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Characterizing the impact of the magnetic field in the frequency
domain for a multiwave atom interferometer
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We implement a magnetic-field-sensitive multiwave atom Ramsey interferometer based on radio-frequency
(RF) field-coupled Zeeman states, and we theoretically derive and experimentally measure its frequency-domain
transfer function with low-pass filtering characteristics. In addition, we investigate a potential application scheme
of the transfer functions for interference fringe recovery. As the measurements involve the ac magnetic field,
a Raman spectrum-based solution is implemented to calibrate the actual ac magnetic field amplitude at the
position of the atom inside the vacuum chamber. The methods demonstrated in this work will help to improve
the performance of the atom interferometer and are also useful in Ramsey interference-based systems and spinor
Bose-Einstein condensates (BEC) experiments.
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I. INTRODUCTION

The cold-atom interferometer has a wide range of applica-
tions in various fields, such as inertial sensing [1–5], the mea-
surement of fundamental physical constants [6–9], precision
frequency measurements [10,11], precision magnetic-field
sensing [3,12,13], the study of the fundamental properties of
quantum mechanics [14], and tests of fundamental physical
laws [15–17]. In particular, the multiwave atom interferome-
ter [18,19] can increase the sensitivity (and thus resolution)
of the interferometer through increased fringe slopes [19–21].
Such an interferometer has been recently proposed and
demonstrated using atomic external momentum states [22,23]
or internal spin states [13,20,21].

Among them, in the atomic systems with spin degrees of
freedom, it is not only possible to utilize the spin states to
implement multiwave interferometers that do not rely on spa-
tially separated paths [13,20], but also to utilize the spin state
to implement many types of atom interferometer-based high-
precision magnetic-field sensing [11–13,24,25]. However, in
such systems, magnetic fields inherently cause significant im-
pacts, inducing noise [26,27], thus causing the decoherence
of the quantum states and limiting the system coherence time.
In addition, precise characterization of the magnetic field is
crucial for the effective manipulation of quantum states in
many experiments utilizing atomic systems with spin degrees
of freedom, such as spin-dependent optical lattices [28–30],
many-body entanglement states generation [31–33], and
precision measurements based on atom interferometers
[2,3,7,9–11,17].
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Therefore, the characterization of the response of such
systems to magnetic fields is important. Measurement of
the transfer function in the frequency domain provides us
with a solution. Based on the transfer function, on the
one hand, we can characterize the impact of the mag-
netic field on the systems, and on the other hand, we can
acquire valuable information in a magnetically noisy en-
vironment. The merit of this is that such systems provide
a promising experimental platform, that is, the construc-
tion of a multiwave atom interferometer utilizing spin states
to study the response of the systems to the magnetic
field.

In this work, we implement a magnetically sensitive mul-
tiwave atom Ramsey interferometer based on radio-frequency
(RF) field-coupled Zeeman states in an unshielded, titanium
vacuum chamber. We theoretically derive and experimen-
tally measure the transfer function of the interferometer
to magnetic fields. In addition, we investigate the applica-
tion of transfer functions in an artificial magnetically noisy
environment and provide a feasible scheme for interfer-
ence fringe recovery. These methods could be beneficial
for in situ corrections of errors introduced by magnetic
field for precision atom interferometers, and will also be
useful for some other Ramsey interference-based systems
(such as atomic clocks [10,11], trapped-ion systems [34,35],
nitrogen-vacancy (N-V) centers in diamonds [36,37]) and
some spinor Bose-Einstein condensates (BEC) experi-
ments [28–33], which are impacted by the magnetic
field.

This article is organized as follows. We present the basic
theory and experimental setup in Secs. II and III. The exper-
imental results related to the magnetic-field response of the
interferometer and the application of the transfer function are
demonstrated in detail in Sec. IV. In Sec. V, we conclude this
work with a summary.
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FIG. 1. (a) Level scheme for RF coupling. The bias magnetic
field along the z axis induces Zeeman states and the RF field trans-
ports along the y axis to realize the state coupling. (b) Time sequence
of the multiwave atom interferometer. Two RF pulses of duration τ

are illuminating atoms with a time interval T to implement Ramsey-
type interference.

