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We investigate the hardcore Bose-Hubbard model on a honeycomb lattice under a pseudo-magnetic field
generated by triaxial strain using the quantum Monte Carlo (QMC) method. In the presence of strain, we
construct a phase diagram that encompasses superfluid and solid phases at different fillings. Interestingly, we
observe intriguing phenomena related to filling factors, including a solid phase with a filling of ρ = 0.4912. This
solid phase is characterized by distinct sublattice occupancies separated by large domain walls. Additionally,
within the superfluid region, we observe stripe phases where the occupancy of hardcore bosons exhibits
oscillatory behavior. Finally, we employ linear spin-wave theory and derive the pseudo-Landau levels present
in the excitation spectrum. Our findings not only provide valuable insights into the behavior of hardcore bosons
in the presence of pseudo-magnetic fields, but they can also be experimentally realized using ultracold bosonic
atoms confined in optical lattices.
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I. INTRODUCTION

Recently, there has been significant progress in studying
the use of mechanical deformation to modulate the elec-
tronic properties of quantum materials. This includes the
exploration of magic-angle twisted bilayer graphene [1–4]
and strained monolayer graphene [5,6]. The minute “magic-
angle” twisting in bilayer graphene flattens the low-energy
band, giving rise to the emergence of correlated insulating
states and unconventional superconductivity [3,4]. Another
intriguing effect of mechanical deformation is the generation
of high-strength pseudo-magnetic fields. It is predicted that,
by applying triaxial strain, uniform pseudo-magnetic fields
exceeding 10 T could be achieved. This causes electrons to
behave as if they were subjected to a real magnetic field, form-
ing pseudo-Landau levels [5]. Subsequently, a strain-induced
pseudo-magnetic field is experimentally observed in graphene
nanobubbles formed on the surface of Pt. The pseudo-Landau
levels corresponding these fields reached several hundred
Tesla [6], greatly surpassing the magnetic field strengths cur-
rently achievable in the laboratory. So far, pseudo-magnetic
field behaviors related to strains have been observed in vari-
ous experimental setups. These include suspended graphene
drumheads on SiO2 insulating substrates [7], growing mono-
layer graphene on Rh foil [8] and SiC substrate [9], as well
as placing graphene on nanostructures that were appropriately
constructed [10].

To better generate pseudo-magnetic fields in planar sheets,
various methods of engineering the corresponding strains have
been proposed, including triaxial strain [5,11,12], bending
graphene ribbons [13–15], uniaxial strain increasing linearly
in the applied direction [16–18], uniaxial strain on a shaped
graphene ribbon [19]. These proposals not only guide ex-
perimental studies but also reveal the unique aspects of
pseudo-magnetic fields. For example, in the case of uniaxial
strain, the pseudo-Landau levels do not remain flat like those
induced by real magnetic fields; instead, they display linear

dispersion as a result of additional modification of the Fermi
velocities by the strain [18].

The application of an external magnetic field generally
does not influence electrically neutral particles. However, a
pseudo-magnetic field generated by manipulating the hopping
amplitudes can indeed have an impact on them. It has been
shown that the interplay of weak, spatially varying in-plane
strains and doped gradients can result in the Landau quan-
tization of Bogoliubov quasiparticles in a broad spectrum
of two-dimensional nodal superconductors [20,21]. Further-
more, the application of triaxial strain to the renowned Kitaev
model leads to the emergence of Landau levels of Majorana
fermions in spin-liquid phases [22]. For the antiferromagnetic
Heisenberg model on a honeycomb lattice, triaxial strain pro-
duces evenly spaced pseudo-Landau levels, originating from
the upper end of the magnon spectrum [23,24]. Similar effects
can also be observed in antiferromagnetic honeycomb-lattice
nanoribbons subjected to nonuniform uniaxial strain modula-
tion [25].

