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The possibility of attaining chiral edge modes under periodic driving has spurred tremendous attention
both theoretically and experimentally, especially in light of anomalous Floquet topological phases that feature
vanishing Chern numbers unlike any static counterpart. We consider here a periodically modulated honeycomb
lattice and experimentally relevant driving protocols, which allows us to obtain edge modes of various character
in a simple model. We calculate the phase diagram over a wide range of parameters and recover an anomalous
topological phase with quasienergy gaps harboring edge states with opposite chirality. Motivated by the advances
in single-site control in optical lattices, we investigate wave-packet dynamics localized at the edges in distinct
Floquet topological regimes that cannot be achieved in equilibrium. We analyze transport properties in edge
modes which originate from the same bands but with support at different quasienergies and sublattices as well
as possessing different chiralities. We find that an anomalous Floquet topological phase can in general generate
more robust chiral edge motion than a Haldane phase, allowing for more effective loading of the wave packet
into edge channels. Our results demonstrate that the rich interplay of wave-packet dynamics and topological
edge states can serve as a versatile tool in ultracold quantum gases in optical lattices.
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I. INTRODUCTION

Topologically protected phenomena entail a prominent re-
search direction in condensed-matter physics [1,2]. A wide
range of novel phases arising from the interplay of topol-
ogy and symmetries have been theorized and observed, with
intriguing features being unearthed regularly especially in
highly nontrivial many-body or out-of-equilibrium settings
[3–19]. Regarding the latter, rapid developments have ex-
tended topological characterizations to periodically driven
Floquet systems [20–25] and dynamic quench settings with
new invariants [26–29], even reaching to exotic multigap
topologies with non-Abelian braiding properties [30–36].
From an experimental point of view, Floquet engineering
[37–39] has been established as a powerful tool to realize
paradigmatic models in periodically driven nonequilibrium
quantum matter in platforms such as ultracold atoms [25,40–
43] and photonic lattices [44,45], allowing for not only a high
degree of control and efficient quantum simulations but also
exploring new regimes unattainable in equilibrium.

In a Floquet system, where energy is not a conserved quan-
tity due to broken continuous-time-translation invariance, one
can adopt a description in terms of a periodic quasienergy
since discrete-time translations are still present. An
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effective quasienergy spectrum and the topological
information are encoded by the time evolution over a period
T . Upon evaluating stroboscopically [38], a quasienergy
can be defined as phase eigenvalues of the time-evolution
operator, namely, as εnT ∈ [−π, π ) for n bands, modulo
2π in a Floquet Brillouin zone (FBZ). The fact that
quasienergy bands are phases forming a circle induces one
additional, anomalous, π gap connecting the bands through
the FBZ edge. The periodicity of the Floquet spectrum has
paved the way for novel phases that truly arise from this
out-of-equilibrium nature such as helical edge states crossing
across the FBZ, anomalous Floquet Anderson insulators, and
anomalous Dirac string phases [31,46,47].

Most interestingly, the possibility to obtain anomalous
edge states in the FBZ-edge gap renders the equilibrium
topological classification in terms of the Chern number Cn in
two dimensions inept to characterize driven systems [22,23].
Rather than invariants of individual bands, one needs to
consider winding numbers Wg associated with gaps centered
around, e.g., g = 0 and g = π for two levels. Consequently,
the anomalous Floquet topological phase has attracted great
attention, characterized by the winding number combination
[W0,Wπ ] = [1, 1] harboring edge states in both gaps despite a
vanishing Chern number [23,25]. Experimentally, individual
edge modes have been probed in photonic lattices [44,45].
Advances in optical lattices have allowed for directly mea-
suring the topological invariants [11,25,27] and in particular
distinguishing the quasienergy gaps to unambiguously assign
the observed winding numbers to individual gaps. However,
coherent edge dynamics and transport properties in differ-
ent quasienergy gaps, particularly with respect to each other
and equilibrium phases, remain an open question. Recent
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advances in single-site accessibility [48] in optical lattices
now offer new possibilities for the creation of sharp edges
and probing topological edge modes by using localized wave
packets to investigate unique Floquet topological features as
well as the effect of different quasienergy gaps associated with
different branch cuts.

