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Fermi spin polaron and dissipative Fermi-polaron Rabi dynamics
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We consider a spin impurity with multiple energy levels moving in a noninteracting Fermi sea and theoreti-
cally solve this Fermi-spin-polaron problem at nonzero temperature by using a non-self-consistent many-body
T -matrix theory. We focus on the simplest case with spin 1

2 , where the two energy states of the impurity are
coupled by a Rabi flip term. At small Rabi coupling, the impurity exhibits damped Rabi oscillations, where the
decoherence is caused by the interaction with the Fermi sea, as recently reported in Fermi-polaron experiments
with ultracold atoms. We investigate the dependence of Rabi oscillations on the Rabi coupling strength and
examine the additional nonlinear damping due to large Rabi coupling. At finite temperature and nonzero impurity
concentration, the impurity can acquire a pronounced momentum distribution. We show that the momentum or
thermal average can sizably reduce the visibility of Rabi oscillations. We compare our theoretical predictions to
recent experimental data and find good agreement without any adjustable parameters.
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I. INTRODUCTION

Quantum impurity interacting with a many-body
environment is a long-lasting research topic in the modern
physics [1]. The earliest study can be traced back to the
seminal work by Landau [2], which led to the fundamental
concept of quasiparticles. Over the past 15 years, this research
topic has received renewed interest, due to rapid advances in
ultracold atomic physics [3–5]. In particular, the dynamics
of a quantum impurity immersed in a noninteracting Fermi
sea, namely, Fermi polaron, has been systematically explored
both experimentally and theoretically [6–10]. A convenient
experimental setup is the use of a highly imbalanced two-
component Fermi-Fermi mixture, where minority atoms in a
hyperfine state can be well treated as isolated, uncorrelated
impurities. For such a system, quasiparticle properties of
Fermi polarons, including the ground-state attractive polaron
and the excited branch of the repulsive polaron, have been
well characterized experimentally by radio-frequency (rf)
spectroscopy [11–16], Ramsey interferometry [17], Rabi
oscillation [13,15,18], and most recently Raman spectroscopy
[19]. Theoretically, an exactly solvable polaron model with
a heavy impurity and a BCS superfluid environment has also
been constructed [20–22], clarifying several salient features
of Fermi polarons in a rigorous way.

In principle, quantum impurity can have internal degrees of
freedom and can occupy multiple energy levels. For example,
molecule impurity can be trapped inside a nanodroplet of
superfluid helium, forming the so-called angulon quasiparticle
[23]. The rotational degree of freedom of the molecule can be
affected by the many-body environment of a helium droplet,
as evidenced by a larger effective moment of inertia. This
effect is similar to the renormalization of the effective mass
for impurity observed in Fermi polarons [6]. In highly imbal-
anced Fermi-Fermi mixtures, it is also feasible to coherently
transfer minority atoms to another hyperfine state, by using
an always-on rf field [24]. Thus, impurity atoms can occupy

two different hyperfine states and acquire a pseudospin degree
of freedom. Indeed, in recent Rabi dynamics experiments for
Fermi polarons [13,15,18], Rabi oscillation between the two
hyperfine states is driven by the rf field with reasonably small
coupling strength in the linear response regime, where polaron
properties are assumed to be unchanged by Rabi coupling.

In this work, we investigate in detail the Fermi spin po-
laron with a mobile spinor impurity, with the purpose of
better understanding the Rabi dynamics of Fermi polarons..
We are specifically interested in the dependence of quasipar-
ticle properties of Fermi spin polarons on the Rabi coupling
strength, which is less considered in earlier theoretical analy-
ses on dissipative Rabi dynamics [24–26] (for an exception,
see Ref. [27], where a state-of-the-art simulation of Rabi
oscillations is presented). This dependence is crucial to ex-
amine the small Rabi coupling assumption adopted in recent
experimental measurements [13,15,18].

Our theoretical investigation is based on a non-self-
consistent many-body T -matrix theory of Fermi polarons
[28–36], extended to the case of a spinor impurity. In the
spinless case of a structureless impurity, such a many-body
T -matrix approach is fully equivalent to Chevy’s variational
ansatz [37–40], including its finite-temperature extension
[41]. This approach is particularly useful for a mobile im-
purity, whose recoil energy suppresses multiple particle-hole
excitations near the Fermi surface of the many-body envi-
ronment. Our results are therefore complementary to the two
earlier studies [24,26], which considered the heavy impurity
limit using either a spin model with an Ohmic bath [24] or the
functional determinant approach [26].

Our many-body T -matrix theory is also convenient to in-
vestigate the finite-momentum effect of polarons, which arises
due to the nonzero temperature and the finite impurity con-
centration. This effect is not emphasized in a recent Rabi
dynamics study based on the finite-temperature variation ap-
proach [27], but is found to be important for understanding the
measured rf spectroscopy [35]. We find that the visibility of
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Rabi oscillations can be sizably reduced by the momentum av-
erage due to the thermal momentum distribution of polarons.

The rest of the paper is organized as follows. In the
next section (Sec. II) we present the non-self-consistent
many-body T -matrix theory for Fermi spin polarons at finite
temperature. In Sec. III we discuss in detail the quasiparticle
properties of spin polarons, such as self-energy, spectral func-
tion, and polaron energies, as a function of the Rabi coupling
strength. We emphasize the nonlinear effect arising from large
Rabi coupling. In Sec. IV we first compare our theoretical
predictions with the experimental data on Rabi oscillation and
show that there is good agreement, without any free fitting
parameters. We then examine the effect of the momentum
average and the nonlinear dependence of Rabi oscillations on
large Rabi coupling strength. Finally, we give a brief summary
in Sec. V.