II. THEORY

A. Multiwave Ramsey interference

We begin with the analysis of our atom interferometer
where the cold 87Rb atom ensemble is in the 52S1/2|F = 1〉
manifold shown in Fig. 1(a).

The homogeneous bias magnetic field B = Bzez along the
z axis is applied to define the quantization axis. In this field,
Zeeman states have different energies, considering the first-
order Zeeman effect, which is given by H0 = −μ · B, where
μ is the atomic magnetic dipole moment operator. Based on
the similar theoretical framework in Ref. [38], we use the
RF field BRF = BRFey cos(ωRFt + ϕRF) to couple the Zeeman
states, where the RF field is along the y axis with an ampli-
tude of BRF, a frequency ωRF, and an initial phase ϕRF. The
atom-field interactions can be expressed as Hint = −μ · BRF,
and the total system Hamiltonian is given by H = H0 + Hint,
the evolution of the system depends on the Schrödinger
equation

ih̄
∂

∂t
|ψ (t )〉 = H |ψ (t )〉, (1)

where |ψ (t )〉 = [C−1(t ),C0(t ),C+1(t )]T is the Zeeman state
vector of the F = 1 spin system. Within the rotating-wave-

approximation (RWA), the Hamiltonian is given by [39]

HR = h̄

⎛
⎜⎝

−δR

√
2�eiϕRF 0√

2�e−iϕRF 0
√

2�eiϕRF

0
√

2�e−iϕRF δR

⎞
⎟⎠, (2)

where the detuning δR = ωRF − k|B|, k = μB/2h̄, μB is the
Bohr magneton, and � is the Rabi frequency to quantify the
RF coupling strength. The effective Rabi frequency of RF

coupling is given by �eff =
√

δ2
R + (2�)2.

The final state |ψ (t )〉 after the single RF pulse can be
written as

|ψ (t )〉 = UR(t )|ψ (0)〉, (3)

where |ψ (0)〉 is the wave function of the initial state and UR(t )
is the time evolution operator of this system [39].

A typical Ramsey interference sequence [40] is illustrated
in Fig. 1(b). The final state of the interferometer can be ex-
pressed as

|ψ (τ + T + τ )〉 = UR(τ )UF(T )UR(τ )|ψ (0)〉, (4)

where the free evolution operator UF(T ) is diagonal, with ele-
ments e−iδR,iiT , where δR,ii is the diagonal element of HR [39].

In particular, when atoms are in an initial state |mF = 0〉,
and if we choose the parameter 2�effτ = π , which is similar
to the so-called π pulse in a two-level system [21], accord-
ing to Eq. (4), the interferometer fringe behavior on state
|mF = 0〉 is expressed as

Pπ = 1
2 { 1 + cos[2(
�B)]}, (5)

where the interferometer phase shift 
�B = δRT . This means
that our multiwave atom interferometer is sensitive to mag-
netic field.

B. Transfer function of interferometer

By establishing the transfer function of the interferometer,
we can quantitatively describe its sensitivity to the magnetic
field. We first derive the sensitivity function of the interferom-
eter to the magnetic field in the time domain, and from this,
we derive the transfer function in the frequency domain.

In the time domain, the sensitivity function is a natural tool
to characterize the influence of external fluctuations on the in-
terferometer phase shift 
�B, such as the RF field phase ϕRF

fluctuation. The interferometer sensitivity function is written
as [41,42]

gϕ (t ) = lim
δϕRF→0

δ�B(δϕRF, t )

δϕRF
. (6)

Following the similar derivation method in Ref. [41], we can
get the gϕ (t ) in the multiwave Ramsey interference sequence
whose expression is given by

gϕ (t ) =

⎧⎪⎪⎨
⎪⎪⎩

2 sin
[
�eff

(
t + T

2 + τ
)]

, − T
2 − τ � t < − T

2 ,

2, − T
2 � t � T

2 ,

2 sin
[
�eff

(
T
2 + τ − t

)]
, T

2 < t � T
2 + τ.