In this work we consider a periodically driven two-band
model in two dimensions that is also experimentally rele-
vant and analyze transport properties in different quasienergy
gaps focusing on the distinct Floquet nature [24,25]. We
calculate the phase diagram over a wide range of parame-
ters and contrast different driving protocols. Going beyond
the anomalous [1,1] phase that was originally introduced,
this allows us to reach an unexplored anomalous Floquet
topological phase where a pair of edge states with opposite
chiralities is induced in different gaps ([W0,Wπ ] = [±1,∓1])
supported by the same two bands with finite Chern number,
which cannot be obtained in equilibrium. We investigate the
wave-packet dynamics in various topological, and in partic-
ular anomalous, phases. We study populating edge modes at
different quasienergies and with different winding numbers
by applying kicks, controlling the shape of the wave packet,
and examine their robustness and efficiency of preparation.
Addressing chiral edge dynamics in different phases where
only a single gap or both gaps harbor edge modes, we show
that an anomalous Floquet topological phase can give rise
to much more robust edge transport than equilibrium Chern
insulating phases. We further analyze the effect of the Floquet
gauge and the sublattice character of the edge states.

II. MODEL

We consider a honeycomb lattice in two dimensions with a
Hamiltonian given by

Ĥ = −
∑

〈i, j〉
Jâ†

i â j + �

2

∑

i∈A

â†
i âi − �

2

∑

i∈B

â†
i âi , (1)

where â†
i (âi ) creates (annihilates) a particle on lattice site

i, with a nearest-neighbor tunneling strength J and an en-
ergy offset � between the two sublattices A and B. We
will introduce the periodic driving via the modulation of the
hopping amplitudes Jm for m = 1, 2, 3 along the three nearest-
neighbor vectors d1 = (0,−1)a, d2 = (−1/2,

√
3/2)a, and

d3 = (1/2,
√

3/2)a, where a is the nearest-neighbor distance.
The Hamiltonian at a given time instance is diagonal with
respect to quasimomentum k and hence can be written as

Ĥ (k, t ) = −
3∑

m=1

Jm(t )[cos(dmk)σx + sin(dmk)σy] + �

2
σz,

(2)
where σ are the Pauli matrices.

The driving protocols that we implement are of stepwise
nature [22,23], which not only offers conceptual simplicity for
our theoretical characterization, but are also experimentally
relevant as they have been recently implemented in optical
lattices [25] with a smoothed modulation [49]. Specifically,
one period of the drive is divided in three even steps of length
T/3. For the first driving scheme, the tunneling is allowed
cyclically only along one of the three directions during each

stage with amplitude J [23,24]. Second, we employ another
protocol, where during the mth step, the tunneling Jm = λJ is
enhanced by a factor of λ, while the tunneling in the other two
directions is kept fixed at J [22]. The first drive can be seen as
a limiting case of the second one for λ → ∞ and J → 0 while
keeping λJ fixed. We will illustrate in detail the difference
between the two schemes in the following.

Since during each step of the driving cycle, the Hamilto-
nian (2) becomes time independent, Ĥm(k), for both driving
protocols, the time-evolution operator at the end of one period
can be written as

Û (k, T ) = e−iĤ3(k)(T /3)e−iĤ2(k)(T /3)e−iĤ1(k)(T /3) = e−iĤF (k)T ,

(3)

where we set h̄ = 1 throughout this paper. This stroboscopic
evolution is captured by the Floquet Hamiltonian ĤF (k),
defining the quasienergy spectrum through ĤF (k)|φn(k)〉 =
εn|φn(k)〉. The Berry curvature and the Chern numbers of
these quasienergy bands are calculated using the Floquet
eigenstates φn(k). These topological invariants in the two-
dimensional momentum-space BZ have however been shown
to be insufficient to capture the Floquet topology [23]. One
instead needs to consider also the time evolution within the pe-
riod Û (k, t ). In Floquet settings, the two bands can close and
reopen in two distinct ways: in the quasienergy gaps at zero
but also at π , corresponding to a change in the branch cut for
defining ĤF (k), as opposed to one possibility in a static sys-
tem. This quasienergy gap labeling originating from the time
periodicity requires a topological characterization that em-
ploys winding numbers defined in the (kx, ky, t ) space. Each
gap closing induces a transfer of Berry curvature between
the bands, leaving chiral edge states behind in their respec-
tive gaps characterized by finite winding numbers. When the
transitions in zero and π gaps trivialize each other, we arrive
at an anomalous Floquet topological phase with a vanishing
Chern number [23]. The latter can in general be expressed as
the difference of the winding numbers (net number of edge
states in a gap factoring in their chiralities) above and below a
band, Cn = Wn,above − Wn,below. In the Floquet case, the extra
π gap renders the spectrum unbounded and hence offers more
interesting possibilities.