The Bose-Hubbard model is a fundamental many-body
Hamiltonian that can be used to describe interacting bosons in
an optical lattice. Initially studied theoretically by Fisher et al.,
it predicted a superfluid-insulator transition driven by the on-
site repulsion [26]. In 2002, Greiner et al. experimentally
observed this intriguing quantum phase transition in a cold-
atom experimental setup [27]. Since then, numerous studies
have been conducted on various lattices, including square
[28], triangular [29], honeycomb [30–32], kagome [33], and
dice [34] lattices. These lattices exhibit various interesting
quantum phases, such as superfluid (SF), Mott insulator, and
supersolid, along with rich phase transitions among them.

In this study, we investigate the effect of triaxial strain on
the honeycomb lattice based on the hardcore Bose-Hubbard
model. By applying strain, we construct a comprehensive
phase diagram that encompasses various phases, including SF,
commensurate solids, and Mott insulator. The characteristics
of these phases strongly depends on the filling conditions. Of
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particular interest is the emergence of an insulating phase at
a filling factor of ρ = 0.4912, induced by the applied strain.
This phase is distinguished by the presence of domain walls
near the boundaries, which separate lattice points occupied in
different sublattices. In the SF phase, the domain walls exhibit
different periodicities at varying fillings and the occupation
displays oscillatory behavior. Lastly, we utilize the linear spin-
wave approximation to analyze the excitation spectrum above
the solid state at the filling ρ = 0.51 and unveil equally spaced
pseudo-Landau energy levels.

The organization of this paper is as follows. Section II
introduces the exact model and calculation methods that we
will utilize. Section III introduces the results of the QMC
calculation. Section IV shows the results of the spin-wave
approximation. The results are then further discussed and
explained in Sec. V.

II. MODEL AND METHOD

We investigate the hardcore Bose-Hubbard model on a
honeycomb lattice, where the unstrained Hamiltonian is given
by

H = −t0
∑
〈i, j〉

(a†
i a j + H.c.) +

∑
〈i, j〉

V nin j − μ
∑

i

ni, (1)

where ai (a†
i ) represents the hardcore bosonic annihilation

(creation) operator on site i; ni = a†
i ai is the number oper-

ator of bosons; 〈i, j〉 runs over all nearest-neighbor (NN)
pairs. The first term in Eq. (1) describes the NN hopping of
bosons with an amplitude of t0. The second term represents
the strength of the NN interaction, denoted as V . The third
term involves the chemical potential μ. Throughout this work,
t0 = 1 is set as the energy scale.

The hardcore Bose-Hubbard model in Eq. (1) is derived
from the extended Bose-Hubbard model given by

HBH = − t0
∑
〈i j〉

b†
i b j + U

2

∑
i

ni(ni − 1)

+
∑
〈i, j〉

V nin j − μ
∑

i

ni, (2)

in the large-U limit [35,36]. In this limit, the bosonic oper-
ators b†

i , bi are replaced by the hardcore ones a†
i , ai, with an

occupancy of 0 or 1 on each site, leading to the vanishing
of the on-site interaction U . The hardcore bosons follow the
commutation relation [ai, a†

j ] = 0 for sites i �= j, and the an-

ticommutation relation {ai, a†
i } = 1 for a single site i.

Applying a triaxial strain in graphene can produce a uni-
form pseudo-magnetic field generated by modulating the
hopping amplitudes, so it can be extended to boson systems
which cannot feel the real magnetic field. We consider the
physical properties of Bose-Hubbard model under a pseudo-
magnetic field generated by triaxial strain on a honeycomb
lattice. The strain changes the lattice position, which, in turn,
changes the magnitude of the hopping parameter, which vary
with the bond length according to the following formula:

t → tij = t0e−β(
di j
a0

−1)
, (3)

where a0 is the lattice constant of the undeformed honeycomb
lattice, β is the Grüneisen parameter. After adding strain, the
bond length is d i j = ri − r j , where the position of an atom is
given by ri = r0

i + u, where r0
i is the equilibrium position and

u(x, y) = [ux(x, y), uy(x, y)] is the displacement field.
The strain tensor is given by classical continuum mechan-

ics as

εi j = 1
2 [∂ jui + ∂iu j], i, j = x, y. (4)

The length of the three nearest-neighbor bonds is di j =
a0(1 + �un), where

�un =
∑
i, j

ai
na j

n

a2
0

εi j, (5)

where the nearest-neighbor vectors an are given by

a1 = a0[0, 1], a2 = a0

2
[−

√
3,−1], a3 = a0

2
[
√

3,−1].