II. NON-SELF-CONSISTENT MANY-BODY
T -MATRIX THEORY

A. Model Hamiltonian

According to the recent experiments on dissipative Rabi
dynamics [13,15,18], we consider a spin- 1

2 impurity of mass
mI that has two hyperfine energy levels (i.e., σ =↑,↓), de-
scribed by the single-particle model Hamiltonian [24,26]

HI =
∑
pσ

ε (I )
pσ d†

pσ dpσ + �

2

∑
p

(d†
p↑dp↓ + d†

p↓dp↑), (1)

where d†
pσ and dpσ are the creation and annihilation field oper-

ators for the impurity with momentum p in the spin-up (σ =↑)
and spin-down (σ =↓) states that have the dispersion relations
ε

(I )
p↑ = ε (I )

p ≡ h̄2p2/2mI and ε
(I )
p↓ ≡ ε (I )

p + �, respectively, �

is the detuning, and � is the Rabi coupling strength. For a
spin- 1

2 impurity, its noninteracting thermal Green’s function
is a 2 × 2 matrix G0(P ),[

G(0)
11 G(0)

12

G(0)
21 G(0)

22

]
=

[
iωp − ε (I )

p −�/2

−�/2 iωp − ε (I )
p − �

]−1

, (2)

where we have used the shorthand notation P ≡ (p, iωp)
with fermionic Matsubara frequency ωp = (2p + 1)πkBT at
temperature T and integer p = 0,±1,±2, . . .. By diagonal-
izing the matrix, we find two energy levels E (±)

p = (ε (I )
p +

�/2) ± √
�2 + �2/2. The associated amplitudes (i.e., wave

functions) are given by

u2 = 1

2

(
1 + �√

�2 + �2

)
, (3)

v2 = 1

2

(
1 − �√

�2 + �2

)
, (4)

uv = 1

2

�√
�2 + �2

. (5)

The noninteracting impurity Green’s function can then be
conveniently written as

[
G(0)

11 G(0)
12

G(0)
21 G(0)

22

]
=

[
v2 uv

uv u2

]
iωp − E (+)

p
+

[ u2 −uv

−uv v2

]
iωp − E (−)

p
. (6)

The impurity is moving in and interacting with an ideal
Fermi sea of fermionic atoms of mass m described by∑

k εkc†
kck, where c†

k and ck are the creation and annihilation
field operators for fermionic atoms with momentum k and
single-particle dispersion relation εk = h̄2k2/2m. The total
model Hamiltonian then takes the form

H = HI +
∑

σ

gσ

V

∑
kpq

c†
kd†

q−kσ dq−pσ cp +
∑

k

εkc†
kck, (7)

where V is the system volume and the middle term describes
the s-wave contact interactions between the impurity and the
Fermi bath with bare interaction strengths gσ , which are to be
regularized via the relation

1

gσ

= mr

2π h̄2aσ

− 1

V

∑
k

2mr

h̄2k2
. (8)

Here aσ (σ =↑,↓ or interchangeably σ = 1, 2) is the s-wave
impurity-bath scattering length and mr ≡ mmI/(m + mI ) is
the reduced mass. Throughout the work, we always take
mI = m, so mr = m/2. The density n or the total number
N = nV of fermionic atoms in the Fermi sea can be tuned
by adjusting the temperature-dependent chemical potential
μ(T ). We often measure the single-particle energy of atoms
from the chemical potential and therefore define ξk ≡ εk − μ.
Hereafter, for clarity we will suppress the volume V in ex-
pressions, so the summation over the momentum

∑
k in the

later equations should be understood as
∑

k = (1/V )
∑

k =∫
dk/(2π )3.

B. Diagrammatic theory

We use the non-self-consistent many-body T -matrix the-
ory [28,35] to solve the Fermi-spin-polaron problem, within
which the motion of the impurity can be described by a se-
ries of ladder diagrams that take into account the successive
forward scatterings between the impurity and the atoms in
the Fermi bath. By summing up the infinitely many ladder
diagrams, as detailed in Appendix, we find the two-particle
vertex function, which takes the 2 × 2 matrix form[

	11 	12

	21 	22

]
=

[
1/g1 + χ̃11(Q) χ̃12(Q)

χ̃21(Q) 1/g2 + χ̃22(Q)

]−1

, (9)

where Q ≡ (q, ivq) is the shorthand notation for the four-
dimensional momentum with bosonic Matsubara frequency
νq = 2qπkBT and integer q = 0,±1,±2, . . ., and the various
pair propagators χ̃i j (i, j = 1, 2) are given by

χ̃i j (Q) =
∑

k

kBT
∑
iωk

G(K)G(0)
i j (Q − K). (10)

Here we have introduced K ≡ (k, iωk ), with fermionic
Matsubara frequency ωk = (2k + 1)πkBT and integer k =
0,±1,±2, . . ., and

G(K) = 1

iωk − ξk
= 1

iωk − εk + μ
(11)

is the thermal Green’s function for noninteracting fermionic
atoms in the Fermi bath. The summation over the fermionic
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Matsubara frequency in Eq. (10) is easy to carry out. In the
single impurity limit, we find that [35]

χ̃11 =
∑

k

(
v2[ f (ξk ) − 1]

iνq − E (+)
q−k − ξk

+ u2[ f (ξk ) − 1]

iνq − E (−)
q−k − ξk

)
, (12)

χ̃12 =
∑

k

(
uv[ f (ξk ) − 1]

iνq − E (+)
q−k − ξk

− uv[ f (ξk ) − 1]

iνq − E (−)
q−k − ξk

)
, (13)

χ̃21 = χ̃12, and χ̃22 can be obtained from χ̃11 by exchanging
the factor u2 with v2 in the large parentheses. The function
f (x) = 1/(ex/kBT + 1) is the Fermi-Dirac distribution at tem-
perature T . It is readily seen that the integral in both χ̃11 and
χ̃22 has an ultraviolet divergence at large momentum. This
divergence is due to the use of the s-wave contact interactions
and can be exactly compensated by the counterterm in the
regularization relation (8), i.e.,

∑
k 2mr/h̄2k2. Therefore, it is

convenient to introduce χ11 ≡ 1/g1 + χ̃11 and χ22 ≡ 1/g2 +
χ̃22 and rewrite χ12 ≡ χ̃12 and χ21 ≡ χ̃21. We will still refer to
χi j (Q) as the pair propagators, without any confusion.

The integrals in χi j (Q) can be categorized into two types
[35]. The first is the two-body part, which can be analytically
evaluated by using

∑
k

(
1

� − ε
(I )
q−k − ξk

+ 2mr

h̄2k2

)
= − i(2mr )3/2

√
� − ζq

4π h̄3

(14)
for any complex frequency �. Here ζq ≡ h̄2q2/2(m + mI ) −
μ is the center-of-mass kinetic energy measured from the
chemical potential. Another is the many-body part, which
takes the form

χeff(q,�) =
∑

k

f (ξk )

� − ε
(I )
q−k − ξk

(15)

and can be numerically calculated in a very efficient way,
as discussed in detail in our recent work (see, e.g., Ap-
pendix A of Ref. [35]). By defining two constants γ± = (� ±√

�2 + �2)/2 and rewriting E (±)
p = ε (I )

p + γ±, it is then easy
to check that [Q = (q, iνq) ≡ (q,�)]

χ11(Q) = mr

2π h̄2a1
+ im3/2

r√
2π h̄3

(v2
√

� − γ+ − ζq

+ u2
√

� − γ− − ζq) + v2χeff(q,� − γ+)

+ u2χeff(q,� − γ−), (16)

χ12(Q) = im3/2
r√

2π h̄3
uv(

√
� − γ+ − ζq − √

� − γ− − ζq)

+ uv[χeff(q,� − γ+) − χeff(q,� − γ−)], (17)

χ22(Q) = mr

2π h̄2a2
+ im3/2

r√
2π h̄3

(u2
√

� − γ+ − ζq

+ v2
√

� − γ− − ζq) + u2χeff(q,� − γ+)

+ v2χeff(q,� − γ−). (18)

Here, for later convenience of taking analytic continuation
(i.e., iνq → � + i0+), we have explicitly set iνq = �. The

analytic continuation can then be performed by simply adding
i0+ to �.