III. PHASE DIAGRAMS

Figure 1 demonstrates the phase diagrams that we nu-
merically calculate in our driven honeycomb models for a
representative parameter range. The winding numbers can
in general be computed using the time-evolution operator at
every point in the (2 + 1)-dimensional parameter space [23],
although this may prove computationally and experimentally
demanding in most cases. Instead, we here employ an ap-
proach based on tracking the change of the winding numbers
in each gap as introduced in Ref. [24] and successfully imple-
mented in Ref. [25] to measure anomalous winding numbers.
In particular, in the high-frequency regime we utilize the
equilibrium topological classification based on Chern num-
bers with a trivial winding number in the π gap [24,50]. In
the case of the second driving protocol, λ = 1 automatically
satisfies the static definition. We depart from the topological
invariants that we calculate for these initial parameters at high

063314-2



WAVE-PACKET DYNAMICS AND EDGE TRANSPORT IN … PHYSICAL REVIEW A 108, 063314 (2023)

FIG. 1. Phase diagrams of the stepwise driven honeycomb lattice
with corresponding winding numbers [W0,Wπ ]. (a) First driving pro-
tocol with switching tunneling amplitudes along the three directions
on and off completely, for modulation frequency ω and sublattice off-
set �. (b) Second protocol where tunneling amplitudes are cyclically
enhanced by a factor of λ, with � = 2J .

frequencies for both driving protocols. As model parameters
are being tuned, we compute the winding numbers, which
change via band touching points in each gap, by evaluating the
charge of these topological singularities in a gap-specific way
(see the Supplemental Material for details [51]). The band
singularities (hence edge modes) at the FBZ edge involve a
change in the branch cut by π . We further confirm these wind-
ing numbers by computing the Hopf invariant at representative
points in a given phase, which has been shown to equal the
winding numbers [28].

For the first driving protocol where the tunneling ampli-
tudes are cyclically turned on and off completely, the relevant
tuning parameters are the sublattice offset and frequency.
Indeed, this simple model illustrates a rich phase diagram
including the previously predicted and observed anomalous
Floquet topological phase [1,1] [see Fig. 1(a)], which can be
understood by considering the limit of � = 0 and ω = 4J/3.
For particles starting from one of the sublattices, this fine-
tuned point corresponds to a complete population transfer to
the other sublattice at the end of each step with tunneling
allowed for a time of JT/3 = π/2. As we follow the driving
cycle, it can be easily seen that particles in the bulk remain lo-
calized and only circularly move around each hexagon, ending
up in alternating sublattice flavor at the end of each period and
hence mixing the pseudospin character. However, in a finite
system, particles move along the edge in a direction set by the
chirality of the drive, corresponding to unit winding numbers
of the same sign in both gaps despite the trivial invariant of
the bulk bands.

The second driving scheme, on the other hand, provides
one more knob to tune, namely, the driving amplitude λ.
This allows for reaching more exotic phases, as we present
in Fig. 1(b) as a function of λ and ω for a fixed sublattice
offset � = 2J . We identify a phase with winding numbers
[W0,Wπ ] = [−1, 1], which we numerically verify to be inac-
cessible using the first driving protocol owing to the smaller
number of tuning parameters in that case. Distinct from the
previously introduced anomalous phase, this is a hitherto-
unexplored anomalous Floquet topological phase that harbors
edge states in both zero and the anomalous π gaps with op-
posite chiralities, supported by the same two bands. Hence,
the lower (upper) band carries a Chern number C1 = −2

FIG. 2. Quasienergy spectra for a ribbon with [(a)–(c)] armchair
and [(d)–(f)] zigzag terminations, with crystal momentum k‖ in the
periodic direction. In the [1,1] phase, here given for the first driving
protocol introduced in the text, zero- and π -gap edge states occur
well separated in momentum (a) and (d) at the fine-tuned point (ω =
4J/3, � = 0) and (b) and (e) (ω = 1.5J, � = 0.5J ). (c) and (f) In
the [−1, 1] phase with the second driving scheme, the two edge states
appear closer in momentum, for ω = 4.5J , � = 2J , and λ = 3.