(6)

The strain in the honeycomb lattice can generate the fol-
lowing gauge field:

A = β

2

(
εxx − εyy

−2εxy

)
. (7)

The displacement field of the triaxial strain on the honeycomb
lattice is

�u(r) = c(2xy, x2 − y2), (8)

where c is the constant of strain strength. Here, we use a
linear approximation for the exponential function in Eq. (3):
tij = t0[1 − β(di j/a0 − 1)]. Therefore, the strain modifies the
hopping amplitudes, causing them to vary spatially. Conse-
quently, the strained Hamiltonian we will investigate becomes

Hs = −
∑
〈i, j〉

ti j (a
†
i a j + H.c.) +

∑
〈i, j〉

V nin j − μ
∑

i

ni. (9)

In comparison to the Hamiltonian in Eq. (1), only the hopping
amplitudes in the first term are modified. Under triaxial strain,
the perpendicular edge bonds have the minimum coupling
value. Therefore, for a finite triangular system, there is a
maximum strain strength, which is determined by the vertical
boundary bond hopping strength of zero [37].

In the following discussions, we employ the approach of
stochastic series expansion (SSE) QMC [38,39] with directed
loop updates to study the model in Eq. (1). The SSE method
expands the partition function in a power series and the trace
is written as a sum of diagonal matrix elements. The directed
loop updates make the simulation very effcient [40]. In the
following calculation, we set the inverse temperature β = 50,
which is low enough to obtain the ground-state properties
of finite-sized systems. The computing system is a zigzag-
boundary triangle flake of honeycomb lattice with a linear
dimension of L = 50 (see Fig. 1).

III. QMC RESULTS

We employed the QMC method to calculate the phase di-
agram of the hardcore Bose-Hubbard model on a honeycomb
lattice, both with and without strain. The total number of
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FIG. 1. (a) A deformed triangular-shaped honeycomb lattice
with zigzag boundaries under triaxial strain. The lattice consists
of L2 sites, where the linear size is L = 11. The number of sites
in sublattices A and B are not equal, with NA = L(L − 1)/2 and
NB = L(L + 1)/2. (b) An enlarged view of the upper corner region
of the triangular flake with a larger size of L = 50. The thickness of
each connector line corresponds to the strength of the bond, while the
value of the hopping amplitude is indicated near the corresponding
bond. The strain strength used in (b) is c/cmax = 1.

lattice sites in the triangular flake is N = NA + NB = 2500.
This geometric structure leads to a difference in the number of
lattice sites between the two sublattices, with NB − NA = 50.
Initially, we calculate the phase diagram without strain. When
the ratio t0/V is small, a solid phase with density ρ = 0.51
emerged (enclosed by the gray dotted line in Fig. 2), where
the sublattice with more lattice sites was occupied. As t0/V
increased, the system transitions into the superfluid phase.

FIG. 2. Phase diagram of the ground state of the strained Bose-
Hubbard model on a triangular flake with zigzag boundaries obtained
by the QMC method, which includes two solid phases corresponding
to densities of ρ = 0.4912 and ρ = 0.51, respectively. In the solid
phase with density ρ = 0.51, only the sublattice with more lattice
sites is occupied. The superfluid phases exist between the solid
phases. Here, the solid lines in color represent the phase boundaries
with strain, while the dashed lines in color are plotted to guide the
eye in observing the trend of the corresponding solid lines. For
comparison, the region of the ρ = 0.51 solid phase without strain
is indicated by the gray dotted line. The upper (lower) black line
separates the empty (full) state, which remains almost the same for
both cases with and without strain.

