation value of the current operator ? for M = N =
10 and V = 0.1J. The initial condition is |4 (0)) = |0, 10,0, ..., 0).
vo = dJ/h. The error bars represent the standard error of the mean.

that if £, # E_ and (+|d|—) # 0, the expectation value of
the current persistently oscillates in time with the period
2rh/|Ey — E_|. In this case, the current expectation value
typically scales as O(1/M). These current oscillating states
do not carry the macroscopic current. We also note that the
number of finite-current states can be estimated analytically.
See Appendix C for the details.

D. Stability of the persistent current states

Finally, we discuss the stability of the PC states against
disorder. Here, we consider two types of disorders. One is
the diagonal disorder in the momentum space (or disoredered
hopping in the real space). The perturbation Hamiltonian is
given by

A = Z Tibib, = Z Tialay., (16)
I jk

where 7; is an arbitrary real number and Tjk =
(/M) Y, T,*™"0=0/M  Owing to the properties of the
HSEF, if we add a disorder potential with only diagonal matrix
elements in the momentum space, the structure of the HSF
preserves. Therefore, the PC states are stable against the
diagonal perturbation in the momentum space. However, the
diagonal disorder in the real space (random hopping in the
momentum space) breaks the structure of the HSF in the
momentum space. We consider the Hamiltonian

Auna =Y Ujata; = > O_blb, A7)
j L

where U; is a real number that obeys the uniform distri-
bution on the interval [-W/2,W/2] (W > 0) and U;,_y =
(1/M) 3, Ujerm ! iM To investigate the stability of the PC
states, we numerically solve the time-dependent Schrédinger
equation with the Hamiltonian Hyo = H + Hyunq starting with
the initial condition |y (0)) =|0,N,0,...,0). We use the
Krylov subspace method for calculating the time-evolution
operator e~/ [72 73], The following numerical results are
averaged over 750 realizations of the random potential.
Figure 4 shows the time evolution of the current for various
disorder strengths. As discussed above, the PC states decay
after long-time evolution. The decay is faster for the larger
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FIG. 5. Fidelity for M = N = 10 and V = 0.1J. The initial con-
dition is |¥(0)) = |0, 10,0, ...,0). The error bars represent the
standard error of the mean.

disorder strength. This property can be seen in the fidelity
shown in Fig. 5, which is defined by the overlap between the
initial state |1 (0)) and the state |y (z)). We can see that the
decay of the current and that of the fidelity are qualitatively
similar. To characterize the timescale of the decay quantita-
tively, we perform fitting to the fidelity data [{(¥(0)| (1)) ]?
with a function Ae~"", where the amplitude A and decay rate
I" are fitting parameters [25]. See Appendix D for the details.
Figure 6 shows the decay rate as a function of the disorder
strength. We find that the decay rate is proportional to the
disorder strength for the small W region. This is consistent
with predictions of Fermi’s golden rule. According to Fermi’s
golden rule, the expression of the decay rate is given by I'
>, [ Hrana | (0))|*8(E, — Einj), where |n) and E, are the
eigenstate and eigenenergy of H, respectively, and Ejy; is the
expectation of the nonperturbative energy of the initial state.
In the present case, the matrix elements are proportional to W2
and the delta function part, which can be interpreted as the
density of states, is proportional to 1/W [74,75]. Therefore,
the decay rate is proportional to W in the small W region.
In the large W region, we can see a clear deviation from the
perturbative results. Although we plot W' for a guide to the
eye, we do not identify the origin of this behavior.

o | Vv=0.14,10,10,0,..0) - |
10 V=10.0J, [0,10,0,....0) 4
1 | Vv=0.1J,10,0,10,0,...,0y ~ €
10" Fv=10.04,10,0,10,0,....0) & 1
v 3]
5 10° Wi &
E 0| &
2 &
10° 2] 3
g
103 | ]
-4
104 L ‘ ‘ ‘
1072 107! 10° 10’
W/J