Once the pair propagators χi j (Q) are obtained, we take
the matrix inverse to find the 2 × 2 vertex function 	(Q) =
[χ (Q)]−1. The 2 × 2 self-energy of the impurity �i j (P ) can
be obtained by winding back the outgoing leg of the fermionic
field operator in the vertex function 	(Q)i j and by connect-
ing it with the incoming leg of the fermionic field operator
[28,35]. Physically, this describes the single particle-hole ex-
citation across the Fermi surface of the bath [28,34,37]. Thus,
we have

�i j (P ) =
∑

q

kBT
∑
iνq

	i j (Q)
1

iνq − iωp − ξq−p
. (19)

The summation over the bosonic Matsubara frequency νq =
2qπkBT (with integer q = 0,±1,±2, . . .) can be easily car-
ried out, leading to [28,35]

�i j (p, iωp) =
∑

q

f (ξq−p)	i j (q, iωp + ξq−p). (20)

C. Analytic continuation and numerical calculations

We are interested in the retarded impurity Green’s func-
tions given by the Dyson equation

G(p, ω) = [G−1
0 (p, ω) − �(p, ω)]−1 (21)

and the related impurity spectral functions A(p, ω),[
A11 A12

A21 A22

]
= − 1

π
Im

[
G11(p, ω) G12(p, ω)
G21(p, ω) G22(p, ω)

]
. (22)

Here G0(p, ω) and �(p, ω) are given by Eqs. (6) and (20),
respectively, with the analytic continuation (i.e., iωp → ω +
i0+) explicitly performed. As mentioned earlier, this analytic
continuation can be trivially done by replacing � in Eqs. (16)–
(18) with � + i0+ for the calculations of the retarded pair
propagators χi j (q,�). The consequent matrix inverse leads
to the retarded two-particle vertex functions 	i j (q,�), which
is to be used in Eq. (20).

In our numerical calculations, we take the Fermi wave
vector kF ≡ (6π2n)1/3 and Fermi energy εF ≡ h̄2k2

F /2m as
the units of the momentum (or wave vector) and energy,
respectively. The temperature T is accordingly measured in
units of the Fermi temperature TF = εF /kB. The choice of this
natural unit amounts to setting 2m = h̄ = kB = 1. As we take
the equal mass for the impurity and background fermionic
atoms (m = mI ), the reduced mass mr = 1

4 . In Eqs. (16)–(18)
we find that mr/2π h̄2ai = 1/8πai (i = 1, 2), m3/2

r /
√

2π h̄3 =
1/8

√
2π , and ζq = q2/2 − μ. The dimensionless expression

of χeff(q,� + i0+) can be found in Appendix A of Ref. [35].

III. QUASIPARTICLE PROPERTIES OF
FERMI SPIN POLARONS

In the experiments on dissipative Rabi dynamics
[13,15,18], the interaction between the spin-down impurity
and the Fermi bath (a↓ or a2) is typically small. For
convenience, we simply set a2 = 0− and define a↑ = a1 = a.
Therefore, in Eq. (18) χ22(Q) → ∞. By taking the matrix
inverse, only the 11 component of the matrices, such as
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the two-particle vertex function 	11(Q) = χ−1
11 (Q) and the

self-energy �11(p, ω), is nonzero. We note that the case
with a small but positive scattering length a2 > 0 might be
useful to understand the residual final-state effect in the rf
spectroscopy [11,16] or Raman spectroscopy [19] and could
be addressed in future studies.

A. Self-energy

For the case of a2 = 0, it is useful to contrast our T -matrix
result (21) with another approximated impurity Green’s func-
tion [18,26]

G(p, ω) =
[
ω − ε (I )

p − �(0)(p, ω) −�/2
−�/2 ω − ε (I )

p − �

]−1

,

(23)
where �(0)(p, ω) is the impurity self-energy of the spin-
up state, determined in the absence of the Rabi coupling.
Thus, the impurity Green’s function G(p, ω) = 1/[ω − ε (I )

p −
�(0)(p, ω)] describes a Fermi polaron when the impurity is
always kept to the spin-up state. Earlier pioneering investiga-
tions of the dissipative Fermi-polaron Rabi dynamics [25,26]
rely on the applicability of Eq. (23), which is justified in
the limit of small Rabi couplings (i.e., � → 0), where the
correction arising from the Rabi coupling to the self-energy
�(0)(p, ω) would scale like (�/εF )2. However, in the experi-
ments [13,15,18], typically a reasonably large Rabi coupling
� ∼ 0.7εF has to be taken, in order to have measurable sig-
nals. The validity of Eq. (23) for these Rabi coupling strengths
(i.e., � ∼ εF ) then should be carefully examined.

The T -matrix result (21) is useful to check such a validity,
as the self-energy �11(p, ω) is obtained in the presence of the
Rabi coupling. In Figs. 1 and 2 we show the zero-momentum
impurity self-energy �11(p = 0, ω) at different Rabi coupling
strengths, in the unitary limit (a = ±∞) and at the interaction
strength 1/kF a = 0.5, respectively. For these two cases, we
focus on the attractive and repulsive polaron branches, re-
spectively, by choosing the detuning � = Eatt and � = Erep,
where the energies of both attractive (Eatt) and repulsive po-
larons (Erep) are determined without the Rabi coupling [35].

For the very small Rabi coupling � = 0.1εF , the self-
energy �11(p, ω) is essentially �(0)(p, ω). By increasing � to
εF , we can see a quantitative modification to the self-energy.
Although this modification is noticeable, it still seems to be
small enough to validate the approximate impurity Green’s
function in Eq. (23). At the large Rabi coupling � = 2εF ,
there are qualitative changes to the self-energy, as indicated
by the large shifts in the local minimum and/or maximum
positions in both Re�11(0, ω) and Im�11(0, ω).