FIG. 3. The average density of the system as a function of μ at
V = 4 for hardcore Bose-Hubbard on the honeycomb lattice. The
blue line represents the case with strain, while the red line repre-
sents the case without strain. The vertical dashed line indicates the
midpoint position of the platform with ρ = 0.4912. The positions
marked by the arrows will be analyzed in detail in the subsequent
figures.

Given that a single hardcore boson can hop to three NN
sites on the honeycomb lattice, its energy is about −3t0. The
critical condition for a hardcore boson to enter the system
is then given by −3t0 − μ = 0 (see the lower black line in
Fig. 2). Consequently, no sites in the system were occupied
for μ < −3t0, corresponding to an empty phase. Through
a particle-hole transformation, the energy of introducing a
single hole in the system is obtained as −3(t0 + V ). Hence,
each lattice site is filled with a boson for μ > 3(t0 + V ) (in-
dicated by the upper black line in Fig. 2), resulting in a Mott
insulating phase. Incorporating strain into the system had little
effect on the phase boundaries of the ρ = 0 and ρ = 1 phases.
However, it caused the plateau of the solid state with ρ = 0.51
to split into various plateaus with different filling densities.
The density of these splitting plateaus can be universally
expressed as ρ = (NA + 3p)/N (where p is the number of
layers where the domain walls are located), and their val-
ues can be ρ = 0.4912, 0.4924, 0.4936, . . . (p = 1, 2, 3, . . .).
Each plateau has a vanishing compressibility κ = ∂ρ/∂μ,
indicating a gapped system which we term as solid. Among
these solids with the aforementioned fillings, except for the
solid phase with ρ = 0.4912 which has a larger range, the
ranges of the others are very small and thus not shown in the
phase diagram. In addition to the solid phases, the remaining
regions in the phase diagram are occupied by the superfluid
phase.

The phase diagram in Fig. 2 is obtained from the average
density accurately calculated by QMC

ρ =
∑

i ni

Ns
. (10)

To gain a better understanding of the phase diagram depicted
in Fig. 2, we examine how density changes with the chemical
potential in the presence and absence of strain (see Fig. 3). In
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FIG. 4. (a) The local density distribution at μ = 3.5, correspond-
ing to a density of ρ = 0.4912. (b) An ideal filling configuration
for ρ = 0.4912, featuring straight domain walls. The insets provide
enlarged views of the highlighted regions in (a) and (b).

the absence of strain, there are only three plateaus: ρ = 0, ρ =
0.51, ρ = 1, which correspond to the incompressible insulat-
ing phases. The transition from the ρ = 0.51 solid phase to the
superfluid is of first order. However, when strain is applied, the
ρ = 0.51 density plateau splits into two separate plateaus with
values ρ = 0.4912 and ρ = 0.51, respectively.

Next, we turn our attention to the plateau with a density of
0.4912 induced by strain and conduct a detailed analysis of the
filling configuration in this solid phase, as shown in Fig. 4(a).
It is clear that the central region of the geometry is occupied by
bosons on the A sublattice, while the edge region is filled with
bosons on the B sublattice. A distinct domain wall forms at the
boundary between these two regions. To examine the precise
shape of the domain wall, we zoom in on the configurations
at two representative positions in the system: the center of the
edge and the vicinity of the upper corner. Near the center of
the boundary, the domain wall resides in the first layer, specif-
ically on the outermost zigzag chain where bosons are filled
on the B sublattice, while the remaining region is filled on the
A sublattice. Near each corner, the domain wall lies inside,
away from the corner, and exhibits a meandering shape.

To gain a deeper understanding of the solid phase corre-
sponding to ρ = 0.4912, we can exclude quantum fluctuations
stemming from the NN hoppings. In one ideal configuration
(where each site is occupied by 0 or 1 hardcore boson) with
all domain walls forming straight lines, a precise density of
ρ = 0.4912 is achieved. As shown in Fig. 4(b), it can be
seen that the outermost layer of bosons is filled on the B
sublattice, and upon crossing the domain wall, the bosons are
filled on the A sublattice in the remaining region. By gradu-
ally increasing the number of outer layers, densities of ρ =
0.4924, 0.4936, . . . can also be achieved successively. How-
ever, these relatively higher-density fillings have extremely
small regions in the phase diagram and are numerically un-
stable. Further investigation into their properties has not been
conducted. Therefore, we establish a direct relationship be-
tween the average density and the position of the domain wall.
Additionally, it was observed that the meandering domain
walls near the corners can be considered as deformations of
ideal straight domain walls, which further reduce the energy
of the system.