FIG. 6. Decay rate as a function of the disorder strength
for M =N =10 and [y (0)) =10,10,0,...,0) and |¢¥(0)) =
10,0,10,0,...,0). The dotted green and dashed-dotted line repre-
sent W and W' for a guide to the eye.
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In the end of this section, we discuss the difference be-
tween the conventional PC in superfluids and our PC states.
There are two main differences. One is its mechanism. In
the superfluids, the PC states are protected by the existence
of a large energy barrier as shown in Fig. 1(a). This is due
to the mean-field nature. On the other hand, the origin of
our PC is the kinetic constraints arising from the nontrivial
conserved quantity Q. This is a purely quantum effect. The
other difference is the behavior of the decay rate. For example,
in one-dimensional Bose gases, the decay rate depends on
the initial state (current) and/or temperature [20,21,25,26,76—
78]. However, our PC states show distinct properties. Fig-
ure 6 shows the results for the decay rate as a function of
the disorder strength for different initial conditions | (0)) =
0,N,0,...,0) and |¥(0)) =10,0,N,O0,...,0). This result
shows that the decay rate of our PC is insensitive to the initial
condition. From these facts, our PC states differ from those
originating from superfluidity.

IV. SUMMARY

In this paper, we proposed a mechanism for the PC states
originating from the HSF in the momentum space. The mech-
anism is different from that of conventional superconductors
or superfluids. The decay of the current is prohibited by
the kinetic constraint in momentum space arising from the
nontrivial conserved quantity Q. From the exact numerical
calculations, we showed that the stability of the PC states
against the disorder is different from that of the conventional
ones.

Finally, we remark on the experimental feasibility of the
model that exhibits the HSF in the momentum space. As
shown in this paper, our model is interesting as a theoretical
model that exhibits the persistent current originating from the
HSF in the momentum space. Unfortunately, it is not easy
to realize in the current experimental techniques because we
need to engineer the interaction Hamiltonian that conserves
the operator Q. We expect that there is a possibility for the
experimental realization of our model in the future based on
the trend of progress in quantum simulators.
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APPENDIX A: GENERALIZATION
OF THE HAMILTONIAN

In the main text, we discuss the HSF in the momentum
space for the specific Hamiltonian. The Hamiltonian is con-
structed to satisfy the commutation relations

A~ A A A

[Neven’ H] = 0, [I, H] =0.
(A1)

[N,H]1 =0, [Q,H] =

Here, we show that a more general form of the Hamiltonian
also satisfies the commutation relations (A1) and exhibits the
HSF in the momentum space.

We can check that the following Hamiltonians satisfies the
commutation relations (A1):

AY =R+ AY, (i=1,2,3), (A2)
M-1
H)= Z €y, (A3)
1=0
VU Sh e 2 p
H,' = Z )7 Z(bM/2+st/2*S*’bM/Hs”bM/Z_S
r=1 s=1
+ bM/z st/2+s+rbM/2—S—ri’M/2+S)’ (Ad
Hy' = Z Z(bM/2+s Blaosssrbmposrbuos
r=1 s=1
+ 1;;4/2—SI;L/Z—s—rl;M/2+5+rl;M/2+‘Y)’ (AS)
o) M/2 (’;) M
Hy' = Z Z(bM/zﬂ M/2+s+rbM/zﬂJf’bM/2 s
r=1
+ bM/Z AbM/2+A+rbM/2+5+’5M/2+‘Y)’ (A6)

where b; and blT are the annihilation and creation operators
of the soft-core boson or spinless fermion, €, = €yy_; € R is
the single-particle dispersion, and V(123 ¢ R represents the
interaction strength. If we choose ¢, = —2J cos(2x1/M) and
V) =V§,, the Hamiltonian (A4) reduces to that used in the
main text.

For reference, we show the real-space representation of the
Hamiltonian A®. The results are as follows:

Ay = "¢l (A7)
J.k
1 .
gj,k = M Z 61627”!(/ k)/M’ (A8)

