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Generalized effective spin-chain formalism for strongly interacting spinor gases in optical lattices
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A generalized effective spin-chain model is developed for studies of strongly interacting spinor gases in a
one-dimensional (1D) optical lattice. The spinor gas is mapped to a system of spinless fermions and a spin
chain. A generalized effective spin-chain Hamiltonian that acts on the mapped system is developed to study the
static and dynamic properties of the spinor gas. This provides a computationally efficient alternative tool to study
strongly interacting spinor gases in 1D lattice systems. This formalism permits the study of spinor gases with
arbitrary spin and statistics, providing a generalized approach for 1D strongly interacting gases. By virtue of
its simplicity, it provides an easier tool to study and gain deeper insights into the system. In combination with
the model defined previously for continuum systems, a unified framework is developed. Studying the mapped
system using this formalism recreates the physics of spinor gas in 1D lattice. Additionally, the time evolution of
a quenched system is studied. The generalized effective spin-chain formalism has potential applications in the
study of a multitude of interesting phenomena arising in lattice systems such as high-7, superconductivity and
the spin-coherent and spin-incoherent Luttinger liquid regimes.
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I. INTRODUCTION

Ultracold gases are an exceptional platform to study
quantum many-body physics [1-12] and have potential
applications in quantum optics and quantum information
processing [13]. Clean (free of impurities), versatile, and ex-
tremely tunable, controllable, and precise [13,14], they have
led to novel phenomena such as superfluid to Mott insulator
transition [13], Bardeen-Cooper-Schrieffer to Bose-Einstein
condensate (BCS-BEC) crossover, and simulation of magnetic
fields via artificial gauge fields [15]. Trapping in optical lat-
tices supplies added controllability of system parameters such
as interactions, density, kinetic energy, and dimensionality
[16-20]. Notable are superexchange in double-well systems
[21], dipole-induced spin exchange in polar lattice gases
[22,23], Harper-Hofstadter Hamiltonian [24,25], and simula-
tion of a quantum Ising model using tilted lattices [26,27].
Quantum effects are more pronounced in reduced dimensions;
one-dimensional (1D) quantum systems exhibit distinctive
behaviors such as fermionization of bosons [28] and the
spin-charge separation in interacting fermions [29-35]. Ex-
perimental developments in trapping of 1D ultracold gases
[6,7,36-38], have led to an immense interest in 1D quantum
systems [6,7,17,29,36,39—46].

Spinor gases, ensembles of ultracold atoms with the in-
ternal states treated as spin degrees of freedom [47,48], are
ideal to explore novel many-body physics, and immensely
relevant for the study of quantum magnetism [49-59], high-
energy physics [60—63], and quantum metrology [64—68].
The Hubbard model, used for the study of strongly corre-
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lated electrons in condensed matter [60,61,69-71], can be
realized by trapping spinor gases in optical lattices, where
the correlations necessary for quantum magnetism arise from
superexchange or spin-exchange interaction [72]. The real-
ization of ferromagnetic interaction in bosons [21,73,74] and
antiferromagnetic interaction in fermions [46,75-82] have
paved the way for the study of spinor gases. Spin-1/2
fermions with antiferromagnetic correlations [75,76,83] are
linked to high-T. superconductivity [84] and have the potential
to depict interesting phenomena such as Stoner’s itinerant
ferromagnetism [77] and spin-incoherent Luttinger liquids
[85]. Multiflavor Fermi-Hubbard model hosts flavor-selective
Mott insulators [86,87] linked to a new class of high-T, su-
perconductors [88] and shows exotic phases [89-98]. For
multicomponent bosons trapped in optical lattices, hyperfine
states can be used to generate spin degrees of freedom for the
possible exploration of novel highly entangled states [99,100].

Theoretical tools for continuum systems. A powerful theo-
retical model for 1D systems is the Bethe ansatz, uncovering
interesting phenomena such as Tomonaga-Luttinger liquid
(TLL) [42,101,102], the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) [103]. Inclusion of interactions increases the Bethe
ansatz complexity; circumventing this are tools such as
Luttinger liquid theory [104], bosonization, density matrix
renormalization group (DMRG) [105,106], cluster perturba-
tion theory (CPT) [107], and Green’s function approach [108].
Systems with interactions and large internal degrees of free-
dom are extremely challenging for theoretical investigations.
In the weak interaction regime, the single-mode approxima-
tion [109,110] well describes the ground state [109,111-119]
and excitation [109,113,114,120]. In the strong interaction
regime, systems show rich phases due to unique strongly
correlated quantum effects, but investigations are computa-
tionally challenging. Under certain conditions these can be
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mapped to another theoretically tractable system. Notable is
the Bose-Fermi mapping [28] of bosons in 1D with s-wave
interaction to fermions with p-wave interaction [28,121-128].
A generalized Bose-Fermi mapping was developed for 1D
continuum spinor gases [129,130] and subsequently to study
strongly interacting pure spinor quantum gases [81,130-137],
Bose-Fermi mixtures [138—141], impurity problem [132],
spinor gases with spin-dependent interactions [133,134,142],
and spin-orbit coupling [143,144].

Theoretical tools for lattice systems. For strongly inter-
acting 1D spinor gases, the Hubbard model is widely used.
The spin-1/2 Fermi-Hubbard Hamiltonian ground-state wave
function in the large on-site interaction limit is expressed
as the Slater determinant of spinless fermions defining the
charge degrees of freedom and the spin wave function, which
is governed by the 1D Heisenberg model [145]. Numerical
methods for spinor gases, apart from exact diagonalization,
include quantum Monte Carlo methods that are essentially
exact [146] and DMRG that captures the ground state and
low-lying excited states [147-153]. Their main constraints
are lower accuracy in the strong interaction regime (higher
correlations) and being limited to smaller system sizes (com-
puting and memory intensive). Approximate analytic methods
devised to study the Fermi-Hubbard model at large on-site
interactions include the slave particle formalism to obtain the
ground state at half-filling [154] and the #-J model [155].
However, the fermionic nature, strong correlations, and the
need for ground state in the thermodynamic limit make the
t-J model challenging [156—-164]. Studies using the ¢-J model
and the slave particle formalism have remained focused on
spin-1/2 fermions, and for large spin fermions limited to
the Heisenberg limit. There is thus a need for a generalized
theoretical model for any arbitrary spinor gas applicable for
bosons and fermions, and also felicitous for large spin systems
at strong on-site interactions, which the present work seeks to
address.

Here, we develop a generalized effective spin-chain model
to study spinor gases trapped in a one-dimensional (1D)
optical lattice, realizing N-Component Fermi-Hubbard for
fermions and N-component Bose-Hubbard for bosons. This
allows for the study of gases with arbitrary spin and statistics,
providing a generalized approach for 1D strongly interacting
gases. The spinor gas is mapped to a system of spinless
fermions and a spin chain. A generalized effective spin-chain
Hamiltonian that acts on the mapped system is developed to
study the spinor gas. Over existing theoretical models, this
formalism is accessible (computationally and analytically eas-
ier), flexible (to system parameters), and inherently confers
a vantage point to separate the effects of spin and charge
degrees of freedom. Integration with the generalized Bose-
Fermi mapping previously defined for a continuum system
[130] provides a unified framework for the study of spinor
gases. Using the formalism, we demonstrate the successful
reproduction of the ground state of spinor gases. Furthermore,
it is applied to study the time evolution of a quenched spin-
1/2 Fermi gas in a lattice, where it captures the dynamical
properties. The generalized effective spin-chain formalism
can be used to study a multitude of interesting phenomena
such as high-T, superconductivity, the spin-coherent and spin-
incoherent Luttinger liquid regimes.