Interestingly, the introduction of strain also results in novel
filling patterns in the superfluid phase, characterized by the
presence of domain walls with varying sizes and numbers.
These domain walls disrupt the uniformity of boson filling

FIG. 5. The local density distribution in the upper corner of the
triangular flake under different chemical potentials: (a) μ = −0.5,
(c) μ = 0.5, and (e) μ = 1. The insets provide enlarged views of the
density distribution around the domain walls, which are depicted by
gray lines. (b), (d), and (f) display the values of the local densities
along the high-symmetry paths corresponding to (a), (c), and (e),
respectively.

and give rise to a pattern composed of smaller regions. The
properties of the domain walls change as the filling factor
varies. Figure 5 illustrates several local density profiles of the
superfluid phase under different chemical potentials. Due to
the three-fold rotational symmetry, only the configuration of
the upper triangle part of the system is shown. In Fig. 5(a),
the filling pattern at μ = −0.5 is depicted, representing a
situation where the average density is low and the system is
in the superfluid state. In this case, most of the bosons are
concentrated near the three corners and multiple domain walls
are observed within the system. The width of these domain
walls is narrow, spanning only two zigzag chains. Figure 5(b)
displays the local density values along a high-symmetry path.
The domain wall appears approximately within the range of
20 < y < 40. Its presence is indicated by each pair of val-
ues approaching zero, and its location is between the two
corresponding lattice sites. Figures 5(c) to 5(f) illustrate the
results for μ = 0.5, 1. As the chemical potential increases, the
average density continues to rise, and the region occupied by
bosons gradually expands towards the interior of the triangular
flake. The number of domain walls begins to decrease, but
their widths increase. For instance, at μ = 0.5, 1, the domain
wall regions encompass three and four zigzag chains, respec-
tively.

Upon closer examination of higher fillings, we discover
intriguing filling patterns near the phase boundary between
the SF phase and the solid phases. Figure 6 displays the local
density profile of the SF phase adjacent to the solid plateaus.
The top row represents the filling before reaching the density
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FIG. 6. The local density distribution in the superfluid phases with different chemical potentials: (a) μ = 1.5, (b) μ = 1.7, (c) μ = 1.85,
(d) μ = 2.0, (e) μ = 10.0, (f) μ = 10.1, (g) μ = 10.35, and (h) μ = 10.6. Here the strain strength is c/cmax = 1.

plateau of ρ = 0.4912, while the bottom row shows the filling
after reaching the plateau of ρ = 0.51 (see the arrows in
Fig. 3).

In Fig. 6, we observe curved stripes separated by domain
walls forming in the system, with the number of stripes reach-
ing its maximum at μ = 1.5. At μ = 1.85, the central region
of the system exhibits a “fusion”-like filling behavior. This is
characterized by a transition from blue-red streak filling in the
lattice sites to solely red site filling, accompanied by a distinct
turning point in the density curve, as depicted in Fig. 7. As the
chemical potential increases to μ = 2, the range of red point
filling in the central region expands further, and the density
value approaches ρ = 0.4912, indicating a tendency towards
the split plateaus.

At μ = 10, the average density of the system slightly
surpasses the ρ = 0.51 plateau, resulting in a filling pattern
characterized by several red stripes on the background of
occupied blue lattice sites. With increasing chemical potential,
the number of occupied red lattice sites and stripes continues
to grow, as illustrated in Fig. 6(f) for μ = 10.1. At μ = 10.35,
red stripes appear throughout the triangle flake. As the chem-
ical potential further increases, the number of stripes expands
and the red stripes in the central region start to merge. Ul-
timately, all red lattice sites are occupied, and the system
becomes a ρ = 1 Mott insulator.