These changes indicate that, under the strong driving con-
dition with � 	 εF , the quasiparticle properties of Fermi
polarons are strongly modified. Therefore, in the Rabi os-
cillation experiments, we can no longer probe the polaron
physics without Rabi coupling, which is determined by the
self-energy �(0)(p, ω) at � = 0. In more detail, through
strongly driven Rabi oscillations, we would instead measure
�-dependent attractive and repulsive polaron energies and
their �-dependent decay rates. The decay rate is roughly
proportional to −Im�11(0, ω). As indicated by the arrows
in Figs. 1(b) and 2(b), we find that the imaginary part of

FIG. 1. (a) Real part and (b) imaginary part of the impurity
self-energy �11(p, ω) at zero momentum (p = 0) in the unitary limit
1/a = 0 at the interaction strength 1/kF a = 0. The self-energy is
in units of εF , where εF ≡ h̄2k2

F /2m and kF = (6π 2n)1/3 are the
Fermi energy and Fermi wave vector, respectively. The temperature
is T = 0.2TF = 0.2εF /kB and the detuning is equal to the attrac-
tive polaron energy (at zero Rabi coupling) � = Eatt. We consider
three characteristic Rabi couplings � = 0.1εF (black solid line),
1.0εF (red dashed line), and 2.0εF (blue dot-dashed line). The green
dotted line in (a) shows the curve y = ω. The arrow in (b) points to
the attractive polaron energy Eatt 
 −0.64εF .

the self-energy −Im�11(0, ω) increases with increasing Rabi
coupling strength. The change in −Im�11(0, ω ∼ Eatt ) of the
attractive polaron branch is particularly significant at large
Rabi coupling: It increases from a negligible value 0.006εF to
a considerable value 0.097εF . As we will see, this will bring
an additional damping to Fermi-polaron Rabi oscillations.

B. Single-particle spectral function

Using the self-energy �11(p, ω) in Eq. (21), we calcu-
late directly the impurity Green’s functions G11(p, ω) and
G22(p, ω) and the associated single-particle spectral functions
A11(p, ω) and A22(p, ω). Two example cases of the zero-
momentum spectral function are shown in Figs. 3 and 4 for
the interaction strengths 1/kF a = 0 and 0.5, respectively. In
each case, we consider the resonant detuning for attractive or
repulsive polarons.

It is readily seen that there are several peaks in the spectral
functions A11(0, ω) and A22(0, ω). Each peak corresponds to
a well-defined quasiparticle, with its lifetime characterized by
the width of the peak. To determine the peak positions or the
quasiparticle energies, it is useful to approximate the impurity
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FIG. 2. (a) Real part and (b) imaginary part of the impurity
self-energy �11(p, ω) at zero momentum (p = 0) at the interaction
strength 1/kF a = 0.5. The self-energy is in units of εF . The tem-
perature is T = 0.2TF and the detuning is equal to the repulsive
polaron energy (at zero Rabi coupling) � = Erep. We consider three
characteristic Rabi couplings � = 0.1εF (black solid line), 1.0εF

(red dashed line), and 2.0εF (blue dot-dashed line). The green dotted
line in (a) shows the curve y = ω. The arrow in (b) points to the
repulsive polaron energy Erep 
 0.80εF .

Green’s function in Eq. (21) at zero momentum p = 0 as [18]

G(0, ω) =
[
Z−1(ω − EP + i	/2) −�/2

−�/2 ω − �

]−1

. (24)

FIG. 3. Zero-momentum impurity spectral functions A11(p =
0, ω) and A22(p = 0, ω) in the unitary limit 1/a = 0 at the detuning
� = Eatt. The impurity spectral function is in units of ε−1

F . The tem-
perature is T = 0.2TF and the Rabi coupling is � = 0.5εF . The blue
dot-dashed line indicates the peak position ωp = Eatt 
 −0.64εF of
the impurity spectral function without Rabi coupling � = 0.

FIG. 4. Zero-momentum impurity spectral functions A11(p = 0,

ω) and A22(p = 0, ω) at the interaction strength 1/kF a = 0.5 at the
detuning � = Erep. The impurity spectral function is in units of ε−1

F .
The temperature is T = 0.2TF and the Rabi coupling is � = 2.0εF .
The blue dot-dashed line on the right indicates the peak position
ωp = Erep 
 +0.80εF of the impurity spectral functions A11 and A22

without Rabi coupling � = 0. We note that the impurity spectral
function A11 has an additional peak (of the attractive polaron) at
ωp = Eatt 
 −1.24εF , as indicated by the blue dot-dashed line on
the left.

Here we assume that the Green’s function [ω − ε (I )
p −

�11(p, ω)]−1 describes a Fermi polaron in the spin-up state
with zero-momentum polaron energies EP satisfying EP =
Re�11(0, ω = EP ) and therefore approximate

1

ω − �11(0, ω)

 1

(ω − EP )
(
1 − ∂ Re�11

∂ω

) − i Im�11
(25)

by Taylor expanding �11(0, ω) near ω = EP. Following the
standard way [28,35] to introduce the residue Z = (1 −
∂ Re�11/∂ω)−1 and decay rate 	 = −2Z Im�11, we then
arrive at Eq. (24). This approximate form of the impurity
Green’s function is very useful to understand the Rabi dynam-
ics of the Fermi polaron in the spin-up state, as suggested in
Ref. [18]. For example, at the resonant detuning � = EP, it is
easy to find that the poles of Eq. (24) satisfy the equation(

E − EP + i
	

2

)
(E − EP ) − Z�2

4
= 0 (26)

and are given by (	R ≡ 	/2) [18,27]

E± =
(
EP ± 1

2

√
Z�2 − 	2

R

)
− i

	R

2
. (27)

The form of the quasiparticle energies in the above equa-
tion clearly indicates Rabi oscillations with a modified
effective Rabi coupling strength �eff = √

Z� and with a
damping rate 	R = 	/2. Therefore, if one neglects the �

dependence of the residue Z and of the decay rate 	 (which
seems justified from Figs. 1 and 2 for � < εF , as we have
discussed in the preceding section), one can directly extract
both the residue and decay rate of Fermi polarons from Rabi
oscillations [13,15,18]. In the strong driving regime � 	 εF

instead we anticipate that the effective Rabi coupling strength
�eff will deviate from

√
Z�. Further discussion of this point

will be provided in the next section.
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FIG. 5. Zero-momentum energies of Fermi spin polarons as a
function of the detuning � in the unitary limit 1/a, at the Rabi
frequencies (a) � = 0.5εF and (b) � = 2.0εF . The temperature is
T = 0.2TF . The green solid lines show y = �, while the horizontal
red dashed lines indicate the attractive polaron energy (at zero Rabi
coupling) Eatt 
 −0.64εF .