This paper is sectioned as follows. Section II describes
the system of spinor gas trapped in a 1D optical lattice
and the mapped system of spinless fermions and a spin
chain. Section III details the generalized effective spin-chain
Hamiltonian acting on the mapped system. Section IV is
the study of the spinor gas using the generalized effective
spin-chain formalism. Section V extends to discuss time
evolution of a quenched system. Finally, Sec. VI summa-
rizes the results and discusses their implications and future
avenues.

II. SYSTEM

We consider a 1D system of spinor gas comprising N-
component fermions or bosons trapped in a spin-independent
optical lattice. Assume low temperature and the tight-
binding limit. This describes an N-component Fermi-Hubbard
model (fermions) or N-component Bose-Hubbard model
(bosons).

The Fermi-Hubbard model is governed by the Hamiltonian
[62,165]

Hp=—tY (c}yCipra THC)+ Y Uspnianip. (1)

i,a<p

where c;, are the fermionic annihilation operators for spin

component «, ¢ the tunneling coefficient, and U, g the on-site

interaction between fermions of spin component « and .
The Bose-Hubbard model is governed by the Hamiltonian

Hg = —tY (b} by o +He)+ Y Unpnianip

ia<p
Ve
+ Z 5 Mg = 1), )

where b;, are the bosonic annihilation operators for com-
ponent o, t the tunneling coefficient, U, g the on-site
intercomponent interaction between components « and 8, and
V., the on-site intracomponent interaction for component «. In
the strongly interacting limit (U, g, V, > t), these Hamiltoni-
ans [Egs. (1) and (2)] can be mapped to a generalized effective
spin-chain Hamiltonian.

Mapping. The 1D spinor gas governed by the Hamiltonians
defined above, can be mapped to a system of spinless fermions
and a spin chain. This mapping is hinged on a special property
of 1D systems. In one dimension with M particles, the spa-
tial domain can be decomposed into M! spatial sectors. The
wave function in one spatial sector carries the complete in-
formation of the total wave function, which can be expressed
as [130]

X1y X2y o ooy XM, X1y X2y oo s XM
v = > @&)'p( v ,
01,02,...,0y P 01,02,...,0My
3)
where x; and oy are the position and spin of the kth particle, P
represents permutation, and W! is the wave function in spatial

sector 1 (defined by x; < x, < ... < x)7). The wave function
in spatial sector 1 can be expressed as a direct product of the
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FIG. 1. Schematic of the generalized effective spin-chain Hamil-
tonian developed by: (a) decoupling the low- and high-energy
subspaces, roughly separated by the on-site interaction strength and
coupled by the tunneling coefficients; (b) expressing as a sum of
the unperturbed Hamiltonian and a perturbation, reformulated in a
simplified spin-charge-separated form; and (c) applying degenerate
perturbation theory and the mapped system definition.

spatial (¢) and spin (x) wave functions [130]:

\Ijl X1, X2y oo vy XM,

01,02,...,0y
= ZAa,bSDa(xl,XZv o X)) Xp(01, 02,

a,b
where the superposition coefficients are given by A, . Here
the spatial wave function is governed by the Hamiltonian
defined by the tunneling of spinless fermions, and the spin
wave function governed by a generalized effective spin-chain
Hamiltonian developed in the following section.

In the following sections, we study the system in the
strong on-site interaction limit, with occupancy per site < 1.
For occupancy per site >1, the mapping can be altered to
accommodate the new low-energy subspace and will be a
consideration in the future.

Jom), (4

III. GENERALIZED EFFECTIVE SPIN-CHAIN
HAMILTONIAN

Strong on-site interactions divide the Hilbert space into
low- and high-energy subspaces, coupled by the tunneling
term. A generalized effective spin-chain Hamiltonian is de-
veloped using a three-step protocol as in Fig. 1. This acts on
the mapped system of spinless fermions and a spin chain.

The first step is to obtain an effective Hamiltonian by
perturbative expansion (up to second order) at strong on-site
interaction (see Appendix A).

1
— 000 017 Ol 177 00
Ha= QHQ ~ QHQ 5o i@ HY', (9
where Q° and Q! are projection operators to the low- and
high-energy sectors, respectively. The first term in Eq. (5) rep-

resents tunneling of the spinless fermions and the second term
gives rise to the spin-exchange interaction (see Appendix A).

The second step is to treat the obtained effective Hamil-
tonian as Hey = Hy + H,,, where Hy (< t) is the unperturbed
Hamiltonian and H), ( 2 /U, gV t?/V,) is treated as the per-
turbation. Absent perturbation (i.e., 0o on-site interaction), the
ground state is degenerate due to the spin degrees of freedom.
The perturbation partially lifts this degeneracy. In the mapped
system, the wave function is expressed as a direct product of
spatial (¢) and spin (x) wave functions. The ground state of
the unperturbed Hamiltonian forms the spatial wave function
(Slater determinants) and describes the hopping of spinless
fermions. The perturbation is reformulated in the simplified
spin-charge-separated form (see Appendixes A and B).

This leads to the final step: use the degenerate perturbation
theory and the mapped system wave function to develop the
generalized effective spin-chain Hamiltonian

Hsc = (¢|Holp) + (¢|Hple) = Eo + (pHplp),  (6)

where E is the ground-state energy of the unperturbed Hamil-
tonian.

Fermions. Using the described protocol, the generalized
effective spin-chain Hamiltonian for N-component fermions
acting on the system of spinless fermions and a spin chain
(see Appendix A) can be derived as

M-1 N

Hic=E —1*) C ZUI

=1 a<p *

I = &b ] (D)

where / runs over the spin chain, M the number of fermions
(i.e., total number of spins in the spin chain), and & ;4
an exchange operator acting on spins / and / + 1 and ex-
changing them. The exchange operator in the two-component
subspace is expressed as & ; = (I +§i,a,ﬁ§j,a,ﬂ)/2. An in-
troduced projection operator 1310"1‘51 [= (o +18) (410 +
ni+1,p)] restricts spins / and [ 4+ 1 to the subspace of spin
components o, .
The coupling coefficient (C;) for spin / is given by

L1
_ , - toz
Cr = (ol ZSZ{;‘ nid—1 Gl —ag ot a;
j=1
—al_Aa;,)le), ®)

where a; and 7i; are the spinless fermionic annihilation and
number operators, respectively, L is the number of lattice
sites, 82[,-:-11 711 ensures the spin / corresponds to the spinless
fermion on site j. This ensures the consistency between the
tunneling Hamiltonian acting on the spinless fermions on sites
j and j 4 1 with the spin-chain Hamiltonian acting on spins /
and [ + 1. The first term (271;ii;41) in Eq. (8) reflects, within
Eq. (7), the spin-exchange interaction between two nearest-
neighboring sites. This in the spin-1/2 space, is the familiar
spin-exchange term seen in the #-J Hamiltonian. The second
and the third terms describe a three-site hopping; with the
spin-chain Hamiltonian they describe a hopping without and
with spin flip in the «, B spin-component subspace. In the
spin-chain Hamiltonian, C; includes all the charge degrees of
freedom, and the operator acts on the spin wave function.
The generalized effective spin-chain Hamiltonian devel-
oped here assumes an extremely simple form. The action
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on the spin chain as an exchange operator, provides ease of
theoretical and numerical application. In comparison to the
N-component Fermi-Hubbard acting on the original system,
the formalism developed here with separation of spin and
charge degrees of freedom, in addition to its simplicity, is
computationally efficient.