(C2 = +2). This anomalous phase is unique to the driven
system, since in equilibrium there is only one gap where the
topological transition can occur between the two bands (i.e.
the zero gap). This gap could in principle host two edge modes
of opposite chiralities also in the static case, provided they
occur at two different quasimomenta. This would however
correspond to vanishing Chern numbers of the two bands,
making the anomalous [−1, 1] phase exclusively emerging in
the Floquet setting. Interestingly, these subtle differences also
reflect on the edge transport and wave-packet dynamics, as
will be illustrated subsequently.

IV. ANOMALOUS EDGE STATES

In order to investigate transport properties and chiral
edge dynamics in different Floquet (anomalous) topological
phases, we consider a ribbon geometry extended in the x di-
rection, with Ny layers in the finite y direction. We present the
edge spectra in Fig. 2 for both armchair and zigzag termina-
tions. At the fine-tuned point within the [1,1] phase of the first
driving protocol, the Floquet spectrum features completely
flat bands corresponding to the localized bulk motion with
extended edge modes crossing the entire FBZ [see Figs. 2(a)
and 2(d)]. Although the armchair termination folds these two
edge states to the same point, the zigzag spectrum reveals that
the edge modes are well separated in momentum: While the
zero-gap states form at the K point with finite momentum
π/

√
3 in units of the lattice constant, π -gap states appear at

the 	 point. We find that this is true in general in the [1,1]
phase owing to the nature of band inversions required in this
phase, also away from the fine-tuned case as illustrated in
Figs. 2(b) and 2(e) with dispersive bands, as well as for the
second driving protocol. Since armchair and zigzag termina-
tions correspond to projecting along perpendicular directions
in the momentum space, k → −k symmetry is naturally
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FIG. 3. Distribution of edge states at quasienergies (a) and
(c) zero and (b) and (d) π , marked by dots in the insets on their
corresponding quasienergy spectra, on a cylinder periodic in the x
direction. (a) and (b) In the [1,1] phase with the same parameters as
Fig. 2(b), both edge states are counterclockwise and localized at the
same sublattices. (c) and (d) In the [−1, 1] phase for the parameters
given in Fig. 2(c), while the π -gap state localizes on A at the top
edge, the zero-energy state with the opposite chirality localizes on
the B sublattice.

broken in the presence of a finite sublattice offset for the latter
[see Figs. 2(b) and 2(e)]. The edge modes nonetheless still
carry a large momentum difference. On the contrary, in the
[−1, 1] phase in Figs. 2(c) and 2(f), the two edge modes with
opposite chiralities appear closer in momentum, which will
bring about an important distinction for the dynamics in the
two anomalous phases.

The different chiralities of the edge states in the anomalous
Floquet topological phases also affect their sublattice charac-
ter as shown in Fig. 3. We here consider a cylinder geometry
with periodic boundary conditions connecting Nx layers in the
x direction. While in the [1,1] phase the counterclockwise
edge states in the zero gap are localized on the A (B) sub-
lattice on the upper (lower) end of the cylinder, the π -gap
states support the same chiral motion localized on the same
sublattice flavors. In the case of [W0,Wπ ] = [−1, 1], however,
the system harbors both clockwise and counterclockwise edge
modes. Figures 3(c) and 3(d) demonstrate that this is facili-
tated by swapping of the sublattice character of the zero-gap
states along with their chirality. Hence, on the upper and lower
ends of the cylinder, the two edge modes support opposite
currents in different sublattices. Interestingly, the layers where
zero- and π -gap currents have maximum density, depicted
by the size of the circles, are also different. We emphasize
that these two chiral modes do not hybridize despite being
on the same edge as they are well separated in quasienergy.
We now analyze how the interplay between the edge modes
located at different momentum, quasienergy, and sublattices
and with different chiralities affect their transport properties,
especially with respect to each other and in different Floquet
(anomalous) topological phases.

V. WAVE-PACKET DYNAMICS IN ANOMALOUS
TOPOLOGICAL PHASES

Ultracold atomic systems have recently enjoyed rapid
advances in single-site accessibility and local control with
techniques such as quantum gas microscopes and optical

tweezers [48,52–54]. Giving access to the creation of sharp
edges, these pose a timely question and offer new opportuni-
ties for investigating wave-packet dynamics localized at the
edges of a topological system as a powerful tool in optical lat-
tices. The models that we implement allow us to retrieve a rich
phase diagram within a simple geometry, where we compare
edge transport in the conventional Haldane ([1,0]) [55] and
Haldane-like phases ([0,1]), which are gauge equivalent, with
the anomalous Floquet topological phase ([1,1]). Indeed, we
show that edge state population in a given gap can be mostly
controlled by employing appropriate kicks. Most importantly,
we find that the [1,1] phase allows for a more robust chiral
edge motion than the Haldane phases. We analyze the effects
of opposite chiralities with the opportunity provided by the
second anomalous phase ([−1, 1]) and the simultaneous ac-
tivation of both edge modes giving rise to interesting chiral
edge dynamics.