W M2 5y
. P
Hi =ZM_r2 Y Siprtis e 0mod m(— 1Y TR
r=1 JisJ2sJ3sJa
27 (jo + ja)r | v v .
X COS [—]M J a;]a}zaﬁah, (A9)
M2 0
. 2V S
@) i
Hi = Z Jwrz Z ]‘1-*—.1'2-"-1‘3-#/’4,0mOdM(_l)jI JmlaT
r=1 JisJ2sJzsia
21 (jo + ja)r .
X o8 [—(’M J3) ol ol aa, (A10)
M2 3
. 2V S
©) i
Hiy ZZ_A/;z Z 81+ otz —js,0 mod M (— 1)1 TR
r=1 Jisd2sJ3sJa
21 .2 — '4 r -
x cos [—(’M IO ot 4t a0, (AL1)

where 8;.0modam = 1 if x =0 mod M otherwise 0. From the
above expressions, we can easily see that the system has long-
range interactions and breaks the translational symmetry.
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FIG. 7. ED results for the soft-core bosons. (a) von Neumann entanglement entropy as a function of the eigenenergy for M = N = 12,
Fmax = 0, and V = 0.1J. The dimension of Hy is 13 52 078. The blue solid line represents the Page value of the maximum symmetry sector
(N, Q, Neven, L) = (12,134, 6, +1) whose dimension is 3477. (b) Distribution of the subsector size for various system sizes. (c) Site-number
dependence of the number of frozen states. The blue solid line represents the fit to an exponential function. (d) Site-number dependence of the
ratio between the dimension of the maximum subsector and dimension of the symmetry sector that belongs to the maximum subsector. The

blue solid line represents the fit to an exponential function.

As an example, we consider the Hamiltonian
(A4) with ¢ = —2JcosQQni/M) and VI =V (r <
rmax) and otherwise O for the soft-core bosons. When
rmax = 1, this Hamiltonian coincides with that in the main
text. Figure 7 shows the numerical results of the von Neumann
entanglement entropy, distribution of the subsector size, the
number of frozen states, and max(Dgyp)/Dsym for V. =10.1J
and rmax = 6. We can find that the qualitative behavior is
almost the same as that shown in Fig. 2 of the main text.
This indicates that the other form of the Hamiltonian also
exhibits the HSF in the momentum space. Figure 8 shows

6

10 : : :
» Fay=1
(0]
IS ]
)
C
(0]
Q ]
o
"5 il
9]
e}
E 4
>
b4

6 7 8 9 10 11 12 13 14
Site number

FIG. 8. System size dependence of the number of frozen states
forV =0.1J and ryx = 1-7.

the system size dependence of the number of the frozen
states for various rpy,x. These results suggest that the number
of frozen states decreases for increasing ry.x. The reason
for this behavior is that the number of the off-diagonal
elements of the Hamiltonian is an increase in function of
Fmax- Although the number of the frozen states becomes
small for large rpmax, the system size dependence is still
exponential. This means that the strong version of the
HSF still survives, even in the case of a finite interaction
range.

APPENDIX B: ANALYTICAL ESTIMATION OF THE
NUMBER OF FROZEN STATES

Here, we estimate the number of frozen states for the
soft-core boson Hamiltonian A = Hy + H,, used in the main
text. Because the present system has the space-inversion sym-
metry, the frozen state is defined by the state that satisfies
I-Iﬁmlﬁ, +) = Ey(n)|in, £), where Ey(iz) is a constant. We can
categorize the frozen states into the following four classes.
(i) A product state satisfies I?im|ﬁ) = 0. In this case, we
can easily show Hin|ii, &) = Hin[/q@)/21(1i2) + [I(R))) =
+H[q@)/21Z|R) = £[/q@)/2]THy|ft) = 0, where we
used the space-inversion symmetry. (ii) A product state
satisfies Hin ) = Eo(f2)|I(72)), where Ey(ii) # 0. In this
case, we can obtain I-?imlil, +) = [q(n)/2][Ey(i)|I(n)) =
Ey(n)|n)] = £Ey(in)|n, £). (iii) The following relations hold:
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(a) Condition 2

Condition 1

Condition ] e

Condition 2 ===:

i pefo 1 -2 -

— M-3 M-1

FIG. 9. Schematic figure for estimation of the class (i) frozen states. Each box represents ;. (a) The black solid line represents the condition
1 or 2. The product of connected boxes is zero. (b) Rearrange the order of n;. The black solid and dotted lines represent conditions 1 and 2,

respectively.

Hiy|R) = Eo(i, m)|m), where Z|m) = |m), |m) # |I(i1)),
and Ey(in,m) # 0. In this case, we can find the frozen
state in Z = —1 sector: Hi|ft, —1) = [/q@)/2)Hin[|72) —
|I(n))] = 0. (iv) Accidental case. For example, we find
that |7, —) = 12,0, 1,2,0, 1, —) is a frozen state in Z = —1
sector.