Bosons. A similar protocol gives the generalized effective
spin-chain Hamiltonian for N-component bosons acting on
the system of spinless fermions and a spin chain (see Ap-
pendix B) as

M—1 N
1
HE. = Ey—1° ZCI[Z 7 [(1+5;,1+1)
=1 [1<ﬂ o
Map + Hpa B -
+ (T — 1>(1 + Sl,(a,ﬂ)SHl,(Ol»ﬁ))

e — Ha;p Ao, B
+ 2 (Slz,(a,ﬂ) + Si—f—l,(ot,ﬂ))}[)l,l‘l*l} ? (9)

where aside from the terms defined for fermions, new pa-
rameters [ty = Uy g/(N — 1)V, and Si(a’ﬂ) =iy g — Ny o (i
number operator) are defined. The C; coefficient for both
bosons and fermions are the same. Common to the fermionic
[Eq. (7)] and bosonic [Eq. (9)] spin-chain Hamiltonians is
the expression of identity and exchange operator through the
term (/ &= & ;41), with minus sign for fermions representing
antisymmetric states and plus sign for bosons representing
symmetric states. The bosonic spin-chain Hamiltonian has
additional terms arising due to the presence of intracompo-
nent interaction. The terms are nonvanishing only when the
intracomponent interaction differs from the intercomponent
interaction or when the intracomponent is spin-component
dependent. The Bose-Hubbard model realizes a rich phase di-
agram arising from the interplay of tunable inter- and intraspin
interactions [26,27,80-85,166,167].

In the limit where all the inter- and intracomponent interac-
tions are the same (= U), the generalized effective spin-chain
Hamiltonian for fermions [Eq. (7)] and bosons [Eq. (9)] can
be unified and expressed as (see Appendix C)

2 M—1

t
H™ = Bo = 7 ) Gl & &), (10)
=1

The formalism developed is valid for arbitrary spin statistics
as shown above, providing a superior tool to study spinor
gases in the strong interaction limit. On comparison with the
continuum system, it is noted that the Hamiltonians acting on
the mapped systems are identical providing a universal for-
malism applicable to both continuum and lattice systems. The
oneness between the two systems hinges on two points: (i) the
mapped system of spinless fermions and a spin chain and (ii)
the action of the effective Hamiltonian on the mapped system
is an identity and an exchange operator with the coefficients
(C)) includes all the charge degrees of freedom that corre-
sponds to the behavior of spinless fermions that forms the
unperturbed ground state. The difference from the continuum
system arising from trapping in lattice is seen in the defini-
tion of unperturbed ground state describing the tunneling of
spinless fermions and the coefficients (C;). Aside from being
structurally identical, the physics represented by both systems
are identical in the dilute limit.

(a) Original System

m n
(b) Mapped System

Spinless Fermions Spin-chain
) [ 00 3
MAVAAAVAVA-A-A-AVAVAV) $383%8 |=:

g g

hopping § e 0000 §33

ACAVAVAVAVA-A-A AVA-AVER Seaso lil -
m n s

FIG. 2. Schematic of the implementation of the one-body density
correlation in the mapped system as hopping of spinless fermions and
a loop permutation operator on the spin chain.

IV. GROUND STATE

Previous studies on spinor gases trapped in a 1D optical
lattice have extensively examined the spin and charge correla-
tions and demonstrated interesting properties due to multiple
spin components [62,145,168,169]. Motivated by these, we
explore the ground state of a spinor gas using the generalized
effective spin-chain model by studying the spin and charge
correlations and the associated structure factors at strong on-
site interaction using DMRG for periodic boundary conditions
(developed with the aid of Refs. [105,170,171], for more
details see Appendix E).

Numerical implementation. The one-body density corre-
lation probes the charge fluctuations and is defined in the
original system as [169]

C(m,n) = ]lVZCU(m, n) = ]iv Y {choCus) (D)

a

where ¢, , annihilates a fermion with component o on site
n. The spin-charge-separated implementation of the operator
for lattice system is inspired by the definition of the momen-
tum distribution in the mapped system for spin-1/2 fermions
[145].

It is expressed as a hopping of spinless fermions and loop
permutation operator acting on the spin chain to represent
the final spin configuration after the hopping as shown in
Fig. 2. A loop permutation operator [129] acts on the spin
wave function, which moves the n,th spin to the m,th via a
series of exchange operators:

M m,n
Cn>m(m, n) = Z (:i:l)n”_mf’ ';l\,]y,ﬂp

my,n,=1
X (X|gm,,,m,,+1~'-511,,71,n,,|X)
M )
n<m m,—n szr}”p
C"<"(m, n) = Z (£1)" P
mpy,np,=1

X (X |Empmy=1---Enpirm, Ix), (12)
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where the plus sign is for bosons and the minus for fermions.
Dy, contains the relevant charge degrees of freedom, and is

expressed as

pmn =< |8ml,71 (Snp 1

mp,,n n—1 mn
PP Zxol’o 211111

where ™! = {1 if it My =mp—1
Z,o 1 Mg 0, otherw1se

a,le),

The & operator ensures that the nth site is occupied by the
npyth spin, and after hopping the mth site is occupied by the
mpth spin. The Fourier component of the one-body density
correlation provides an observable of great interest in the
cold-atomic systems: the momentum distribution. It is defined
as the occupation operator in the momentum space and ex-
pressed, assuming lattice spacing as 1, as [145,172]

L

Z C(m, n)e*m=—m. (13)

m,n=1

Ny = (Cl:ack.a> = Z

The shape and the spread of the momentum distribution pro-
vide crucial insight into the correlations. It can be measured
experimentally via time-of-flight spectra [16,173]. Although
long-range correlations are absent in one dimension, short-
range fluctuations and presence of multiple spin components
provide interesting behavior, deviating from the Fermi distri-
bution. Another observable of interest, measurable via time of
flight spectra [174], is the structure factor associated with the
spin correlation. The structure factor is the Fourier component
of the two-body correlation and reveals the quantum magnetic
correlations arising at strong on-site interaction.
The diagonal two-body spin correlation is [175]

S(m, n) = (ShSP), (14)
where S5, = 3", sch  T.Pgc,, 4. with TP being the diagonal
SU(N) generator.

The diagonal spin correlation is expressed as [169,175]

1

S(m,n) = N(N

) Z (nm,ann,a) - <nm,ann,ﬁ)- (15)

In the mapped system, the two-body spin correlation is ex-
pressed as

M m,n
S m,n) = S,mp,n;,
( ) Z NN —1)
mpy,n,=1
Xy el X)) = (X[t 51X,
a#p
where D't = (¢ |6’"’:,71 8 nnal). (16)
10 1 Mg Zi]:l niy

The structure factor associated with the two-body spin corre-
lation is defined as

L
S(k) = % Z S(m, n)e*m=—m. (17)

m,n=1

Spin-independent Spin-dependent

(@al)m (b 1)k
=
ES o -
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FIG. 3. For N-component fermions: (1) momentum distribution
(ny) as a function of momentum (k) with vertical dashed lines
for k = kp = £0.17 and (2) one-body density correlation [C(x, 0)]
as a function of position x. Zoomed-in panels show |C(x, 0)| vs.
x on the log-linear scale. Obtained for (a) spin-independent (U)
and (b) spin-dependent [U,p = U(1 + | — B|/(a + B))] on-site
interactions. Evaluated via density matrix renormalization group
(DMRG) for periodic boundary conditions with system parameters:
system size L = 60, number of particles per spin component M/N =
6, spin components N = {2, 3,4, 6}, and in the strong interaction
region (U/t = 20).