(7)
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The resolving interferometric phase variation δ�B induced by
the RF phase fluctuations, δϕRF can be written as

δ�B =
∫ τ+T/2

−τ−T/2
gϕ (t )dϕRF =

∫ τ+T/2

−τ−T/2
gϕ (t )

dϕRF

dt
dt . (8)

In another aspect, the total phase shift 
�B is the sum of
the phase difference on the interference path during the free
evolution and the RF phase changes due to the atom-field
interactions. That is, the free evolution phase accumulation
caused by the atomic energy level shift can be equally re-
garded as the phase shift caused by the RF phase fluctuations.
Therefore, considering the magnetic field fluctuations, this
effect is shown by

dϕRF

dt
= kδB. (9)

Thus, the phase variation due to the magnetic field fluctuations
is expressed according to Eq. (8) as

δ�B =
∫ τ+T/2

−τ−T/2
gϕ (t )(kδB)dt . (10)

Following Eq. (6), the sensitivity function to the magnetic
field can be written as [43]

gB(t ) = lim
δB→0

δ�B(δB, t )

δB
= k

∫ τ+T/2

t
gϕ (t ′)dt ′. (11)

In the frequency domain, we can obtain the following re-
sults by applying the Laplace transform to Eq. (11):

|HB(ω)|2 = k2

ω2
|HϕRF (ω)|2, (12)

where HB(ω) is the transfer function to the magnetic field,
HϕRF (ω) is the transfer function to the RF phase. In detail,
|HϕRF (ω)|2 = |ωGϕRF (ω)|2, where GϕRF (ω) is the Fourier trans-
form of the sensitivity function gϕ (t ). Based on the above
results, we derive the transfer function HB(ω) of the multi-
wave Ramsey interferometer as follows:

|HB(ω)|2 = 16�2
effk

2
(
ω cos

[(
T
2 + τ

)
ω

] + �eff sin
[

ωT
2

])2

ω2
(
ω2 − �2

eff

)2 .

(13)
This is consistent with the so-called filter function derived
based on dynamic decoupling theory [24,44], which differs
only in the coefficients because of the multiwave interference.
In other words, our procedure for deriving the transfer func-
tion can be generalized to arbitrary Ramsey-type interference.
In this paper, we experimentally measure |HB(ω)|2, as a way
to characterize the transfer function HB(ω).

The effect of magnetic-field fluctuations on the interferom-
eter phase uncertainty σ�B can be expressed as [41]

σ 2
�B

=
∫ +∞

0
|HB(ω)|2SB(ω)dω, (14)

where SB(ω) is the power spectral density of the magnetic
field.

III. EXPERIMENTAL SETUP

Our experiments are carried out in an atom interfer-
ometer apparatus based on ultracold ensembles [45]. The

schematic of our physical system is shown in Fig. 2(a), where
the two-dimensional magnetooptical trap (2D-MOT) and the
three-dimensional magnetooptical trap (3D-MOT) are used
to precool the atoms. One set of coils is placed close to
the side of 3D-MOT and is driven by a waveform gener-
ator (KEYSIGHT 33600A) to generate an RF field along
the y direction. The coil’s diameter is about 30 mm. An-
other set of coils is placed above the 3D-MOT and driven
by another same-type waveform generator to generate addi-
tional magnetic field modulations along the quantization axis
(z direction). The bias magnetic field B = Bzez is generated
by the three-axis Helmholtz coils system, for which the high-
precision source meters (KEITHLEY 2450) are used as the
current source for this system. Using the Raman spectrum
method [46], which is based on the stimulated Raman process
to measure the magnetic field by the frequency spacing of the
transition peaks, the strength of the bias field Bz is found to
be 63.50 mG. According to the relation ωRF = kBz, we set the
driving frequency of the RF field to 44.45 kHz.