As shown in Fig. 3, for the unitary impurity-bath interac-
tion, where only attractive polaron exists, we find two peaks
with position well described by Eq. (27). The situation be-
comes a little complicated at the interaction strength 1/kF a =
0.5, as reported in Fig. 4. There we have both an attractive
polaron and a repulsive polaron in the spin-up state. As we
choose a resonant detuning � = EP = Erep for the repulsive
branch, there are two peaks locating at the positive energy
and roughly satisfying Eq. (27). However, there is also a peak
at about the attractive polaron energy EP = Eatt ∼ −1.24εF .
This peak is not taken into account in the approximate im-
purity Green’s function (24), but it could be obtained by
numerically solving the poles of the full impurity Green’s
function (21).

C. Energies of Fermi spin polarons

We have numerically determined the poles of the full impu-
rity Green’s function in Eq. (21), by neglecting the imaginary
part of the self-energy Im�11. The results in the unitary limit
and at 1/kF a = 0.5 as a function of the detuning are shown
in Figs. 5 and 6, respectively, at two Rabi coupling strengths
� = 0.5εF [Figs. 5(a) and 6(a)] and � = 2εF [Figs. 5(b) and
6(b)].

FIG. 6. Zero-momentum energies of Fermi spin polarons as a
function of the detuning � at the interaction strength 1/kF a = 0.5
and at the Rabi frequencies (a) � = 0.5εF and (b) � = 2.0εF . The
temperature is T = 0.2TF . The green solid lines show y = �. The
two horizontal red dashed lines indicate the attractive polaron energy
(at zero Rabi coupling) Eatt 
 −1.24εF and the repulsive polaron
energy (at zero Rabi coupling) Erep 
 0.80εF .

In the unitary limit (Fig. 5), we find two energies of the
Fermi spin polaron, which basically follow

E± = 1
2 [EP + � ±

√
Z�2 − (EP − �)2] (28)

if we neglect the small decay rate (i.e., 	 � εF ). This is
particularly evident at the small Rabi coupling [see Fig. 5(a)],
where both energies follow EP and � far off the resonance
and exhibit a well-defined avoided crossing at the resonance
� = EP. At the large Rabi coupling [Fig. 5(b)], however, we
find that the upper branch of the energies seems to develop
an additional structure around zero detuning � = 0. We at-
tribute it to the strongly modified self-energy �11 at large Rabi
coupling.

At the interaction strength 1/kF a = 0.5 (Fig. 6), we typ-
ically find four poles in the impurity Green’s function (21).
The pole closest to E = 0 is a false solution, since we do not
include Im�11 in finding the poles of Eq. (21). In general,
Im�11 takes a very large value near zero energy [see, e.g.,
Fig. 2(b)]. Thus, it is meaningless to treat the near-zero-energy
solution as a well-defined quasiparticle. We find two avoided
crossings located at the resonances � = Eatt and � = Erep.
Far off the resonances, the other three poles basically follow
the trace of EP = Eatt, EP = Erep (see the red dotted lines), and
� (thin green line). At large Rabi coupling, the middle pole
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FIG. 7. Zero-momentum energies of Fermi spin polarons as a
function of the Rabi coupling � at the two interaction strengths
(a) 1/kF a = 0 and (b) 1/kF a = 0.5. (a) In the unitary limit
1/kF a = 0, we take the detuning � = Eatt 
 −0.64εF , while (b) at
the interaction strength 1/kF a = 0.5, we set � = Erep 
 0.80εF .
These two detunings are indicated by green solid lines. The red
dashed lines show the anticipated energies En = � ± √

Z�/2,
where (a) Zatt 
 0.73 and (b) Zrep 
 0.47. The temperature is
T = 0.2TF .

may disappear at the detuning � ∼ 0, as shown in Fig. 6(b).
This is again due to the large value of Im�11 near zero energy.

In Fig. 7 we report the energy splitting at the resonant
detuning, as a function of the Rabi coupling, as predicted by
Eq. (27). By ignoring the small decay rate 	R, the energy
splitting is given by δE = √

Z�, where Z is the residue of
either an attractive polaron or a repulsive polaron. For the
Rabi coupling � � εF , we find that Eq. (27) provides an ex-
cellent fit to the numerically extracted quasiparticle energies.
At larger Rabi coupling, nonlinear deviation from Eq. (27)
becomes sizable, indicating the breakdown of the approximate
impurity Green’s function in Eq. (24).

IV. DISSIPATIVE RABI DYNAMICS OF FERMI POLARONS

Let us now try to better understand the recent experiments
on Fermi-polaron Rabi oscillations [13,15,18], by examining
more closely the role play by a reasonably large Rabi coupling
strength � ∼ εF . Experimentally, the impurity is initially pre-
pared in the noninteracting (or weakly interacting) spin-down
state. At time zero, a simple square pulse is added to transfer
the impurity to the spin-up state that is in strongly interacting
with the Fermi bath. The frequency of the pulse is suitably

chosen, so either the attractive polaron branch or the repulsive
polaron branch of the spin-up state is selected to be on res-
onance (i.e., � = Eatt or � = Erep). After a variable holding
time t , the relative population of the impurity in the spin-down
state is then determined.

A. Theory of dissipative Rabi oscillation

Physically, for a single impurity this procedure measures
the spin-down occupation

n↓(t ) = 〈ψ (t )|
∑

p

d†
p↓dp↓|ψ (t )〉

= 〈ψ (0)|
∑

p

d†
p↓(t )dp↓(t )|ψ (0)〉, (29)

where the time-dependent many-body wave function is
|ψ (t )〉 = e−iHt/h̄|ψ (0)〉, the time-dependent field operator
dp↓(t ) = eiHt/h̄dp↓e−iHt/h̄, and the initial wave function at
time t = 0 is given by

|ψ (0)〉 = |↓〉T ⊗ |FS〉. (30)

Here, since the initial spin-down impurity does not interact
with the thermal Fermi bath, we have taken |ψ (0)〉 as a di-
rect product of a thermal impurity state |↓〉T and a thermal
Fermi sea |FS〉. In the Fermi sea, at finite temperature T
fermionic atoms occupy single-particle states according to the
Fermi-Dirac distribution. For a single impurity, the thermal
probability of the spin-down impurity would be given by a
suitable distribution function fk that is determined by the
type or statistics of the impurity, if it has a momentum k. By
substituting Eq. (30) into Eq. (29), we find that

n↓(t ) =
∑
pk

fk〈FS|dk↓d†
p↓(t )dp↓(t )d†

k↓|FS〉. (31)