Results. The momentum distribution and the one-body den-
sity correlation as a function of momentum and position for
N-component fermions obtained via the generalized effec-
tive spin-chain formalism in the presence of strong on-site
spin-independent and -dependent interactions are shown in
Fig. 3. It is obtained for systems with number of spin com-
ponents N = {2,3,4, 6}, size L = 60, number of particles
per component constant (M/N = 6) and periodic boundary
conditions. Momentum distribution explores the charge fluc-
tuations, where the correlations arising smear the known
Fermi distribution. A system of spinless fermions shows a
momentum distribution that increases monotonically with k
and a strong singularity at k = 2kg (kg = 7 M/NL). For spinor
gases, the momentum distribution is different. The hopping of
charges alters the spin configuration that results in the smear-
ing and disappearance of the singularity at k = 2kg [145,169].
For a spin-1/2 system, at occupancy n < 1, a strong singu-
larity appears at k = kg and a weak singularity at k = 3kg.
The smearing of the distribution, as N increases, results in
the disappearance of the strong singularity at k = kg. As the
number of spin components is increased, one expects the
reduction of weight at low k, slower decay, and a monotonic
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broadening arising due to the fermionization of the different
spin components as experimentally demonstrated [168].

Figure 3(al) presents the momentum distribution with
spin-independent interaction. The formalism effectively re-
produces the strong singularity at k = kg for N = 2, and its
disappearance as N increases. The fermionization effect is
also confirmed by the observation of decreasing strength and
increasing width at low values of k, and a slower decay as
N increases. It successfully captures the charge fluctuations,
and the effect of spins by the consideration of occupancy
n < 1 (away from the Heisenberg limit). Studies with N-
component fermions generally focus on spin-independent
interaction with the experimental realization of trapping and
cooling of alkaline-earth atoms, exploring the SU(N) sym-
metry of the fermionic spinor gases. However, consideration
of spin-dependent interaction will create preferential spin-
component configurations and break the SU(N) symmetry.
The introduction of spin dependency in the on-site interaction
results in further decrease of the weight at lower values of k
and broadening for larger N as seen in Fig. 3(b1).

Figures 3(a2) and 3(b2) presents the one-body density cor-
relation, which probes the corresponding correlations in real
space. It is expressed as ~ x~F sin(kpx), showing a power-law
decay characteristic of a Luttinger liquid with an interaction-
dependent exponent o [176,177] and kg oscillations arising
due to the fermionic statistics. The power-law decay is ob-
served over large separations, illustrated by an exponential
decay in the linear-log scale in Figs. 3(a2) and 3(b2), and
logarithmic decay in log-linear scale in the zoomed-in panels.
The kg oscillations seen in Figs. 3(a2) and 3(b2) are better
illustrated in the log-linear scale. As N increases, we note
that the kg oscillations become less defined and that the cor-
relations display predominantly power-law decay. For large
N, fermions expectedly behave as bosons [168], where the kg
oscillations are absent due to Bose statistics.

Similar to fermions, Fig. 4 presents the momentum dis-
tribution and one-body density correlation obtained via the
generalized effective spin-chain formalism for N-component
bosons in the presence of strong on-site interaction. Unlike
fermions, the general trend of the distribution remains insensi-
tive to the number of components, occupancy and the strength
ratio of inter- to intracomponent interaction. The distribution
shows a peak at k = 0 as seen in Figs. 4(al) and 4(b1). This is
expected for bosons, as higher occupancy (>1) for the same
component is allowed. The one-body density correlation for
bosons is expressed as ~x~°®, where op is the interaction
dependent exponent [177], and demonstrates approximately
exponential decay in the linear-log scale as seen in Figs. 4(a2)
and 4(b2).

Finally, let us discuss the spin structure factor, which is
an important observable that has been extensively studied and
can be experimentally measured. Figure 5 shows the structure
factor associated with the diagonal spin correlation, defined
in Eq. (17), for a system with components N = {2, 3, 4, 6},
size L = 60 and number of particles M = 36 obtained via
the generalized effective spin-chain formalism. For fermions,
a spin-independent linear behavior at small k is seen in the
left column of Fig. 5. With the occupancy considered, two
peaks appear at 2kr in the spin structure for all N. As kp
1/N, the position of peaks are dependent on the number of

Uly=2 Uy=0.5
al)nk b 1) nk
=( ) 25 (b1

£ = r2.0

22

ge rl1.5 1

°,§ F 1.0 4 i

=3 Fiy r 0.5 1 Ay
: et | e - 0.0 : s :
-t —m/2 0 /2 T -t w2 0 /2 T

k k

z (@2 C(x0) (b 2) C(x,0)

172

=
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q'.) 8 +og :::...-..._._- r0.0251 s ‘: eni

5 | *\ | ’“T o -
1 30 10 30 1 3 10 30

N = 2 3 = 4 + 6

FIG. 4. For N-component bosons: (1) Momentum distribution
(n;) as a function of momentum (k) and (2) One-body density cor-
relation [C(x,0)] as a function of position x. Obtained for inter-
to intracomponent on-site interaction (a) U/V =2 and (b) U/V =
0.5. Evaluated via density matrix renormalization group (DMRG)
for periodic boundary conditions with system parameters: size L =
60, particles per spin component M /N = 6, spin components N =
{2, 3, 4, 6}, and in the strong interaction region (U /t = 20).

spin components. Increasing N, the peaks are shifted to a
smaller k£ and the decay of correlations at large k is slower.
The formalism replicates the behavior previously studied for
Hubbard systems [145,169]. From the spin structure factor,
the antiferromagnetic nature of the fermions can be confirmed
by observing a dip in the correlations at k = 0. As N increases,
the structure factors are nonzero at k = 0, implying that the
correlations are not purely antiferromagnetic. Larger N allows
a spin state to deviate from alternating spin orientation, and
hence leads to nonzero contribution at k = 0.

The other columns in Fig. 5 show the structure factor
for bosons at different inter- to intracomponent interaction
strengths. Dependent on the ratio of inter- to intracompo-
nent interaction, the behavior of the spin correlations differ
significantly between U/V > 1 and <I1. The correlations
are ferromagnetic in nature for all N when U/V > 1 as
seen by the strong peak at k = 0. On the other hand, when
U/V < 1, the correlations deviate from the ferromagnetic
nature displaying fermionlike behavior. This is confirmed
by considering intracomponent interaction much greater than
intercomponent interaction (U/V = 0.1), where bosonic cor-
relations mimic fermions. Such antiferromagnetic nature in
spin correlations is expected, as the intracomponent interac-
tion tends to infinity. While their momentum distributions
remain unalike, the bosonic spin correlations behave as
fermions.