We consider a cylindrical geometry of Nx × Ny layers and
a Gaussian wave packet, 
(x, y) = exp{−(x − x0)2/4σ 2

x −
(y − y0)2/4σ 2

y + iqxx + iqyy}/N , initially localized at the up-
per edge [see the inset in Fig. 4(e)], at (x0, y0) with a spread
given by (σx, σy) and normalization N . We allow for an initial
kick with momentum q = (qx, qy) which can be applied to
control the overlap of the wave packet with edge states that
are projected from the specified momenta onto the edge. We
numerically calculate the evolution of the wave packet and
present the probability at the edge sites in the upper two lay-
ers. In the [1,1] phase, a wave packet without any kick (q = 0)
predominantly overlaps with the π -gap states in Figs. 4(e)
and 4(f), at and away from the fine-tuned point, since these
edge states form at the 	 point (cf. Fig. 2). The corresponding
wave-packet dynamics displays a clear chiral motion for long
times around the edge of the cylinder which is periodic in the
x direction. While some of the probability naturally disperses
into the bulk for the dispersive [1,1] phase [see Fig. 4(b)], at
the fine-tuned point the edge states are exclusively localized
at A sublattices. The probability at B sites hence follows a
chiral motion around each hexagon with completely flat bulk
bands, giving rise to some probability dwelling around the
initial position at all times in Fig. 4(a).

Due to the large separation of the zero- and π -gap states
in the [1,1] phase, we can populate the edge modes at the
zero gap by applying an initial kick of amount |q| = |K| to
the wave packet. Figures 4(c) and 4(g) display a similar chiral
motion with the not-kicked wave packet that is visibly indis-
tinguishable, which is now mainly supported by the zero-gap
states. We note that the kick direction (along the chiral edge
mode or opposite to it) in fact does not matter as it only
gives an overall phase, where the overlaps with eigenstates
do not change and we observe the same dynamics. Moreover,
since these wave packets are well localized in position space,
we still obtain some spurious probability at the other gap,
with or without a kick. This originates from the extensive
overlap of the edge modes from the two gaps in position space
[see Figs. 3(a) and 3(b)], despite the fact that they are well
separated in momentum. Nevertheless, in both cases, we can
control the chiral motion to be carried predominantly by the
target quasienergy-gap modes. This shows that although these
edge modes form at different gaps and despite the difference
in the branch cuts by π while defining them, the wave packets
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FIG. 4. [(e)–(h)] Overlap of a wave packet with the Floquet eigenstates and [(a)–(d)] its evolution at the edge sites (shaded two layers in
the inset) on a cylinder periodic along x direction with Nx = 104 and Ny = 41 layers. The initial wave packets have σx = 1 and σy = 0.5, as
depicted in the inset, where the radius of the circles is proportional to the initial probability at each site. (a) and (e) The [1,1] phase at the
fine-tuned point. The wave packet initialized without a kick follows a clear chiral motion. For the [1,1] phase for the same parameters as in
Fig. 2(b), the wave packet is initially given (b) and (f) a small kick q = (−0.17, 0) and (c) and (g) a larger kick q = (1.56, 0), to target the
Dirac cones at the π and zero gaps, respectively. As revealed by the overlaps, applying appropriate kicks allows us to mainly populate a given
gap, where the dynamics evolve similarly. (d) and (h) The [−1, 1] phase for the same parameters as in Fig. 2(c). We now can largely populate
both gaps simultaneously without a kick since the opposite chirality edge modes appear closer in momentum. The wave packet separates into
two, giving rise to topologically protected currents traveling in both directions at the edge, with the Chern number (|C| = 2) corresponding to
the difference of them.

can be controlled to populate mainly a given edge mode by
applying appropriate kicks depending on their localization in
quasimomentum rather than quasienergy. We present wider
wave packets in the Supplemental Material [51] where the
population of a given gap can be further increased, which
could be experimentally realized, for example, by scanning
a wider region with the laser initializing the wave packets.