The time sequence used in our experiment is shown in
Fig. 2(b). The cold 87Rb atoms are prepared in the optical
crossed dipole trap (OCDT) with double reservoirs and a
dimple configuration. In combination with an optical pumping
process and reasonable control of the evaporative cooling
parameters, typically, about 3 × 105 atoms remain in the
|F = 1〉 manifold with a temperature of about 500 nK. About
75% of these are in the |F = 1, mF = 0〉 state [47]. Then, the
atoms are released from OCDT, subsequently, the multiwave
Ramsey interference sequence (π -T -π ) is applied to atoms.
Before the atoms fly out of the ultracold atoms’ prepara-
tion region, a Doppler-insensitive Raman pulse transfers the
atoms from |F = 1, mF = 0〉 state to |F = 2, mF = 0〉 state.
The atoms then reach the detection region, and the standard
two-state sequential detection [1] is performed to deduce the
transition probability [48]. The multiwave Ramsey fringes can
be obtained by adjusting the RF frequency ωRF during the free
evolution step. One total experimental sequence takes 4.11 s.

IV. MEASUREMENT AND APPLICATION
OF THE TRANSFER FUNCTION

We measure the transfer function HB(ω) using the exper-
imental procedure shown in Fig. 3. To measure the transfer
function, a magnetic field modulation Bm sin(2π fmt + ϕm)
generated by the modulation coils is applied on the atoms.
After the interference process, the interferometric phase vari-
ations are recorded as a function of fm, and then we extract
|HB(ω)|2. However, these measurements involving ac mag-
netic field are carried out inside the titanium vacuum chamber.
Therefore, to derive the transfer function, it is a prereq-
uisite to calibrate the modulation field at the position of
the atom. Finally, as a further validation and application
of multiwave interferometer response to the magnetic field,
we prove, in principle, a fringe recovery scheme based on
the transfer function in an artificial magnetically noisy en-
vironment. Briefly, the experimental characterization of the
multiwave interferometer response to the magnetic field con-
sists of four parts: the measurement of the actual modulation
field felt by the atom inside the chamber, the implemen-
tation of a magnetically sensitive multiwave interferometer,
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FIG. 2. Schematic of the experimental apparatus and the time sequence. (a) Atom interferometer physical system. The RF coils are used
to generate the RF field, the modulation coils are used for magnetic field modulation, and the three-axis Helmholtz coils system (the x coils
are not shown in the figure) is used to generate the bias magnetic field. And the cold atoms are prepared in the OCDT. (b) Experimental time
sequence for multiwave atom interferometer.

the measurement of the transfer function, and the inves-
tigation of potential practical applications of the transfer
function.

FIG. 3. Experimental procedure for measuring the transfer func-
tion HB(ω) of the interferometer. The procedure consists of two
aspects: on the one hand the phase variations δ�Amp( fm ) need to be
recorded by the interference process under the effect of modulation
field, on the other hand, the power PTime( fm ) need to be recorded by
measuring the modulation field actually felt by the atom inside the
vacuum chamber.

A. Measurement of ac magnetic field inside
the vacuum chamber

In our atom interferometer, the characterization of the
magnetic-field response involves an ac magnetic-field mea-
surement inside the chamber. However, it is limited by the
system, i.e., the ac magnetic field felt by the atom inside
the chamber is difficult to be measured by placing magnetic
sensors, so it is necessary to develop a method based on the
atom itself that can measure the ac magnetic field inside the
vacuum chamber at the position of the atom. The implemen-
tation scheme is shown in Fig. 4.

The modulation Bm sin(2π fmt + ϕm) is applied to atoms.
To measure the ac magnetic field amplitude Bm, the Raman
spectrum method is applied under the modulation field. The
Raman pulse in the experiment is less than 50 µs and the short-
est modulation waveform period is at least ms level (∼1 kHz).
Therefore, the modulation waveform is slowly varying com-
pared to the Raman pulse. At a fixed position applying the
Raman pulse, we modulate the phase of the waveform to
realize the shift of the ac magnetic field waveform in time,
which is given by

Bmod = Bm sin[2π fm(t + tM ) + ϕm], (15)