FIG. 7. The average density (red) and its derivative with respect
to chemical potential (blue) in small ranges close to the solid phases
with (a) ρ = 0.4912 and (b) ρ = 0.51.

From the aforementioned filling process, it is evident that
the system exhibits distinct behaviors at low and high den-
sities. At low densities, straight domain walls emerge at the
three corners, with smaller domain wall regions. Conversely,
at higher filling densities, the system displays pronounced
stripes, wherein the boundaries of these stripes act as domain
walls. However, these domain walls are curved and exhibit
varying thickness, with the thickest part situated at the center
of the domain wall. To comprehend these discrepancies, we
conducted further investigations into the density curve and
discovered significant inflection points. Figure 7(a) depicts the
results before solid phase at ρ = 0.4912, where the system is
in the superfluid phase. Notably, the density curve exhibits a
clear inflection point at μ = 1.85. We computed the first-order
derivative of the average density with respect to the chemical
potential and observed its maximum value at μ = 1.85, which
aligns with the curve’s inflection point. Similarly, Fig. 7(b)
showcases the results after solid phase at ρ = 0.51. Near μ =
10.3, the slope of the curve experiences a significant increase,
and the maximum value of ∂ρ/∂μ occurs at μ = 10.3, consis-
tent with the evolution of the filling patterns of the superfluid
phase above ρ = 0.51.

Here, we only present the results at the strain strength cmax,
which generates a maximum pseudo-magnetic field and leads
to the most pronounced phenomenon. The behavior at weaker
strengths is similar, except the strain-induced modification is
less apparent. For example, the split ρ = 0.4912 plateau in
Fig. 3 is shortened, and the curved stripes in Fig. 6 become
blurry.

IV. LINER SPIN-WAVE THEORY OF THE EXCITED
STATE ABOVE THE SOLID ρ = 0.51

It is well known that linear spin-wave theory (LSWT) can
be used to qualitatively analyze the properties of the model.
In the following we will use LSWT to study the excited state
behavior above the solid phase ρ = 0.51 under triaxial strain.
By performing the following mapping S†

i = b†
i and SZ

i = ni −
1
2 , the hardcore Bose-Hubbard model is equivalent to the XXZ
model with spin S = 1/2. As is well known, spins obey the
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FIG. 8. (a) The magnon spectrum near the upper end of the
energy spectrum as a function of the normalized index. (b) The cor-
responding difference between the adjacent eigenenergies. (c) The
magnon density of states for the energy spectrum in (a). (d) The
quantized PLLs measured relative to the first PLLs. The data are
best fitted by a linear equation y = kx + b, with k = 0.0267, b =
−0.0213. The linear size used here is L = 50.

following commutation relations

[Sα,i, Sβ, j] = ih̄εαβγ Sγ ,iδi j, (11)

where εαβγ is the Levi-Civita symbol; α, β, γ ∈ (x, y, z) rep-
resents the spin direction; and i and j denote the sites at
which the spin is located. The filled sublattice corresponds
to the spin-up state in the spin model. In the following, we
consider lattice points filled only in the A sublattice. Under the
Holstein-Primakoff transformation, the bosonic tight-binding
Hamiltonian becomes

H = −
∑
〈i, j〉

ti j (ai,Aa j,B + a†
i,Aa†

j,B)

+ (3V − μ)
∑
j∈B

a†
j,Ba j,B + μ

∑
i∈A

a†
i,Aai,A. (12)

Under the basis X † = (a†
1, . . . , a†

NA
, b1, . . . , bNB ), the Hamil-

tonian writes as H = X †MX , where M is a N × N matrix
with N = NA + NB being the total number of sites. Using the
Bogolyubov transformation to diagonalize the matrix M, we
obtain the magnon spectrum ωk , then the density of state of
the magnon can be further calculated

ρ(ω) =
∑

k

δ(ω − ωk ) =
∑

k

1√
2πc0

e
− (ω−ωk )2

2c2
0 , (13)

where the δ function is approximated by a narrow Gaussian
wave packet and c0 is a small constant.