In the rest of this section, we analytically estimate the
number of the frozen state for the cases (i) and (ii) because
the estimation of the classes (iii) and (iv) are complicated and
their number is relatively small compared to classes (i) and (ii)
as shown below. We also note that the results presented below
are valid for M > 6.

Before going into the details of the analysis, we rewrite
the interaction Hamiltonian (3) in a convenient form for the

J

analysis
Sy M2
4 A LT ooh AR N A
Hin = ” ; (bybyy_y_\bivaby—1 + by, by, biby—1-1)

M/2—
= S B1)

1=0
where we changed the dummy indices and used b = b1y
From the periodicity of the annihilation and creations opera-
tors, the Hamiltonian has M independent terms.

Here, we count the number of frozen states for the class (i).

In this case, I-?im |n) = 0 holds. n must satisfy the following M
conditions:

(COIlditiOIl 1) L nny = 0, mny—1 = O, cees Mypp—1nMp241 = 0, np2np2+1 = 0, (B2)

(COl’lditiOH 2) L honpy—1 = 0, nny—1 = 0, cees Dy NM Rl = 0, nyp—1npmp = 0. (B3)
Equations (B2) and (B3) correspond to the conditions where all hy in Eq. (B1) vanish when we apply Hiy to |n). The above
conditions are complicated. To understand the conditions easily, we visualize the conditions in Fig. 9. From Fig. 9(b), the
number of frozen states of class 1 corresponds to the number of ways for arranging M nonnegative integers on a ring whose

summation is N and products of any adjacent numbers become zero. This number is given by

M/2 N—1 M/2—1
D(i)(N’M):Z<M—1—p+1><N ) {H 3 Z( —3—p+1><N—nM1—1>] B4
p=1 p p—1 ny-1=1 p=1 p—1

where (:::) = n!/[(n — m)!m!] is a binomial constant (n, m > 0). The first term represents the case ny_; = 0 and the second
term ny—; # 0. This result can be obtained as follows. First, we consider the case ny,—; = 0. In this case, the number of ways of
choosing p numbers from M — 1 numbers and satisfying the conditions 1 and 2 is given by (M ~Pt) where p = 1,2, ..., M/2.

The number of combinations that the summation of p numbers becomes N is given by ( ) The product of these numbers

M- lp ”’H)(ll 1) represents the number of combinations that the p positive number satisfies the conditions 1 and 2 and their

summation becomes N. Therefore, we obtain the first term of Eq. (B4). Next, we consider the case ny_; # 0. In this case
no and ny must be zero due to the conditions 1 and 2 [see Fig. 9(b)]. The number of ways of choosing p numbers from the
remaining M — 3 number and satisfying the conditions 1 and 2 is given by (M _3;” +1), where p=1,2,...,M/2 — 1. For fixed

ny_1 (=1,2,..., N*"Mq*l)_

N), the number of combinations that the summation of p numbers becomes N — ny,_; is given by ( oo

063316-8
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(nl,nM 1)7(0 1) or 1 0)

M2 = M1 e =L 3 M1 |E| . M-z---

M/2+1 = M/2

FIG. 10. Schematic figure for estimation of the class (ii) pattern 1 frozen states. Each box represents #;.

M=3=p+ ) (N1 for all possible values p and ny—1, we obtain the second term of Eq. (B4), where

Taking the summation of (

+1 represents the case ny—; = N.

Then, we consider the class (ii). In this case, Hiy[n) = Eo(r)|I(n)). This means that, for the product state |r), the interaction
Hamiltonian couples only its space-inversion state |I(r)). The class (ii) is further categorized into five patterns. These patterns
are characterized by the crystal momentum in which the matrix elements of the operator hl are nonzero: hl —o (pattern 1), hl —M/2-1

(pattern 2), hZ: 1 (pattern 3), hI:M/z_z (pattern 4), and h#o, 1,M72—2,m/2—1 (pattern 5). We will see these one by one.
In pattern 1, the nonzero matrix element is given by /;;_o. In this case, we obtain the following conditions:

ng > Oa (nlv nM*l) = (Oa 1) or (11 0)7 ny =ny—2 = 07 (BS)

For other /, Egs. (B2) and (B3) are satisfied and n; = ny—;. (B6)