The generalized effective spin-chain Hamiltonian with the
mapped system demonstrates its ability to capture the physics
and reveal interesting behavior arising at occupancy n < 1
and at strong but finite interaction strength of an arbitrary
spinor gas trapped in 1D optical lattice. A comparison of
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FIG. 5. Structure factor associated with diagonal two-body spin
correlations [S(k)] as a function of momentum (k) for fermions with
spin-independent interaction (U) and bosons with inter- to intracom-
ponent on-site interaction U/V =2, U/V =0.5, and U/V = 0.1.
Evaluated via density matrix renormalization group (DMRG) for pe-
riodic boundary conditions with system parameters: system size L =
60, number of particles M = 36, spin components N = {2, 3, 4, 6},
and in the strong interaction region (U/t = 20).

the ground-state correlations for different occupancy between
the generalized effective spin-chain formalism and the Hub-
bard model for spin-1/2 system is provided in Appendix D.
In addition to being able to effectively replicate physics for
arbitrary spin statistics, the separation of spin and charge
degrees of freedom also provides significant computational
efficiency allowing for the study of large system sizes and
spin components. This method provides a superior alternative
to existing theoretical tools available for spinor gases in 1D
lattice system.

V. TIME EVOLUTION

In this section we discuss the time evolution of a quenched
spin-1/2 Fermi gas trapped in a 1D optical lattice using the
generalized effective spin-chain Hamiltonian. The dynamics
are compared to that obtained from the original Fermi-
Hubbard Hamiltonian. The initial state and the dynamics are
obtained using time-dependent variational principle method
(developed with input from Ref. [178]) for a system size of
L = 14 and number of particles M = 8 in the presence of an
additional harmonic trap, and with strong on-site interaction.

Initial state. Consider an extension to the Fermi-Hubbard
Hamiltonian, with the introduction of a spin-dependent mag-
netic gradient. The extended Fermi-Hubbard Hamiltonian is
defined as

Hy = —t Z (czT,aCj,a + H.c.)
(i,j).o

+ Z (U”i,T”i,¢ + thizn,- + hzxicrf), (18)

where x; = (L + 1)/2 — i denotes the position of site i from
the center of the chain, local density n; = ) n;,, and o] =
ni» — n;,, defines the local spin order along z. Aside from the
tunneling (¢) and on-site interaction (U ), the Hamiltonian in-
cludes an additional harmonic trap (V},) and a spin-dependent
magnetic gradient (h;). The ground state of this extended
Fermi-Hubbard Hamiltonian at strong on-site interaction is
chosen as the initial state for evolution.

In the generalized effective spin-chain formalism, appro-
priate Hamiltonians are defined to produce equivalent charge
and spin initial states. The charge initial state is taken as the
ground state of the Hamiltonian

Hy = —tY (@ja;+He)+ Y Vixli —h, Y |xilii
) i i
(19)

and the spin initial state is the ground state of the Hamiltonian

t2
Hy =~ ;cl(z — &) + leuaﬁ (20)

The coefficients C; are given in Eq. (8) and

D= (pl ) Syt i xilile). @)

where ¢ is the initial charge ground state. Equations (19) and
(20) thus create an initial state in the mapped system, which
is equivalent to the original system.

Evolution. To obtain the quench, prior to the evolution,
the previously introduced spin-dependent magnetic gradient
is removed while the harmonic trap is retained.

Results. The evolution of the spin populations and correla-
tion obtained from both models are compared in Fig. 6. The
generalized effective spin-chain formalism is able to replicate
the population and correlation dynamics obtained from Fermi-
Hubbard Hamiltonian of the quenched system in the presence
of a harmonic trap. The small deviations potentially stem from
the choice of initial state, boundary condition, assumption of
spin-charge separation as the system evolves, and the absence
of of higher-order terms in the perturbative expansion of the
Hamiltonian at strong on-site interactions. Additionally, this
formalism computationally outperforms the Fermi-Hubbard
Hamiltonian, being 210 times faster, and is capable of accom-
modating much larger system sizes with a smaller memory
footprint.

As a demonstration of its computing efficiency, the dynam-
ics of the quenched system is obtained for larger system size
L = 48 and number of particles M = 38 for spin-1/2 fermions
and bosons at on-site inter- to intracomponent interaction
strengths U/V = 2 and 0.5. The evolution of the spin order
along z is shown in Fig. 7. The spin order for bosonic system
atU/V = 2 remains nearly stationary owing to the initial state
considered and the preference for ferromagnetic ordering.
The evolution of the spin order for fermions and bosons at
U/V = 0.5 show a spread in the region with O order. This is
expected as both systems prefer antiferromagnetic ordering.
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FIG. 6. (a)-(d) Time evolution of spin population obtained via
(a) and (c) Fermi-Hubbard Hamiltonian and (b) and (d) Spin chain
for sites 1-14. (e) Time evolution of the nearest-neighbor spin cor-
relation along x obtained via Fermi-Hubbard and via spin-chain
Hamiltonian. Evaluated for spin-1/2 fermions via time-dependent
variational principle method for open boundary conditions in the
presence of a harmonic trap (V,, = 0.5¢) with spin-dependent mag-
netic gradient (h, = 0.1¢) and system parameters: system size L =
14, number of particles M = 8, and in the strong interaction region
(U/t = 40). Time is in units of 1/¢.

VI. SUMMARY

In conclusion, we have developed a generalized effec-
tive spin-chain Hamiltonian acting on a system of spinless
fermions and spin chain to represent the physics of a spinor
gas trapped in a one-dimensional optical lattice at strong on-
site interaction. The developed model is valid for arbitrary

—— Spin order along z (¢})—————

Bosonic
120 (a) Fermionic  (b)U/r=0.5 (©)Ur=2.0
90
(o]
g 00
30
0 10 20 30 40 10 20 30 40 10 20 30 40
site (7)
[ —
-1.0 -0.5 0.0 0.5 1.0

FIG. 7. Time evolution of the spin order along z for (a) fermions,
(b) bosons with inter- to intracomponent on-site interaction U/V =
0.5 and (c) bosons with U/V = 2 obtained via the generalized ef-
fective spin-chain formalism for sites 1-48. The populations are
evaluated for spin-1/2 spinor gas via time-dependent variational
principle method for open boundary conditions with system param-
eters: V, = 0.04¢, h, = 0.03tr, L =48, M = 38, and in the strong
interaction region (U /t = 40). Time is in units of 1/z.

spin and statistics, providing a generalized approach, and has
an identical formalism as the continuum system providing a
universal approach to study spinor gases in 1D systems. The
separation of spin and charge degrees of freedom, and the
simple nature of the Hamiltonian make it computationally ef-
ficient, allowing for the study of larger system sizes and longer
time evolution using this formalism. We employ density ma-
trix renormalization group (DMRG) to study the ground state
of N-component fermions and N-component bosons. With
the existing theoretical and numerical tools, studying the
physics of arbitrary spinor gases for components greater than
two is challenging. Here, the developed formalism effectively
reproduces the physics of the spinor gas at strong on-site in-
teraction. Using the time-dependent variational principle, the
time evolution of a quenched spin-1/2 Fermi gas in a lattice
is studied. The mapped system captures the dynamical prop-
erties of the original system, producing results consistent with
the Fermi-Hubbard model. Additionally, as an illustration of
the efficiency of the generalized effective spin-chain formal-
ism, the dynamics of the spin-1/2 quenched fermionic and
bosonic systems are presented for a large system size, which
is conventionally intractable. The generalized effective spin-
chain model provides an efficient tool to gain new insights into
the equilibrium and nonequilibrium physics of spinor gases.
Future avenues. Our work provides a unique, generalized,
and universal approach to studying spinor gases in a one-
dimensional system. Potential applications of the formalism
are to provide new insights into the multicomponent spinor
gas such as the development of exotic phases at N > 2, the
correlation dependence on occupancy, effect of doping and
consideration of finite temperature. The formalism can be
applied to the study of Bose-Fermi mixtures (N,-component
fermions and N,-component bosons), where the mixture is
mapped to a system of spinless fermions and a spin chain
with N, + N, spin components, and the generalized effective
spin-chain Hamiltonian will have an additional term arising
due to the interaction between fermions and bosons. It can be
extended to consider two tilted 1D optical lattices parallel to
each other to obtain the Su-Schrieffer-Heeger (SSH) model,
development of a symmetry-protected topological phase, and
the effect of the number of spin components on this phase.
Additionally, the consideration of disorder in the formalism
to study localization and quantum scarring will be of interest.
The generalized effective spin-chain formalism is useful in
the study of a multitude of interesting phenomena arising
in lattice systems such as high-7, superconductivity and the
spin-coherent and spin-incoherent Luttinger liquid regimes.
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APPENDIX A: EFFECTIVE SPIN-CHAIN HAMILTONIAN: FERMIONS