Figure 8(a) illustrates the magnon spectrum in a triangle
flake of honeycomb lattice, which exhibits discrete degen-
erate energy levels. From the upper end of the spectrum,
a series of almost flat energy levels can be observed. The

difference between adjacent energy eigenvalues is displayed
in Fig. 8(b). The width of the energy plateau is represented
by the distance between neighboring peaks, while the dif-
ference on the plateau tends to approach zero, indicating the
near-flatness of the corresponding discrete energy levels. Fig-
ure 8(c) depicts the magnon density of states, where evenly
spaced peaks are visible, indicating a nearly uniform gap
between adjacent eigenenergy plateaus. Using the energy of
the first PLL as the reference, we plot the relative energy
of the nth-PLL as a function of n in Figs. 8(d). The result-
ing curve is observed to be best fitted by the equation y =
kx + b [k = 0.0267 and b = −0.0213], further confirming the
equally spaced nature of the pseudo-Landau levels. These
findings reveal that the application of strain induces the gen-
eration of a pseudo-magnetic field, resulting in the emergence
of equally spaced magnon PLLs starting from the upper end
of the energy spectrum.

V. CONCLUSION

We investigate the effects of triaxial strain on the hardcore
Bose-Hubbard model in a triangular flake of a honeycomb
lattice using QMC simulations. Upon the application of strain,
the phase diagram exhibits superfluid and insulator phases at
various filling factors. Notably, at an average density filling of
ρ = 0.4912, a solid phase with distinct sublattice occupancies
is observed, with a large domain wall separating the filled re-
gions. Additionally, the superfluid phase in close proximity to
the solid phase exhibits novel oscillating filling behaviors. By
analyzing the excitation spectrum above the solid phase in the
strained model, we discover an equally spaced pseudo-Landau
levels within linear spin-wave theory.

The Bose-Hubbard model can be experimentally realized
using cold atoms confined in an optical lattice. The creation of
an artificial magnetic field is actively pursued in optical-lattice
setups. Various schemes to generate gauge fields for ultracold
atoms have been proposed and realized experimentally, such
as the laser-assisted tunneling method and shaking the opti-
cal lattice [41–44]. Recently, in direct analogy with twisted
and strained graphene, mechanical deformations have been
extended to optical lattices. Twisted bilayer optical lattices
have been experimentally realized, enabling the exploration
of moiré physics of atomic Bose-Einstein condensates [45].
When it comes to strained optical lattices, several methods
have been proposed to achieve them [46,47]. For instance,
one proposal involves making slight modifications to existing
experiments by displacing the beams with a standard config-
uration intersecting at 120◦ to generate the honeycomb lattice
[46]. The spatial variations in beam intensities result in a
corresponding spatial variation in lattice depth, thus enabling
the acquisition of the hopping amplitudes needed for a uni-
form pseudo-magnetic field. Therefore, our findings, which
showcase the behavior of hardcore bosons in the presence
of pseudo-magnetic fields, can be experimentally realized by
utilizing ultracold bosonic atoms confined in optical lattices.

ACKNOWLEDGMENTS

The authors acknowledge support from the NSFC under
Grants No. 11774019 and No. 12074022.

063310-6



OCCUPANCY OSCILLATION OF HONEYCOMB-LATTICE … PHYSICAL REVIEW A 108, 063310 (2023)

[1] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[2] S.-Y. Li, K.-Q. Liu, L.-J. Yin, W.-X. Wang, W. Yan, X.-Q. Yang,
J.-K. Yang, H. Liu, H. Jiang, and L. He, Phys. Rev. B 96, 155416
(2017).

[3] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[4] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).

[5] F. Guinea, M. Katsnelson, and A. Geim, Nat. Phys. 6, 30 (2010).
[6] N. Levy, S. A. BurkeE, K. L. Meaker, and M. Panlasigui,

Science 329, 544 (2010).
[7] N. N. Klimov, S. Jung, S. Zhu, and T. Li, Science 336, 1557

(2012).
[8] S.-Y. Li, K.-K. Bai, L.-J. Yin, J.-B. Qiao, W.-X. Wang, and L.