See also Fig. 10. From these conditions, we need to consider the combination such that 2(n3+nq4 +---+
nyp—3) =N —ng—nyp —1=N'. Because N’ must be an even number, we have four cases: (N, ng, nyp) =
(even, even, odd), (even, odd, even), (odd, even, even), and (odd, odd, odd). The same approach as in the class (i) yields the
following results:

D (N,M)+DW  (N,M), (evenN),

DN, M) = ;u()e &0 iﬁ(:“”e) (B7)
Dl (oee)(N’ M)+D1_(0,0.0)(Na M)’ (Odd N)’
N—3—ng 1+L(M—8)/4]
M—8)/2—p+1\[/(N—1—ny— 21
(lu()eeo)(N M)y=2 Z m Z Z <( )/2—p )(( ny ’11M/2)/ > ’ (B8)
no=2,4,..., nyp=1,3,. p pP—
N-3 1+[(M—6)/4]
) M—6)/2—p+1\((N—1-np)/2—1
DY, (N M) =242 Z Z <( )/p P ><( p_01>/ )

nyp= 13

N-3 N—=3—ng 1+[(M—8)/4]
+2 Z 1+ Z Z ((M—S)/Z—p—i—l)((N—l—nO—nM/z)/2—1> ’ (B9)

-1
n0=1,3 ..... nM/z 24 ..... p p

N-3 1+[(M—-6)/4]
- B M —6)/2—p+1\[((N—1—=ny)/2—1
Dl(oee)(]v’ju)_z-i_2 Z Z ( p—l

no=2,4,..., p=1 p

N—-3—-ny 1+[(M—8)/4]

N-3
2 Y |+ Z Z ((M-S)/2—p+1><(1v—1—n;:,1¢M/2)/2—1>’ B10)

no=2,4,..., nyp=2,4,. p
N-2 N—-3—ny 1+[(M-8)/4]
; M—8)/2—p+1\((N—1-ny— 2-1
Pllooa®-M=2 3, |1+ 2, 2, <( nere ><( o~/ ) . BID
o p p—
Vl0=1,3,.... llM/z 1.3 .....

where |- | represents the floor function.
In pattern 2, the nonzero matrix element is given by /;—y;/>—1. In this case, we obtain the following conditions:

nyp >0, (myya41, nup—1) = (0, D) or (1,0),  nyp2—2 = nyypyn =0, (B12)
For other /, Egs. (B2) and (B3) are satisfied and n; = ny—;. (B13)

We can find that the number of frozen state for this pattern is same as that of pattern 1. Therefore, we obtain

DS (N, M) = D{"(N, M). (B14)
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(n1,np—1) = (0,1), and no =npr—o + 1 or (ng,np—2) = (1,0), and ny = npr—q — 1

or (n1,nyp—1) = (1,0), and ng =npr—o — 1 or (n2,npr—2) = (0,1), and ny = npr—y + 1
M2 fe . oo V-3 M-1 e -t M2

\ / =0 I =0 I =0 \ /
(M — 8)/2 numbers (M — 8)/2 numbers

FIG. 11. Schematic figure for estimation of the class (ii) pattern 3 frozen states. Each box represents ;.

In pattern 3, the nonzero matrix element is given by hy—1. In this case, we obtain the following conditions:
no =n3 =ny-3 =0, and {[(n1, ny—1) = (0, 1) and ny = ny—» + 11, or [(n1, ny—1) = (1,0) and ny = ny—» — 11,
or [(ny, ny—2) = (1,0) and ny = ny—1 — 1], or [(n2, ny—2) = (0, 1) and ny = ny 1 + 11},
and for other /, Eqs. (B2) and (B3) are satisfied and n; = ny—;. (B15)

See also Fig. 11. We note that the double counting happens when (ny, ny—1, n2, nyy—2) = (0, 1, 1, 0), or (1,0, 0, 1). Using the
condition that (N, ny/») = (even, even), or (odd, odd), we obtain

4, =6,
DN, M) = { D" . .(N.M), (even N and M > 6), (B16)

3 even

D) (N, M), (odd N and M > 6),

N/2-2 N—=2ny 2—4 14+ (M—10)/4]

DY) (N.M)=2 > |1+ Z Z ((M -~ 10);2 —p+ 1) ((N — —jn_MIz ~-2)/2— 1)

ny—r=1 nyp=2,4,.