It is difficult to exactly evaluate n↓(t ) for long times, which
involves a product of four field operators. This is because
the effects due to strong correlations will gradually accu-
mulate during the time evolution. For the timescale in the
Rabi dynamics experiments (i.e., for a few Rabi oscillations),
however, it might be instructive to consider the first-order
mean-field-type decoupling

n↓(t ) 

∑

p

fp〈dp↓d†
p↓(t )〉〈dp↓(t )d†

p↓〉

=
∑

p

fpS↓↓(p,−t )S↓↓(p, t ), (32)

as inspired by the well-known Wick theorem in the diagram-
matic theory. Here, in the second line we have introduced, for
t > 0,

S↓↓(p, t ) ≡ 〈FS|dp↓(t )d†
p↓|FS〉 ≡ 〈dp↓(t )d†

p↓〉. (33)

It is easy to recognize that S↓↓(p, t ) = iG22(p, t ) is exactly
the impurity Green’s function in the spin-down channel in the
time domain. Therefore, we can determine it directly from the
single-particle spectral functions, i.e.,

S↓↓(p, t ) =
∫ +∞

−∞
dω A22(p, ω)e−iωt , (34)
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and consequently we are able to calculate

n↓(t ) 

∑

p

fp|S↓↓(p, t )|2. (35)

An expression similar to Eq. (35) but without the thermal
average has been advised by Adlong et al. [see Eq. (S46) in
the Supplemental Material of Ref. [27]], based on Chevy’s
variational ansatz.

To show the usefulness of Eq. (35), let us derive an analytic
expression of n↓(t ) following Ref. [27], by using the approxi-
mate impurity Green’s function in Eq. (24) at zero momentum.
It is readily seen that the spin-down impurity Green’s function
then takes the approximate form

G22(0, ω) = A

ω − E+ + i	R/2
+ 1 − A

ω − E− + i	R/2
, (36)

where the pole energies E+ and E− are given by Eq. (28) and
A ≡ 1

2 − (EP − �)/2�eff with �eff =
√
Z�2 + (EP − �)2.

After some straightforward algebra, we find that

|S↓↓|2 
 e−	Rt

(
cos2 �efft

2
+ (EP − �)2

�2
eff

sin2 �efft

2

)
, (37)

which clearly exhibits an oscillation with periodicity 2π/�eff

and damping rate 	R.
Equations (37) and (35) are not applicable for long evolu-

tion times. This is partly reflected in the exponential decay of
|S↓↓|2, which implies that n↓(t → ∞) = 0 for any detuning
�. However, at the resonant detuning � = EP, the effective
bias for the impurity spin would be zero [24]. Therefore, we
should anticipate a zero steady-state magnetization, or n↑(t →
∞) = n↓(t → ∞) = 1

2 [24]. A possible reason why Eq. (35)
cannot give a zero steady-state magnetization is that the single
impurity condition, i.e.,

∑
p[d†

p↑(t )dp↑(t ) + d†
p↓(t )dp↓(t )] =

1, is not strictly satisfied by our approximated mean-field-type
decoupling.

To rectify this weakness, it is useful to consider the opera-
tor for the spin-down occupation

n̂↓(t ) = 1

2
− 1

2

∑
p

[d†
p↑(t )dp↑(t ) − d†

p↓(t )dp↓(t )] (38)

and then calculate

n↓(t ) =
∑

k

fk〈FS|dk↓n̂↓(t )d†
k↓|FS〉. (39)

By using the mean-field decoupling and repeating the steps
that lead to Eq. (35), it is easy to derive that

n↓(t ) 
 1

2
+ 1

2

∑
p

fp[|S↓↓(p, t )|2 − |S↑↓(p, t )|2], (40)

where S↑↓(p, t ) takes the form

S↑↓(p, t ) =
∫ +∞

−∞
dω A12(p, ω)e−iωt . (41)

The use of Eq. (40) is still restricted to the short-time evolution
of a few Rabi oscillations. However, we anticipate that it
may provide a more accurate prediction than Eq. (35) at the
resonant detuning, the case that we will focus on.

B. Comparison between theory and experiments

We consider the recent Rabi oscillation experiment carried
out at the European Laboratory for Non-Linear Spectroscopy
(LENS) [15]. There, impurities are the minority fermionic 6Li
atoms, initially in the weakly interacting hyperfine state |2〉
(i.e., the second-lowest-energy Zeeman state). The impurity
concentration is about nimp 
 0.15n, where n is the density
of the majority 6Li atoms in the hyperfine state |1〉. The
temperature is about T 
 0.13TF , where the Fermi energy
TF is determined by the density n. Therefore, in the Rabi
measurement, initially the impurities would follow a Fermi-
Dirac distribution of an ideal Fermi gas, fp = f (ε (I )

p − μI ),
where the impurity chemical potential μI can be determined
by solving the number equation∑

p

fp =
∑

p

1

exp
[(

ε
(I )
p − μI

)
/kBT

] + 1
= nimp. (42)

Theoretically, we have solved the impurity spectral func-
tions A12(p, ω) and A22(p, ω) at the given experimental Rabi
coupling strength � 
 0.7εF and at different interaction pa-
rameters 1/kF a and have consequently calculated S↑↓(p, t )
and S↓↓(p, t ). By integrating over the momentum with the dis-
tribution function fp, we then determine the time dependence
of the spin-down occupation n↓(t ) in Eq. (40).

In Fig. 8 we compare our theoretical predictions (lines)
with the experimental data (circles) for the repulsive polaron
at 1/kF a = 1.27 [Fig. 8(a)] and for the attractive polaron
near the unitary limit 1/kF a = 0.07 [Fig. 8(b)] [15]. The
red dashed line indicates the result for the zero-momentum
polaron, without taking into account the thermal average over
the momentum distribution, while the black solid line includes
the momentum average at finite temperature. We find good
agreement between theory and experiment [15], without any
free adjustable parameters. In particular, for the attractive
polaron in Fig. 8(b), most of the experimental data are located
on the solid line within the experimental error bar. The good
agreement partly justifies the approximated mean-field decou-
pling used to derive Eq. (40) for the short-time evolution of
n↓(t ).

For the repulsive polaron, the agreement also justifies the
experimental procedure of extracting the residue of the po-
laron Z from the oscillation periodicity and the effective
Rabi coupling strength (i.e., Z 
 �2

eff/�
2) and of measuring

the polaron decay rate 	 from the damping of Rabi oscil-
lations (i.e., 	 = 2	R). However, it should be emphasized
that, strictly speaking, the obtained polaron residue and de-
cay rate are not for the zero-momentum polaron at nonzero
Rabi coupling, as assumed in the recent theoretical anal-
ysis [27] (see, nevertheless, further discussion of the role
played by the finite Rabi coupling in Sec. IV D). They are
contributed by polarons with different momenta thermally
distributed according to fp. This is clearly evidenced by the
difference between the dashed line and solid line, as shown
in Fig. 8(a). Although the difference due to finite momen-
tum is small, it can lead to a quantitative modification to,
for example, the theoretically predicted damping for Rabi
oscillations.