On the other hand, in the [−1, 1] phase achievable with the
second driving protocol, both zero and π gaps harbor edge
modes, but their separation in momentum is less pronounced.
Both edge modes can then be extensively populated with
the same wave packet, as demonstrated in Fig. 4(h), without
applying any kick. Distinctively, since the winding numbers
have opposite signs, we observe that the wave packet separates
into two [see Fig. 4(d)], with a topologically protected current
going in both directions at the edge of the cylinder, where the
π modes travel slightly faster in accordance with the spectrum
[cf. Figs. 2(c) and 2(f)]. We emphasize that in this phase, the
quasienergy bands carry a Chern number |C| = 2, which is
visible in the difference of the chiral currents at the edge of
the system, rather than two topologically protected channels
traveling in the same direction that would be expected in a
static setting.

The anomalous Floquet topological phases carry distinct
features arising from their out-of-equilibrium nature. First of
all, both edge modes behave effectively as one single channel
in the [1,1] phase due to their similar chirality. It is hence
instructive to explore whether this anomalous Floquet topo-
logical phase (with two edge states of the same chirality
at different quasienergy gaps) gives rise to an edge trans-
port different from the Haldane phases with a single chiral
mode, i.e., to contrast anomalous Floquet topological phases

with the equilibrium Chern insulating phases. We demonstrate
the wave-packet dynamics in the [1,0] and [0,1] phases in
Figs. 5(a) and 5(b), respectively. While we apply a kick (q =
K) to the wave packet to target the zero-gap states in [1,0] as
they form at the K point, we generally obtain a chiral transport
at the edge, as expected in both phases.

Most importantly, upon comparing with the Haldane
phases as visible in their color scales, we observe that the
wave-packet dynamics in the anomalous Floquet phase [1,1]
is much more robust, with the edge separating more from the
bulk. To quantify this finding, we consider cuts on the phase
diagram [Fig. 1(a)] across different phases and evaluate the
total overlap of a wave packet with the edge states in Figs. 5(c)
and 5(d). Targeting the zero-gap states with a kick, we indeed
find that the total percentage of the edge state population is
overall much higher in the [1,1] phase than in the [1,0] phase,
where the former comprises mostly zero-gap states that are
further enhanced by the π -gap contribution [see Fig. 5(c)].
Similarly, Fig. 5(d) shows that the wave packet, now initial-
ized without a kick, overlaps with the π -gap states much
more in [1,1] than in [0,1], where the zero-gap states further
strengthen the edge dynamics in the former. We observe that
this behavior is in general present across the phase diagram
and also for the second driving protocol.

Remarkably, this demonstrates that a wave packet can
be prepared to populate the edge modes more easily and
efficiently in the anomalous phase than in Haldane phases.
The anomalous topological phase then supports a more pro-
nounced chiral edge motion with less leakage into the bulk.
The more robust edge transport in the anomalous Floquet
phase stems from the fact that the edge of the system accom-
modates two different channels rather than one, increasing the
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FIG. 5. Edge dynamics of a wave packet (a) with an initial kick
q = (π/

√
3, 0) in the [1,0] phase for ω = 2.2J and � = 0 and

(b) without a kick in the [0,1] phase for ω = 2J and � = 1J . Both
dynamics in the Haldane phases show qualitative differences from
Figs. [4(a)–4(c)], as they are less pronounced. (c) Percentage of the
total probability carried by edge states in each gap, along the � = 0
cut of Fig. 1(a) crossing different phases. The edge state population
is much higher in the [1,1] phase (red shaded area) than in the [1,0]
phase (green shaded area), for a wave packet with an initial kick as
in (a) to target zero-gap states. (d) Similarly, the total probability per
gap along a diagonal cut on the phase diagram crossing from [1,1]
to [0,1], where the wave packet is given a small initial momentum
to target the π -gap states forming close to 	. A greater probability is
supported by the two edge channels in the [1,1] phase along both cuts
(c) and (d), quantifying that edge transport is overall more robust in
the anomalous phase.

relative weight of the edge channels compared to the bulk so
that they better separate spatially. Compared to the topological
phases with equilibrium counterparts, there is one more gap
available to harbor edge states in the anomalous Floquet topo-
logical phase, which renders stronger edge transport possible,
supported with more edge states in the driven system. This
can also aid novel anomalous Floquet Anderson phases under
disorder [47]. We note that this qualitative analysis naturally
depends on system details such as the bulk gap width and the
properties of the phase. Indeed, we also obtain that the total
edge population by a wave packet is overall larger for the
[−1, 1] phase than the Haldane-like phase (see the Supple-
mental Material [51]). Although the trend is less pronounced
due to different chiralities and parameter dependences, the
effect is still clearly discernible when the anomalous phase
harbors two edge channels.