N/2-2 1+[(M—8)/4]

262 3 Z ((M—S)/Z—p—i—1><(N—2nMp2_—12)/2—1)

1 P
ny—2=
— 1 M—10)/4
L Ni‘ H(Z)/J<(M—10)/2—p+1)((N—nM/2—2)/2—1>
Myjp=2.4,..., p=1 p p—1
Y (M —8)2 — p+ 1\ (N —2)/2 — 1
+ > |
pa p p—
N/2—1 N—-2n -21 M—10)/4
O /Z . XM:Z H(Z 4 ((M— 10)/2 — p + 1) ((N—nM/2 — 2nya)/2 — 1)
ny_2=2 nyp=2.4,..., p p- 1
N/2—1 1 M—8)/4
s /Z *“Z " ((M ~8)/2—p+ 1) ((N — 2my-2)/2 — 1)
nM,2=2 p=1 p p - l
N/2—1 1 M—10)/4
o /Z *“Z)”<(M—10)/2—p+1>((N—nM,2—2)/2—1)
nyp=2.4,..., p=I p p— 1
1+ (M—8)/4]
M—8)/2—p+1\[(N—-2)/2—1
. (( )/2—p )(( )/1 ) (B17)
p p p—
(N=5)/2 N—2ny—2—4 14+ (M—10)/4]
M —=10)/2 —p+ 1\ ((N —nyp —2ny2—2)/2 -1
DY) (N M) =2+2 Z 1+ Z Z (
ny—2= 1 nyp= 13 p p - 1

— 1+1(M—10)/4] _ _ _ _
s Z Z <(M 10)/2 p+l)<(N r;Mf)l/z 1)

nyp=1,3,. p

063316-10



PERSISTENT-CURRENT STATES ORIGINATING FROM ... PHYSICAL REVIEW A 108, 063316 (2023)

(a) even [ case

M, /2 | — 3 numbers | — 2 numbers Z — 2 numbers M/2 — 1 — 3 numbers

o oz cTeng 0[] - [ lqym

(b) odd I case

M/2 — 1 — 3 numbers l — 2 numbers l — 2 numbers M)/2 — 1 — 3 numbers

R
= e - EIENE B -

FIG. 12. Schematic figure for estimation of the class (ii) pattern 5 frozen states. Each box represents #;.

(N=3)/2 N=2ny_3—2 1+[(M—10)/4]
+2+2 Z/ ey ) > / ((M_ 10)/2=p+ 1)<<N—nM/z —2ny 2)/2 — 1)
ny—2=2 nyp=1,3,... p=1 p p_l

+1+ >

nymp=1,3,..., p=1

N—4  1+[(M—10)/4]
< (B18)

(M —10)/2—p+ 1)((N—nM/2 —2)/2 — 1)
p p—1 '

In pattern 4, the nonzero matrix element is given by fzI:M/z_g. In this case, we can find that the number of frozen states is
same as pattern 3. Therefore, we obtain
D{Y(N, M) = DV (N, M). (B19)

Finally, we consider pattern 5. In this case, the nonzero matrix element is given by fz#o,],M/z_z,M/z_]. The conditions are
given by

Ny—i41 = N2 = n—y = ny—j— = 0, and{[(n;, ny—;) = (1,0) and nyyy = ny— -y + 11,

or [(n41, ny——1) =0and n; = nyr_; — 11, or [(m, npyr—;—1) = (1,0) and 4.y = nyr—j—1 — 1],
or [(njy1,ny——1) = (0, 1) and n; = ny—; + 11},
and for other /, Egs. (B2) and (B3) are satisfied and n; = np;—;. (B20)

See also Fig. 12. We note that the double counting happens when (n;, ny—;, nj4+1, myy—i—1) = (0,1, 1,0), or (1,0, 0, 1) as in
pattern 3 and this pattern appears when M > 10. To obtain the expression of the number of combination, we use the following
function:
1, My<0orNy =0,
Do(No, Mo) = § D§(No, M),  even Ny, (B21)
Dg(No, Mp), odd Ny,

No—2  1+1Mo/2—1]