For the attractive polaron in Fig. 8(b), the difference
between the dashed line and solid line is even larger. In
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FIG. 8. Comparison of the theory (lines) with the experimental
data from the LENS group (symbols) [19], for the Rabi oscillations
of (a) a repulsive polaron at 1/kF a = 1.27 and (b) an attractive po-
laron near the unitary limit 1/kF a 
 0. The data in (a) are extracted
from Fig. 2(e) of Ref. [27] and the data in (b) are extracted from
Fig. S4(b) of Ref. [15]. For the red dashed lines, we consider the Rabi
oscillations of the impurity with zero momentum. For the black solid
lines, we include the momentum average, arising from the thermal
distribution of the momentum at finite temperature. In the theoret-
ical calculations, we always take the detuning � that is resonant
with either the repulsive polaron energy Erep or attractive polaron
energy Eatt at zero Rabi coupling. The impurity density is taken as
nimp/n = 0.15, the Rabi coupling is � = 0.7εF , and the temperature
is T = 0.13TF , following the experimental conditions [15]. In the
comparison, we do not include any adjustable free parameters.

this case, it is worth noting that the damping rate of Rabi
oscillations does not correspond to the decay rate of Fermi
polarons. Even at zero momentum, the damping rate exhibited
by the red dashed line is much larger than the decay rate
of the attractive polaron. The latter is actually negligible at
T = 0.13TF [35]. This inequivalence comes from the fact that
the imaginary part of the self-energy Im�11 changes dramat-
ically near the attractive polaron energy, as indicated by the
arrow in Fig. 1(b). As a result, although the Taylor expansion
of Re�11 is still meaningful, the expansion of Im�11 near
the attractive polaron energy becomes problematic for large
Rabi coupling. The use of the approximate impurity Green’s
function (24) then will strongly underestimate the decay rate
at the experimental Rabi coupling strength � 
 0.7εF . In
sharp contrast, Im�11 has a very weak energy dependence
near the repulsive polaron energy, as seen from Fig. 2(b). The

FIG. 9. Rabi oscillations of an attractive polaron in the unitary
limit 1/kF a = 0 at different momenta k = 0 (black solid line), 0.5kF

(red dashed line), and kF (blue dot-dashed line). The Rabi oscil-
lation after the momentum average is shown by symbols (green
crosses). Here the temperature is T = 0.1TF , the detuning � =
Eatt 
 −0.61εF , and the Rabi coupling � = 0.7εF . For the momen-
tum average, we take the impurity density nimp/n = 0.15.

approximate impurity Green’s function (24) is an excellent
approximation at � 
 0.7εF for repulsive Fermi polarons.

C. Importance of momentum average

Let us now examine more carefully the effect of the mo-
mentum average for Rabi oscillations of the attractive polaron.
In Fig. 9 we shown the oscillations in n↓(t ) contributed by
the momenta k = 0 (black solid line), 0.5kF (red dashed
line), and kF (blue dot-dashed line). In comparison to the
zero-momentum oscillation, a finite momentum gradually in-
creases the periodicity of Rabi oscillations, in addition to
causing more damping. In particular, at large momentum (i.e.,
the k = kF curve), the oscillation becomes overdamped. After
taking into account the thermal distribution function fk, the
final theoretical prediction with momentum average roughly
follows the curve at 0.5kF at the given low temperature
T = 0.1TF .

D. Dependence on Rabi coupling

Here we examine the dependence of Rabi oscillations on
the Rabi coupling strength. In Figs. 10 and 11 we report
the Rabi oscillations of the repulsive and attractive Fermi
polarons, respectively, at three Rabi coupling strengths � =
0.5εF (black solid line), 0.7εF (red dashed line), and εF (blue
dot-dashed line).

For the repulsive polaron at 1/kF a = 1, the visibility or
amplitude of oscillations increases with increasing Rabi cou-
pling, indicating a smaller damping rate. This counterintuitive
tendency cannot be simply understood from the picture of
a zero-momentum Fermi polaron, whose −Im�11 near the
repulsive polaron energy would increase with increasing Rabi
coupling, as shown in Fig. 2(b). Therefore, the momentum av-
erage tends to decrease the damping rate of Rabi oscillations
at large Rabi coupling. On the other hand, a finite momentum
increases the damping rate at a fixed Rabi coupling, as we
already discussed. It is then readily seen that the Rabi coupling
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FIG. 10. Momentum-averaged Rabi oscillations of a repulsive
polaron at the interaction strength 1/kF a = 1 at different Rabi cou-
plings � = 0.5εF (black solid line), 0.7εF (red dashed line), and εF

(blue dot-dashed line). Here the temperature is T = 0.1TF and the
detuning is � = Erep 
 0.53εF . For the momentum average, we take
the impurity density nimp/n = 0.15.

and finite momentum have opposite effects on the damping of
Rabi oscillations. Although these two effects may not com-
pletely cancel, it seems reasonable to interpret the observed
damping of Rabi oscillation (at finite Rabi coupling with
momentum average) as the decay rate of a zero-momentum
Fermi polaron (at zero Rabi coupling). This understanding
therefore supports the observation found in the LENS ex-
periment [15] that the damping rate of Rabi oscillations
quantitatively matches the predicted quasiparticle peak spec-
tral width 	 of repulsive Fermi polarons at zero momentum.

For the attractive polaron in the unitary limit, in contrast,
the visibility of Rabi oscillations decreases with increasing
Rabi coupling. This enhanced damping can be understood
from the rapidly changing −Im�11 near the attractive polaron
energy, as shown in Fig. 1(b). If we consider the approximated
impurity Green’s function (24), the effective polaron decay
rate is actually given by −Im�11 at ω = EP + √

Z�/2 [see,
e.g., Eq. (27)], which should increase with increasing Rabi
coupling. As a result of the additive effects of the momentum

FIG. 11. Momentum-averaged Rabi oscillations of an attractive
polaron in the unitary limit 1/kF a = 0 at different Rabi couplings
� = 0.5εF (black solid line), 0.7εF (red dashed line), and εF (blue
dot-dashed line). Here the temperature is T = 0.1TF and the detuning
is � = Eatt 
 −0.61εF . For the momentum average, we take the
impurity density nimp/n = 0.15.

average and Rabi coupling on enhancing the damping rate of
Rabi oscillations, we conclude that for attractive Fermi po-
larons, the damping rate of Rabi oscillations cannot be simply
interpreted as the zero-momentum quasiparticle decay rate 	.