Consider a system of N-component fermions in a 1D optical lattice. Let the number of fermions be M and the
number of lattice sites L. Define complementary subspaces: Hoo (low-energy: occupancy <1) with projector Q° and
Hgi (high-energy: occupancy >1) with Q!'(=1 — Q). The effective Hamiltonian (up to second order) can be expressed
as [179]

Hep = Q'HQ’ — Q°HQ' —— QIHQI Q'HQ". (A1)

The hopping of the fermions contributes the zeroth order

QOHQO IZQ (C,a ,+1a 1+lot lOt)QO

Define projected fermions to restrict occupancy < 1: annihilation operator aiq =] pa Cia(1 — njg), creation operator aja =
]_[ﬂ#a C,'T,a(l — n; g), and number operator 7i; o = al o ]_[ﬁ;éa C, oCia(l =1 ) = ]_[ﬁ# nio(l —nip).
017 OO
QHQ tz(alot l+10¢ t+1a la)

As the hopping preserves the spin components over which the expression is summed over, the spin symbols are removed.

Q°HQ® = —¢ Z(ajal. L tal,ap. (A2)

The second-order term Q°H Q! oL & o Q'HQO is
I

240, 4 Q t 0

= 2 1Q (€aCia) Grgrgr (©ises)<

(i,).k).. B
_ 20, Zy#ﬂt 04 200(,.F 1 T 0
= Z -9 (ci’acj’a)U—y( i ka)Q Z t“Q (Ci,ac.i.a)m(cj,ﬂck,ﬁ)g

(i,j.K) =B (i,j.K),a B

_ 20, T Ny . % 0 20, F s 0

= D QI e+ Y Q)G (0 )0
(i,j.K) sy @y (i,j.k).aB p

20 Mjy 0 20 1 0
= Z t Q (CZO,(] - nj’a)U] Ck.a)Q + Z t Q (ClT,acj,Ol)U (c;’ﬂckﬁ)Q .
(i, k) ety *y {i.J.k) B b
Projected fermion annihilation (a; ) and number operators 7i; o are introduced.

2

t .
_ - _ Tt
= X T @ialty i) > (@49 59 0% p)
(i.j.k).asty ~ @Y (i.jk)atp
2 +
= 2 (_U iy ot 5 = 144 5 ,0)- > (U (@] ot 5 = 1 50 Jaak,ﬁ)>'
(ijratp N %P (i,jkti)atp N %P
@ @

There are two second-order or virtual hopping processes that contribute to and form the effective spin-chain Hamiltonian.
Process @ involves only two nearest-neighboring sites similar to the spin-exchange process seen in the r-J Hamiltonian. Process
@ describes hopping between three nearest-neighboring sites without and with spin flip.

To simplify the expressions further, we define spin operators in the «, § subspace as

Nia,p) = i+ Mia, i p = Mip — Nia,
y _ _qT il
Si @ B = a, pa T az o Si,(a,,s) = _l(ai,ﬂai,oz - ai,aai,,s)' (A3)

These processes are derived and expressed as follows:

§
OF Z ( Mo J5 4 atﬁajﬁaw)>

{i.J).atp

2

2;(7_1 i +n. .0 —d a . a —d ,a d , a )

= Ua s iy, it 1,0 i p%it1, %41, i,g% a%i+1,0%i41,8/
lLa<p e
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fi;fi;41 is multiplied, where 7i; = ), 71; o This does not affect the term as the projected fermions ensure the occupancy is always
one or less, and on observing the term, the contribution is nonzero only if both sites are occupied.
2
= > Gty Ty + i iy — Lo —al ya, a )
= U p il )W o My g T 1 g1y o = @09 8901 %10 — 4 g% a%ivt,a%iv1,p)-
ia<p

The expression is rewritten in terms of the spin operators defined in the «-f subspace.

z Z y y
_ Z 2 (isfirr) My p)ti+1, @) ~ SicepSivt@p ~Si@pSirLes ~ SiwpSitLes
Uep " 2 2 '

ia<pf

A projection operator (Pl“l fl) is introduced that restricts the spins on sites i and i 4+ 1 to have « or  spin components. With the
introduction of the projection operator, the spin space reduces to a system of two spin components, and the previously defined

spin operators can be written as Pauli matrices (¢, v = x, y, 2).

212 3iGis1 \ A 22
= Z —(#; nz+1)(# qu’fl = Z (it ) — & i) P ,,H
i,a<p Ua B 2 ’ i,a<p Ua,ﬂ

In the previous step, the exchange operator (€) replaces the Pauli matrices (£; ;11 = I 4 6,5;+1/2). The first process is expressed
in a spin-charge-separated form.

=17 QAfis1) Z (I — &P
i a<pB Ua.p
Process @ is split into two parts:
. i
@: - Z (U (ala 8% — amajﬂa]aakﬂ)>
(ki) azp %P
il + — T
= - Z (az+2 o Mgy g g = iy plis1 o p) T A g (Mg (8 g = Gy oGy 5 g))
za<ﬂ
®
- Z (az loz(nzﬂ i+la tﬂaltxaz+1ﬂ)+az lﬂ(nlot i+1,8 azrxazﬂ z+1,a))
za<ﬁ
®
2o t T T
@: - Z U g (ai+2,a(ni+l,ﬂai,a - ai+1,ﬂai+l,aai,ﬁ) + ai+2,ﬁ(ni+1,aai,ﬁ - ai+1,aai+l,ﬁai,a))'
ia<p o,

Adding redundant operators that do not change the outcome: a;, — a;,7;, and a; s — ai,y#a?y 2545 This trick is done to
eventually separate the spin and charge degrees of freedom by simple rearrangement.

i i al
- Z U (ai+2,a(nz+l s, ant o = 4ig1,8%41,0%, ozaz o /S) + al+2 ﬁ(nl-H o zﬂ ip — ir1,a%ir1,8% g9 ﬂ la))

AT - - T t - - T t
== § : U ﬁ(ai+2,a”i+1ai,a(”i+1,ﬂ”i,a T Aig,%41, aazaazﬂ)+ai+2,ﬁni+1ai,ﬁ(ni+1,u¢ni,ﬂ = A4y 041 g% gl )
o

The spin symbol.s are r.emoved from aLz, Sy, = aL._zai. This is jugtiﬁed, as thg hoppi.ng preserves the .spin component, and the
operators following this in the bracket ensures the spin-component information is retained for the hopping.