Mo — 24 p\ ((No —mo)/2 — 1\ TP iy — 14 p\ (No/2 — 1
mre 5 E (IO E Y

mo=2.4... P = P P

N2 1+[Mo/2—1]
My —2 No — 2—-1
Do M) =1+ Y > () (M), (B23)

m013 AAAAA

Di(Ny, My) and Dgj(Ny, My) represent the number of combinations that satisfies Ny = mg + 2(m; + my + - - - + my, ), where

No, My, my, ..., my, are nonnegative integers. For fixed /, the number of the combinations is given by
0, forM < 10,
D(,N,M)= 3{D°(l,N,M), evenN, (B24)

D°(I,N, M), oddN,

063316-11
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N/2—1 N—-2ny_j—1—2

e _
DS(I,N,M) =2 Z Z
ny—i—1=1 k=0
N/2  n—2np—;—1

Do(k,1 —2)Do(N — 2npr_j_1 —2 —k,M/2 — 1 — 3)

+2 YY" Dotk,l —2)Do(N —2ny_1-y — k. M/2 — 1 —3)

np—1—1 =2 k=0

N-2

+ Y Dok, 1 =2)Do(N =2 — k. M/2 =1 =3)+ Y Do(k,l —2)Do(N — 2 — k. M/2 — [ = 3),

k=0
(N=1)/2—1 N=2np_j_1 =2

D°(I,N,M) =2 Z Z

M1 =1 k=0

(N=1)/2 n=2npy -1

+2 YY" Dotk,l —2)Do(N —2ny_1—y — k. M/2 —1—3)

Ny—1—1 =2 k=0

N-2

+ Y Dok, 1 = 2)Do(N =2 —k.M/2—1=3)+ > Do(k.l —2)Do(N — 2 — k. M/2 — 1 —3).

k=0

Therefore, we obtain
M/2-3
DYY(N, M) = Z D(l,N, M).
1=2

(B27)

From the above results, we obtained the number of frozen
states of class (i) and (ii):

5

DY (N M)y = DN, M) + Z D;ﬁ)(N, M).  (B28)

j=1

Figure 13 shows the ratio between the analytical results (B28)
and numerical results for M < 14. We find that the ratio
D) ypnumerical annroaches 1 as the system size increases.
For M = 14, the ratio is roughly over 99%. From this result,
analytical result (B28) approximates the correct result well.
Therefore, we fit the analytical results to the exponential
function. The fitting region is 14 < M < 100. The results are
shown in Fig. 14. Because the analytical result (B28) can be
regarded as the lower bound of the number of frozen states,
this result supports that the number of frozen states increases

1.00
0.99 ¢
0.98 |
0.97 ¢
0.96 ¢
0.95 ¢
0.94 ¢
0.93
0.92

D(i),(ii)/DnumericaI

6 7 8 9 10 11 12 13 14
Site number

FIG. 13. The ratio between the number of frozen states estimated
by numerical and analytical ways.

N-2
(B25)
k=0
Do(k,1 —2)Do(N — 2nyy_j—1 —2 — k, M/2 — 1 — 3)
N-2
(B26)

k=0

(

exponentially with the system size, which suggests the strong
HSF occurs in this system.

APPENDIX C: ANALYTICAL ESTIMATION OF THE
NUMBER OF FINITE-CURRENT STATES

Here, we estimate the number of the finite-current states.
The Hamiltonian is the same as that in Appendix B. There are
two kinds of finite-current states. One is the stationary-current
states and the other one is oscillating current states.

As discussed in the main text, the stationary-current states
appear when E, = E_, where E. is the eigenenergy of the
frozen states |ii, +). This situation occurs when Hiy|it) =
Hi|I[(@)) = 0 and f|ﬁ) « |in). From these conditions, we can
write down the expression of the number of the finite-current

states Dsc(N, M):
Dsc(N, M) = DY(N, M) — Dgym(N, M), (C1)

where Dgyn (N, M) is the number of frozen states that
satisfy Z|n) = |n) and Hypn) =0. We call these states

108 —
Numerical —5—
Analytical —A—

Fit : 0.060e'88M ——

Number of frozen states

1 01 . . . . . . . . .
6 7 8 9 10 11 12 13 14
Site number
FIG. 14. Site number dependence of the number of frozen state

for numerical (red circle) and analytical (blue triangle) results. The
black solid line represents the fitting result.
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symmetric frozen states. The symmetric frozen state must satisfy the conditions (B2), (B3), and n; = ny_; for [ =
1,2,...,M/2 — 1. We can obtain the expression of Dy, (N, M) as follows:

Dsym(NvM) = :

14[(M/2-2)/2]
M2 — N/2 —
Dyme(N.M)=N+1+ Y ( / p)( /

1 p p—

N-2 14+[(M/2-4)/2]

R

k=2,4,...,

N-2

N=2 1+1(M/2-4)/2]

tr X

k=1,3,.