The anomalous Floquet phase [−1, 1] manifests appealing
features as well with the edge transport of opposite chiralities
supported by the same bands. Since these edge modes are
located at different quasienergy gaps and have support on
different sublattices, they do not hybridize as demonstrated
in Fig. 6(a). When we consider a cylinder with a smaller size,
we confirm that the opposite-going currents at the edge circle
the cylinder and pass through each other without disruption
for several cycles. Similarly, when we introduce two wave
packets, the crossing of the edge currents is clearly visible
in Fig. 6(b). We note that introducing two wave packets is
an experimentally promising route for probing these anoma-
lous topological dynamics with opposite chiralities, where

FIG. 6. In the [−1, 1] phase with the parameters in Fig. 2(c), the
wave packet is initialized without a kick on a smaller cylinder with
Nx = 52 and Ny = 41. (a) Opposite going currents circle the cylinder
and cross without disruption. (b) Two wave packets initialized at the
edge pass through each other without hybridizing as they are well
separated in quasienergy.

localized particles can be created around circular-shaped
sharp edges punched in a system with laser potentials.

Although the analysis carried out here is generic for any
parameters in a given phase, the particular details of different
edge currents depend on various aspects. For example, we
observe some tails developing and traveling with different
velocities in some dynamics. This generally arises when many
momentum states are stimulated due to the finite size of the
wave packet, where the velocity of a given edge mode might
be different at different quasimomenta (cf. Fig. 2) as well as
different velocities that can be associated with different edge
modes. We analyze some important details that can give rise
to varying edge dynamics in a real system next.

VI. FLOQUET GAUGE AND SUBLATTICE DEPENDENCE

For the wave-packet dynamics presented in previous
sections, we numerically calculate the time evolution by em-
ploying the Floquet Hamiltonian given in Eq. (3). While such
stroboscopic definitions are useful, we verify that these dy-
namic features are overall reproduced also by following the
exact time evolution under the two driving protocols, justi-
fying the employment of an effective description neglecting
the micromotion [38]. Although here we set the initial time to
zero (t0 = 0) for simplicity, the time-evolution operator and
hence the Floquet Hamiltonian in Eq. (3) actually depend on
this so-called Floquet gauge Ĥt0

F (k) as well as the Floquet
eigenstates [38,39].

The Floquet gauge can influence the wave-packet dynam-
ics in experiments especially at lower frequencies where the
details within a period become more crucial. We elucidate this
by considering the extreme limits of a wave packet completely
localized on an A site at the upper edge in Fig. 7(a) and the
fined-tuned point in the first driving protocol, where we obtain
complete population transfer between sublattices at the end of
each step of the drive. When we start from t0 = 0 with the tun-
neling amplitudes turned on and off cyclically as J1 → J2 →
J3, particles move along the edge leftward. However, if we
consider another initial time, e.g., t0 = T/3, within the same
sequence (i.e., J2 → J3 → J1), particles would follow a chiral
bulk motion around the hexagon. Away from the fine-tuned
point, eigenstates mix sublattice flavors at varying degrees, but
the Floquet gauge dependence remains. While this can give
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FIG. 7. (a) Illustration of the relation between the upper or lower
edge dynamics and the sublattice character by considering the fine-
tuned point of the first driving protocol. Starting from t0 = 0 and
following the chiral motion with J1 → J2 → J3 turned on cyclically,
a particle localized on sublattice A at the upper edge moves along
the edge leftward (red arrow). Starting from a different initial time
of t0 = T/3 induces a bulk motion around the hexagon (purple). At
the lower edge, the sublattice characters giving rise to the edge and
bulk motions are swapped, which starting from B at t0 = 0 generates
edge motion (blue). (b) and (c) Dynamics on a cylinder in the [−1, 1]
phase for the same parameters as in Fig. 2(c), where we localize the
wave packet without a kick at the same x position on the upper and
lower edges, respectively. We average over 20 equally spaced initial
times t0 within a period, which produce similar chiral motion.

rise to some modifications in the exact dynamics observed,
it does not alter our general conclusions. Furthermore, this is
naturally less pronounced for more balanced or wider wave
packets.