T T T ¥
== E : (al+2nl+1a Yy gy o F Ty o g = iy g o8 oGy g — iy oGy g g5 o)
toz</3

Finally similar to the derivation in @, the expression is written in terms of spin operators in the «-8 subspace.
z Z X X y y
_ Z T, plit1,,8) ~ Si,(a,ﬂ)SiH.,(a,ﬁ) _Si,(a,ﬁ)SiH,(a.ﬁ) B Si,(a-ﬂ)SiH,(ot.ﬁ)
- (al+2n1+la ) 2 2 .

ta<,8
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This is followed by a projection operator restricting the spin space to «-f subspace, and using Pauli matrices to write the
expression in terms of exchange operator. The final expression represents a spin-charge-separated form.

= Z(aj+2ﬁi+lai) Z Ul

a<pf a.p

(1 - Ei,Hl)P:{f]
A similar simplification for part @ is done:

2
1 4
. i ~
D:— § : U ﬁ(ai—l,a(ni,ﬁai+],a - zﬂataaz+lﬂ)+az 1,800 g alaalﬂ i+1,0))
o,

i,a<p

-y

i ot<ﬁ

=1 Z(a;—lﬁiai-fl) Z
i

a<p

t + + i
(a 1104 ) (7 it pliv1q Tl g — @ g oG5y iy g — “i+1,a“i+1,ﬁai,ﬁ“i,a)

(I_ zH—l) ll+|
a

Then, the second term (Q°H Q' o) Fl[ ol Q'HQ% in Eq. (A1), in a spin-charge-separated form is

_ (I —&iiv1) 4o
=2 Z(Zn’nl'H — 1+2”z+1a ;r_lniaiH) Z U—+P”fl ) (A4)
a.fp
a<p
The effective Hamiltonian after second-order expansion, followed by separation of spin and charge degrees of freedom is

(I = &P (A5)

— f f 2 = = P To=
Heip = —t § :(ai Ay +a;,a;) —t E :(2”i”i+1 = Aol G — G 4 ) § : U p
i i a<p @

Treat the effective Hamiltonian as an unperturbed Hamiltonian with a perturbation. The unperturbed part is the tunneling of the
spinless fermions. Using the wave function in spatial sector 1:

Wiy, 01, iy, o) = @1, b2 0y ) X (A6)

and applying degenerate perturbation theory, we obtain the spin-chain Hamiltonian for fermions ((¢|H |¢)):

Hse = (p| —1 Z(‘ljaiﬂ + aLlai)l(p) + (ol — 1 Z(zﬁiﬁiﬂ - aj+2ﬁi+1ai - a:—lﬁiaiJrl) Z Us Eiiv1)P ”+1 lp)
i i a<f
=Ey— Zt (ol Z‘SZ’ a1 QR — al oy ;= a4l )le) ® Z U, Ei)P) 11+1
a<f @.p
= Eo—1? ch Z I =&l | (A7)

a<p aﬁ

where Ej is the ground-state energy of the unperturbed Hamiltonian, the tunneling of spinless fermions. A delta function

(821'71],_[_ ;1) 18 introduced, in the expectation of the charge operators to ensure the charge operators acting on sites i and
j=11j>

i+ 1 correspond to the spin operators on spins [ and [ 4 1. C; is the coefficient of the operator acting on the spin wave
function, containing all the charge degrees of freedom. This provides the effective spin chain for N-component Fermi-Hubbard
Hamiltonian.

APPENDIX B: EFFECTIVE SPIN-CHAIN HAMILTONIAN: BOSONS

As for fermions, the zeroth term in the effective Hamiltonian [Eq. (A1)]:

QOHQO IZ Qo(bla i+1,a +bi+1,oﬁbi,a)Q0' (Bl)
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For the second-order term:

Of O! HO°
Q°HQ QIHQIQ Q
Q'
= Q] b, 5ot st )
(ij%:aﬁ ( Lamjel o1 Q! k,ﬁ)
N 1 Z o
-y [ Q] by "= 0] by, )@+ QB by )T 0] k,awﬂ
(i,).k).a=p Ve Ua.y
+ > tzQO(bfab,a) (b b s)Q°
(i, j.k), a#p
, b’ b,
_ Z 212Q° m”w b, o + Z 290 m”/ybk o0 + Z 20" (bl B ep )Q.
V ¢ Uoz y * . ’ Ua,ﬂ A
(i,j.k) e (i, j.k),azy (i, j.k),a#B

Hence, the Bosonic effective Hamiltonian

nlO(nl o nl nla
He]%f_ IZQO(bta 1+10z z+1a loz)QO Z4t QO( V+] )QO 222‘ QO( i+2,a +1ab +bz La V bt+1,a)QO

2 ~of Miafit1,p + Hiphitla 0 0 i+1,8 iy« + nig
_ZZtQ< Uﬁ )Q ZIQ<1+20(U b +bt+2i3 Uaﬂbi,ﬁ_‘_bifl,aUaﬂbiJrl,a

a<p La<p

ll abz bl bl + bl bl abl bl
+ b, lﬂ oz ,+1 /3) Z 2t QO BYi+1,8Yi+1,a B +1La”i+1,8 Q()
Uy p Usp

i,a<f

b, bl,, b bl b, bl b
0 z+1f3 i+1,a i+1,a”i+1,8 i, F i,a”i,B 0
- Z ! Q < i+2, aU—ﬂbt B + bt+2 ﬂU—ﬂb + bl Lo U bH—l,ﬂ bz 1,B U lerl,a Q" (B2)

i,a<p

The bosonic effective Hamiltonian contains the projection operator Q°. To project to low-energy subspace, remove all double
occupancy by first mapping to fermions (via Jordan-Wigner transformation), which prevents higher occupancy of same
component bosons. This is followed by mapping the Jordan-Wigner fermions to projected fermions.

The Jordan-Wigner transformation for N-component bosons (ensuring the bosonic operators follow hard-core boson commu-
tations and fermions anticommute) is

bza = exp <—in an) exp | —im Zni,y cza, (B3)

I<i y<a

wheren; =), b;f Dra =2, C;acl,a- Similar to fermions, the Jordan-Wigner fermions are mapped to projected fermions.
After mapping bosons to fermions and constraining the subspace to occupancy to <1, the fermionic effective Hamiltonian

BF o Miallit1,a Mit1,0 + 7 o
" = e ) S () 0 B
o o

o

Mialliy1,p + N plliy1,a of v Higlp v Mipla v N
— E 217 2 + E t°| a! —a; 4 +a; ——a; s+ a; — a1
‘ < Uﬂt,ﬁ i+2,a Ua,ﬂ o i+2,8 Ua.ﬁ i,B i—1,0 Ua,ﬂ i+1,a

i,a<f

Z 92 <azaai,ﬂa;+1,ﬁai+lﬂ + “Iﬁai,a“jﬂ,a”iﬂ,ﬂ )
Usp

i,a<p

¥ T i T
i g1 pditla i Qg1 0%it1B 4 pdia v digdip
t 2 (u—ﬂﬁﬂu—ﬁ il =g Sl P ). (B4
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To simplify the expression, define pq.p = Uy, /(N — 1)V, and rewrite the expression:

B F Ma; ﬁnt allit1,a0 + Mg, alli ,BnH-l B
ef? = —1 2 :(ala 1+Io: z+la t[x)_ z :4t ( U P >
«,

ia<p

i it i LB P Tip
+22t (“aﬁz+2aU ata+“ﬁaz+2ﬁU alﬁ"‘“aﬂzlaU al+1°‘+u’ﬁazlﬂU aH-lﬂ)

a<p

21, o1 + 2n; g + 71 o 1; + 71; pii; fi; o1 + 71; gt
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n Z 2 (aT Chjy1,0 + ﬁi+1,ﬂ) ta (2741, + ﬁH—l,rx)a )
st i+2,a Ua,ﬁ t+2 B Ua,ﬁ B