We can also estimate the number of frozen states that
satisfy E,. # E_. We denote this number as Dosc(N, M).
These states yield the periodically oscillating current states
as discussed in the main text. This situation occurs when

Hin 1) = Eo(@)|I(#2)) and Ey(i2) # 0. From this condition, we
can show Ey # E_ as follows:
Hlii, +) = (Hy +Hlnt)f[ln) £ |[(n))]
= Ehop(n)f[|n> +1I(n))] +Eo(ﬁ)%[|1(ﬁ)> + |n)]
= [Ehop() £ Eo(n)]|n, £), (C5)
where we used Hyli) = Enop(R)li) and Ho|l(1)) =

Eywop(@)|I()). The number of these states is equal to the
number of the frozen states in class (ii). The expression of
Dosc(N, M) is given by

5

Dosc(N,M) = > " D{’(N, M). (C6)
j=1
50
10 bso 4‘6‘7 ‘
DOSC —A
1040 F Fit:0.060e"%8%8M ——

Fit : 0.0221e%8194M — —

10%0 }

1020 }

Number of states

10" ¢

10 20 30 40 50 60 70 80 90 100
Site number
FIG. 15. Site number dependence of Dsc(N, M) (red circle) and

Dosc(N, M) (blue triangle) for N = M cases. The black solid and
green dashed lines represent the fitting results.

Dgym e (N, M),
Dsym,o(Ns M),

> NXf 1+L<M§:%>/2J (M/Z —p— 1) ((N —k)/2— 1>
k=

* 1)(M/2—p—2)((N—k)/2— 1>’
p p—1

1+[(M/2-3)/2]

Dy o(N.M)=N+1+2 >

k=13,... p=1

(k_1)<M/2—p—2)<(N—k)/2—1)_
p p—1

even N,

C2
odd N, €2

24,..., p p—1

(C3)

(M/Z—p— 1)<(N—k)/2—1)
p p—1

(C4)

We plot Dsc(N, M) and Dogc(N, M) for N = M cases in
Fig. 15. We also perform the fitting to these results with an
exponential function. The fitting region is 14 < M < 100. We
can find that these quantities exponentially increase with the
site number.

APPENDIX D: DETAILS OF THE FITTING
OF THE DECAY RATE

Here, we explain how to extract the decay rate from the
fitting to the fidelity. To perform the fitting to the fidelity
properly we need to specify the fitting region. For the short
time regime, the fidelity can be written as

(O @) = 1 — [ (0)H*[Y(0)) — (Y (0)H | (0))*]

X —. (D1)

1.2 ; Fa—
1.0 é<—Fitting region—>§
08 | i\

0.6
0.4
0.2
0.0

<y (0)lw(t)>[?

0O 20 40 60 80 100 120 140
tJ/h

FIG. 16. Averaged fidelity forM =N =10,V =0.1J,and W =
0.1J. In this case, the fitting region is 104/J <t < 100/4/J. The
solid blue line represents the fit to a function Ae~'".
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This means that the fidelity for the short time region is de-
termined by the variance of the energy. We can also show
that the long-time average of the fidelity converges to the
inverse partition ratio [74]. In the long time regime, the fidelity
fluctuates around this value. To extract the exponential decay,
an appropriate choice of the fitting region is required.

Figure 16 shows an example of the fitting region. We sum-
marize the fitting region [¢1, #;] as a function of the disorder
strength in Table I. We used these values to obtain the data
shown in Fig. 6.

TABLE I. List of the values of the fitting region.

w/J nJ/h nJ/h
0.01 100 1000
0.03 100 300
0.1 10 100
0.3 5 30
1.0 0.5 1.5
3.0 0.2 1.0
10.0 0.1 0.5
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