We finally note that the periodicity of Rabi oscillations is
also slightly affected by a finite Rabi coupling. Large Rabi
coupling tends to decrease and increase the periodicity for the
repulsive polaron and attractive polaron, respectively. It seems
to have the same effect as the momentum average, as shown
in Fig. 8. As a result, for repulsive polarons, the combined
additive effect of a finite Rabi coupling and momentum aver-
age may lead to a smaller periodicity of Rabi oscillations, and
hence a larger effective Rabi coupling �eff, compared with
the expectation from a zero-momentum Fermi polaron, i.e.,√
Z�.

V. CONCLUSION

In summary, based on the non-self-consistent many-body
T -matrix approximation, we have presented a general theoret-
ical framework of Fermi spin polarons for a spinor impurity
immersed in a Fermi bath. We focused on the spin- 1

2 case
with a Rabi coupling � between the two spin states and
addressed the dependence of quasiparticle properties on the
Rabi coupling strength. This turns out to be crucial to un-
derstand the recent cold-atom experiments on the dissipative
Rabi dynamics of Fermi polarons [13,15,18]. In particular,
we confirmed that for the Rabi coupling less than the Fermi
energy of the Fermi bath, an approximate impurity Green’s
function provides a reasonable good description of Fermi spin
polarons, near the resonant detuning for the repulsive branch.

We then developed an approximate theory for calculating
the time evolution of the spin-down occupation, which is
measured in the experiments [13,15,18]. This approximate
theory relies on a first-order mean-field-type decoupling of a
correlation function that involves four field operators, which
could be accurate for the short-time evolution. We compared
our theoretical predictions on Rabi oscillations with the ex-
perimental data [15] and found good agreement without any
adjustable free parameters. We analyzed in detail the role
played by the momentum average on Rabi oscillations, due
to the initial thermal distribution of the impurity at finite tem-
perature. We also addressed the consequence of a finite Rabi
coupling at the order of the Fermi energy (� ∼ εF ), which
could be significant in real experiments. The effects of both
factors (i.e., the thermal momentum average and the finite
Rabi coupling) were less considered in previous analyses of
the dissipative Rabi dynamics [18,27].

We found that, for repulsive polarons, the momentum av-
erage and the finite Rabi coupling have opposite effects on
the damping of Rabi oscillations. As a result, to a good ap-
proximation, we may directly extract the decay rate 	 of a
zero-momentum repulsive Fermi polaron at zero Rabi cou-
pling from the damping of Rabi oscillations, a procedure
that has already been experimentally adopted [15,18]. For the
periodicity of Rabi oscillations, however, the two factors have
the same effects: Both of them tend to decrease the periodicity
and hence lead to a slightly larger effective Rabi coupling
strength than the naive theoretical expectation of

√
Z�.
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FIG. 12. Diagrammatic representation of the various two-particle vertex functions 	i j (Q). Here the upper orange line is the Green’s
function of fermionic atoms in the bath and the bottom purple line is the impurity Green’s function. The dotted lines represent the contact
interactions with strengths gi (i = 1, 2). We do not explicitly label the two hyperfine states of the impurity.

For attractive polarons, on the other hand, the situation
turns out to be more complicated. We emphasized that at
low temperature, the zero-momentum decay rate of attractive
Fermi polarons is not related to the damping of Rabi oscilla-
tions. Both the thermal momentum average and the finite Rabi
coupling should be carefully taken into account in analyzing
the dissipative Rabi dynamics of attractive Fermi polarons.

We finally comment on the theoretical calculation of Rabi
oscillations. To go beyond the approximation of the mean-
field decoupling, in Eq. (31) we may consider inserting the
unity identify between the field operators d†

p↓(t ) and dp↓(t ),

1 = |FS〉〈FS| +
∑
p,h

c†
pch|FS〉〈FS|c†

hcp + · · · , (43)

where the second term stands for the many-body state of the
Fermi bath with one particle-hole excitation and the ellipsis
denotes the many-body states with multiple particle-hole ex-
citations. It is easy to see that the first term in the unity identity
|FS〉〈FS| gives rise to the mean-field decoupling. The second
term generates the contributions that involve a correlation
function

〈FS|dk↓d†
p↓(t )c†

qcp+q−k|FS〉. (44)

The consideration of the calculation of this correlation func-
tion is left for future work, with which one may recover the
variational results presented in Ref. [27].

Note added. Recently, we were informed by Wasak of
their interesting related theoretical work [42], in which the
decoherence and momentum relaxation in Fermi-polaron Rabi
dynamics are analyzed by a kinetic equation approach. Ex-
cellent agreement between their theoretical predictions and
the LENS experimental data was demonstrated, without any
free parameters. The connection and comparison between our
work and their theoretical analysis are beyond the scope of

the present work. We note also that a strongly driven Fermi
polaron was recently realized experimentally [43], which mo-
tivates us to develop a more accurate theory of Fermi spin
polarons beyond the many-body T -matrix approximation and
a better description of Rabi dynamics than the current mean-
field decoupling approach.

ACKNOWLEDGMENTS

This research was supported by the Australian Research
Council’s Discovery Program, Grants No. DP240101590
(H.H.) and No. DP240100248 (X.-J.L.). X.-J.L. was also sup-
ported in part by the National Science Foundation under Grant
No. PHY-1748958.

APPENDIX: THE TWO-PARTICLE VERTEX FUNCTION
WITHIN THE LADDER APPROXIMATION

The diagrammatic representation of the two-particle vertex
functions is shown in Fig. 12. For 	11(Q) in Fig. 12(a) and
	21(Q) in Fig. 12(c), we can write

	11(Q) = g1 − g1χ̃11(Q)	11 − g1χ̃12(Q)	21, (A1)

	21(Q) = −g2χ̃21(Q)	11 − g2χ̃22(Q)	21, (A2)

with the pair propagators χ̃i j (i, j = 1, 2) defined in Eq. (10).
By solving these two equations, we find that

	11(Q) = 1/g2 + χ̃22

(1/g1 + χ̃11)(1/g2 + χ̃22) − χ̃12χ̃21
, (A3)

	21(Q) = −χ̃21

(1/g1 + χ̃11)(1/g2 + χ̃22) − χ̃12χ̃21
. (A4)

We similarly solve 	12(Q) and 	22(Q) by using the diagrams
in Figs. 12(b) and 12(d). It is readily seen that the final ex-
pressions for the various two-particle vertex functions can be
written in a compact form, as given by Eq. (9).
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