The upper and lower edges of the system may give rise
to different dynamics as well, since the pseudospin character
reflects oppositely on these two physical edges. Specifically,
the chiral edge motion observed at the upper edge when we
start from the sublattice A as depicted in Fig. 7(a) can be
obtained at the bottom edge starting from the sublattice B
(and similarly for the bulk localized states). When � = 0, the
Hamiltonian can be cast into a diagonal form in the pseu-
dospin. The up spin in the upper edge corresponds to the
down spin at the lower edge, which hence can bring about
different dynamics depending on their population by the wave
packet. While in general for � 
= 0 the spin characters are
mixed, they are mixed in the same but opposite way at the
upper and lower edges, i.e., some up-down mixture on one
end corresponds to the opposite down-up mixture on the other
end. Changing the sign of the offset � → −� then inverts
the upper-lower edge character, which we confirm in our
numerics.

Overall, when we average out over various dynamics, the
upper and lower ends of the system naturally give rise to the
same behavior as it samples through different initial times and
sublattice characters. We consider a wave packet localized in
the same way at the upper and lower edges of a cylinder, at
the same x positions in the geometry depicted in Fig. 7(a). We
numerically calculate the chiral edge currents starting from
different t0 initial times (for 20 data points equally spaced
over one period) which correspond to different eigenstates.
We demonstrate the average wave-packet dynamics at the
respective edges in Figs. 7(b) and 7(c). While the upper and
lower edge dynamics might be very different at a given t0, we
observe that the π -gap states generate the similar leftward and
rightward currents at the top and bottom edges on average as

expected, as well as the zero-gap modes supporting opposite
chirality. We note that the negligible difference between the
upper and lower dynamics in the figure stems from the coarse
sampling for averaging, where more data points wash out
these differences further.

VII. CONCLUSION

In this work, we focused on the topological edge trans-
port and chiral motion at the edge of a periodically driven
system, particularly in anomalous Floquet topological phases
unique to these out-of-equilibrium settings [22,23]. In light
of recent developments in single-site accessibility in optical
lattices, which offers the possibility to probe the dynamics
locally at sharp edges, we investigated wave-packet dynam-
ics as a versatile tool in exploring topologically protected
Floquet edge modes. We considered a honeycomb lattice
under experimentally relevant and conceptually insightful
stepwise modulated driving protocols [24,25], which al-
lowed us to retrieve a rich phase diagram, involving the
conventional Haldane(-like) phases that can be realized in
equilibrium as well as two different anomalous Floquet
topological phases with no static counterparts that har-
bor edge states of different chiralities in both quasienergy
gaps.

We showed that, in the [1,1] phase, the edge modes in
different quasienergies behave predominantly like a single
channel with the same chirality and sublattice character,
where wave packets can be controlled to mostly populate one
of the gaps by applying appropriate kicks as they are well
separated in momentum. While this behavior is similar to
the Haldane phases with a topologically protected edge mode
present only in a single gap [55], we found that the anomalous
[1,1] phase can generally support a more robust edge transport
with edge states separating more from the bulk. We explained
this by having two different channels coming from both gaps
accommodated at the edge of the system, which enhances the
population of the edge modes by the wave packets, providing
an overall advantage over Haldane phases with equilibrium
counterparts.

We further showed an anomalous phase with opposite
winding numbers [−1, 1] that can be achieved using the
second driving protocol in a honeycomb lattice, where the
system features both clockwise and counterclockwise cur-
rents now carried mainly by different sublattices at a given
edge. Since the edge modes of opposite chiralities form
much closer in momentum, we observed that wave packets
localized at the edge largely populate both channels, which
generates two independent currents going in opposite ways
that can transverse through one another without hybridizing.
We also analyzed the dependence of the dynamics on the
details of the drive and the exact position where the wave
packets are localized. We discussed that these effects can
be controlled by changing the shape of the wave packet or
averaging over different initial times. Our results demonstrate
that investigating Floquet topological edge modes by using
wave packets in optical lattices can reveal unique out-of-
equilibrium features. These insights can be also employed in
phases involving a larger number of edge states and with dif-
ferent chirality combinations [56], which might reveal more
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interesting edge dynamics and more robust edge transport
engaging multiple edge channels. Photonic lattices employing
quantum walks offer another promising route to study vari-
ous anomalous Floquet phases with different winding number
combinations [57].

Note added. Recently, we became aware of related exper-
imental work studying and probing wave-packet dynamics
in an anomalous Floquet topological phase, which has been
reported in Ref. [53].

Data sharing is not applicable to this article as no data sets
were generated or analyzed during the present study.
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