He, Phys. Rev. B 92, 245302 (2015).
[9] P. Nigge, A. C. Qu, E. Lantagne-Hurtubise, and E. Marsell, Sci.

Adv. 5, eaaw5593 (2019).
[10] C.-C. Hsu, M. L. Teague, J.-Q. Wang, and N.-C. Yeh, Sci. Adv.

6, eaat9488 (2020).
[11] M. Neek-Amal, L. Covaci, K. Shakouri, and F. M. Peeters,

Phys. Rev. B 88, 115428 (2013).
[12] M. Settnes, S. R. Power, and A.-P. Jauho, Phys. Rev. B 93,

035456 (2016).
[13] F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov,

Phys. Rev. B 81, 035408 (2010).
[14] T. Low and F. Guinea, Nano Lett. 10, 3551 (2010).
[15] D. B. Zhang and S. H. Wei, npj Comput. Math. 3, 32 (2017).
[16] W.-Y. He and L. He, Phys. Rev. B 88, 085411 (2013).
[17] Y.-H. Ho, E. V. Castro, and M. A. Cazalilla, Phys. Rev. B 96,

155446 (2017).
[18] E. Lantagne-Hurtubise, X.-X. Zhang, and M. Franz, Phys. Rev.

B 101, 085423 (2020).
[19] S. Zhu, J. A. Stroscio, and T. Li, Phys. Rev. Lett. 115, 245501

(2015).
[20] E. M. Nica and M. Franz, Phys. Rev. B 97, 024520 (2018).
[21] G. Massarelli, G. Wachtel, J. Y. T. Wei, and A. Paramekanti,

Phys. Rev. B 96, 224516 (2017).
[22] S. Rachel, L. Fritz, and M. Vojta, Phys. Rev. Lett. 116, 167201

(2016).
[23] M. M. Nayga, S. Rachel, and M. Vojta, Phys. Rev. Lett. 123,

207204 (2019).
[24] J. Sun, N. Ma, T. Ying, H. Guo, and S. Feng, Phys. Rev. B 104,

125117 (2021).

[25] J. Sun, H. Guo, and S. Feng, Phys. Rev. Res. 3, 043223 (2021).
[26] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 (1989).
[27] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I.

Bloch, Nature (London) 415, 39 (2002).
[28] P. Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid,

Phys. Rev. Lett. 94, 207202 (2005).
[29] C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher,

K. Bongs, and K. Sengstock, New J. Phys. 12, 065025
(2010).

[30] D.-S. Lühmann, O. Jürgensen, M. Weinberg, J. Simonet, P.
Soltan-Panahi, and K. Sengstock, Phys. Rev. A 90, 013614
(2014).

[31] S. Wessel, Phys. Rev. B 75, 174301 (2007).
[32] J. Y. Gan, Y. C. Wen, J. Ye, T. Li, S.-J. Yang, and Y. Yu, Phys.

Rev. B 75, 214509 (2007).
[33] L. Santos, M. A. Baranov, J. I. Cirac, H.-U. Everts, H.

Fehrmann, and M. Lewenstein, Phys. Rev. Lett. 93, 030601
(2004).

[34] M. Rizzi, V. Cataudella, and R. Fazio, Phys. Rev. B 73, 144511
(2006).

[35] I. Hen, M. Iskin, and M. Rigol, Phys. Rev. B 81, 064503 (2010).
[36] M. Guglielmino, V. Penna, and B. Capogrosso-Sansone, Phys.

Rev. A 84, 031603(R) (2011).
[37] C. Poli, J. Arkinstall, and H. Schomerus, Phys. Rev. B 90,

155418 (2014).
[38] O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701

(2002).
[39] O. F. Syljuåsen, Phys. Rev. E 67, 046701 (2003).
[40] F. Alet, S. Wessel, and M. Troyer, Phys. Rev. E 71, 036706

(2005).
[41] Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and

I. B. Spielman, Nature (London) 462, 628 (2009).
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