Ritl,a + o Miglp of v Qhjg +7ip) v Qg+ iig)
- § :Zt ( At g Us s TGy T g Us s z,5> + E :t <ai—1,a U s 1o ta_1p Uss 18
a, a,

ioa<p La<p
_ _ T
n;, zazﬁ z+lﬂ l+10(+a1/310tl+10t i+1,8
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Group together terms for simplification:
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Using the spin operators [Eq. (A3)], as for fermions, the effective Hamiltonian for N-component bosons is simplified further:
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B—F _ t t 295 = P T
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lLa<p

. 1 Map + g,
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o,

La<p

MBa — Masp 5B
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The zeroth-order term, preserves spin while hopping and is summed over all spins. Hence, the spin symbol is removed from the
zeroth-order term. Similar to fermions, obtaining an effective spin-chain Hamiltonian for N-component bosons as

HE. =E0—IZZCI|:ZU:/3

Ma:p + Mg
[(1+ Erip) + (—ﬂ P 1)(1 + 87 s Sisnp)

2
1 a<f
MBia — Hasp 5. B
+ 5 (SF @) + Slz+1,(a,ﬁ))i|Pz,z+1j|’ (BS)
where the coefficient

L-1
EXD Syt iy Qi = @M a; = @l )lg). (B6)

j=1

APPENDIX C: SU(N) LIMIT

The effective spin-chain formalism for fermions and bosons are simplified to provide the description in the SU(N) limit
where the on-site intercomponent interaction are spin independent (U, g = U) and the intracomponent interactions are spin
independent (V,, = V) and equal to the intercomponent interaction (V = U).

Fermions. Considering spin-independent intercomponent interaction (U, g = U):

2
H§C=E0_t ZCI ZU (I_SIH-I) 11+1
! a<p o
.
— Fn— f ZC Z My 0,11, @)~ St S, @) _ ﬁ ZCZ Z —Si@pSirL@p ~ S ﬁ)Sl+1,(a,ﬂ)
0Ty 2 U 2
l a<p 1 a<p
r? r? T T T t
=Eo — U ch Z oy gt gl | — U ch Z T Y1, 8% 11,0 T Y Y aYs1,0% 1,8
! a<p l a<p
r? t t r?
=Eo— U ch an,anl+1,ﬁ — A5 o1 0415 | = Eo— U ZCI(I = &L41).
] a8 ]

Bosons. Considering spin-independent intracomponent interaction (V,, = V'), ensures the fourth term in Eq. (9) disappears as
Ma;ﬁ = /J/ﬂ;a = Ot,ﬂ/(N - I)V and

1 U, N
2 o.B z o, B
ch =E)—1t ch Z Ua s [ + &, 1+1)] 11+1 -1 ch Z |:<(N 1 1)(1 +SI,(a,ﬂ)SlZ+1,(a,ﬁ))i|PI,Z-H
l a<p a.p <ﬂ

Similar to fermions, considering spin-independent intercomponent interaction (U, g = U)

Z z 2 X X Y y
_E ZC ) 3, @ p M@ T Si@pSiiiesn | 1 Yol StpSivt@p) T SiwpSities
Hsc 2 U 2

a<f l a<p
t? U
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Finally, considering the inter- and intracomponent interaction strengths are identical (U = V)
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SU(N) limit. Generealized Effective spin-chain Hamiltonian:
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!

APPENDIX D: SPIN-1/2 SPINOR GAS

Here, we study the spin-1/2 spinor gas trapped in a 1D
optical lattice at strong on-site interaction. Figure 8 provides
a comparison of the one-body density correlation and di-
agonal two-body spin correlations of fermions and bosons
(U/V =12, 0.5) obtained via the generalized effective spin-
chain Hamiltonian (SC) acting on the mapped system to the
Hubbard Hamiltonian (H) on the original system. The number
of particles are M = 8, 16, 24 for number of lattice sites
L =30 and open boundary conditions. The Hilbert space
of the two-component Bose-Hubbard Hamiltonian is limited
to at maximum occupancy two per site. This restriction is
justified for the considered on-site interaction strengths and
confirmed with no double occupancy in the ground state. In
the one-body density correlation [C(m = 0, n], at small oc-
cupancy (M/L), the correlations peak for nearest-neighboring
sites. However, as the occupancy increases, the maxima oc-
curs when m = n = 0. This holds true for both fermions and
bosons (U/V =2, 0.5). The kg oscillations are displayed
for fermions but not for bosons. Additionally, for bosons
irrespective of the U/V consideration, the correlations are
identical. The antiferromagnetic nature in fermions is con-

(

firmed with negative spin correlations at nearest-neighboring
sites and oscillations about O as n increases. The strength
of the nearest-neighbor spin correlation increases with occu-
pancy. For bosons, the correlations confirm the ferromagnetic
nature at U >V and antiferromagnetic nature at U < V.
The spin chain is able to effectively reproduce the spin and
charge correlations obtained from the Hubbard Hamiltonian,
producing almost identical plots. While we have mainly pre-
sented examples of two-component fermions or bosons in
this work, in Sec. IV we have applied this formalism to
N-component spinor gases with N > 2, and our preliminary
results confirm that the spin-chain formalism can work for
large N. However, a detailed study of large N systems is
beyond the scope of this work and will be presented in the near
future.

APPENDIX E: NUMERICAL PARAMETERS FOR DMRG

For the ground-state computation of the N-component
fermions or bosons, we employ DMRG with periodic bound-
ary conditions. The computation is divided into two parts:
charge component and the spin-chain component. For the
charge part studying the tunneling of spinless fermions of

063315-15
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FIG. 8. One-body density correlation [C(m = 0, n)] and diagonal two-body spin correlation [S(m = 0, n)] as a function of site n for
fermions and bosons with inter- to intracomponent interaction strength U/V = {2, 0.5} using the Hubbard Hamiltonian (H) and spin-chain
Hamiltonian (SC). The correlations are obtained for number of particles M = {8, 16, 24}, system size L = 30, open boundary conditions and

in the strong interaction region (U /t = 40).

system size L = 60, number of particles M = 12, 18, 24, 36
and periodic boundary conditions, kept up to 120 states and
performed five sweeps in the DMRG algorithm. This yields
a truncation error less than or on the order of 107%. As
the focus is reproducing the physics, we note keeping up
to 40 states in the algorithm is enough to obtain the neces-
sary accuracy to effectively reproduce the physics presented.
For the spin-chain of number of spins M = 12, 18, 24, 36
and number of spin components N = 2, 3, 4, 6 with periodic
boundary conditions, we kept up to 70 states and performed
five sweeps in the DMRG algorithm. This yields a truncation

error less than or on the order of 107*. With the system
parameters considered, retaining these states were enough to
replicate previously seen behavior and the expected physics in
N-component spinor gases. The accuracy of the momentum
distributions can be improved by considering more states, but
even at the present consideration the model is able to effec-
tively capture the key aspects of the behavior seen in spinor
gases. The detailed study of the N-component spinor gases
would require a careful analysis into the minimum number of
states required for an accurate exploration of the physics and
will be a future consideration.
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