FIG. 4. The implementation scheme of the ac magnetic-field
measurement inside the vacuum chamber. We scan the waveform of
the modulation field with a short Raman pulse, converting the ac field
measurement into the dc field measurement.
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FIG. 5. The Results of the ac magnetic field measurement inside
the vacuum chamber. (a) Typical ac field measurements. The solid
lines are fitting using Eq. (15). (b) The factor km wide-band measure-
ment results. The blue dots are experimental data, the red line is the
fitting result.

where tM is a suitable time step to implement waveform scan-
ning. Figure 5(a) illustrates the measurements, where the fitted
curves are given by Eq. (15). Even at kHz frequencies, data
with enough time steps are acquired to make sure that the
slow variation of the modulation field is captured. The results
show that we implement the measurement of the ac magnetic
field inside the titanium vacuum chamber and its oscillation
frequency agrees with the modulation frequency fm.

Furthermore, we repeat the above experimental procedure
in a wider frequency range, and we define a factor km, which
characterizes the ratio of the amplitude of the magnetic field
Bm inside the chamber to the amplitude of the current Im in
the modulation coils. The factor km is recorded as a function
of fm and the results are shown with blue dots in Fig. 5(b). In
addition, it can be seen that our results are in agreement with

FIG. 6. (a) Rabi osillation of F = 1 spin system. (b) Typical mul-
tiwave Ramsey interference fringes for magnetic-field measurement.
Each plotted point represents the average over ten measurements.
Error bars are statistical errors. The solid lines are fit using Eq. (5).

the conventional second-order low-pass filter model, which is
given by

km = km0√[
1 − ( fm

f0

)2]2 + 4ξ 2
( fm

f0

)2
, (16)

where km0 is known as the system static sensitivity, f0 is
the natural frequency of the system, and ξ is the damping
ratio [49]. From Fig. 5(b), the equivalent 3-dB bandwidth of
our system for the ac magnetic field is about 2 kHz. This
second-order low-pass filter characteristics may be due to the
system consisting of the modulation coils and the titanium
vacuum chamber, which hinders the propagation of the ac
magnetic field.

B. Implementation of magnetically sensitive
multiwave interferometer

To realize the RF-coupled multiwave Ramsey interference,
we need to first determine the duration of the RF π pulse
according to 2�effτ = π . Rabi oscillation is implemented by
varying the irradiation duration of a single RF pulse. As shown
in Fig. 6(a), the duration of the RF π pulse is 290 µs, and the
RF excitation efficiency can reach more than 60%. We adjust
the RF frequency ωRF from shot to shot to obtain interference
fringes, as shown in Fig. 6(b).

It is clear that the fringe pattern for multiwave Ramsey
interference shows good qualitative agreement with Eq. (5).
According to the fringe center 44.196(9) kHz, the absolute
magnetic field value of Bz = 63.137(13) mG can be deduced
according to δR = ωRF − kBz. Meanwhile, the fringe contrast
of about 60% is limited by the impurity of the initial state [47]
and the small shifts of the overlapped fringe centers under
different evolution times T indicate T -dependant systematic
error(s) to be evaluated.

063309-5



REN, YAN, YANG, DENG, XU, HU, AND ZHOU PHYSICAL REVIEW A 108, 063309 (2023)

FIG. 7. The result of the transfer function HB(ω) measurement
with parameters T = 2 ms and τ = 0.29 ms. The theoretical calcu-
lation is displayed in the red line and the experimental results are
shown as blue dots.

C. Result for the measurement of the transfer function

In the frequency domain, the transfer function can be ex-
tracted from Eq. (14). When the magnetic field fluctuation is
a known regular sinusoidal modulation, Bm sin(2π fmt + ϕm),
the response of the interferometer to it should be the phase
variation δ�B( fm, ϕm), related to the initial phase of the mod-
ulation field ϕm at a given modulation frequency fm. In this
case, Eq. (14) can be simplified as

δ�2
B( fm, ϕm) = 2π |HB(2π fm)|2SB( fm)
 fm. (17)

On the one hand, according to the energy conserva-
tion, the power of the modulation field can be expressed
as PTime( fm) = SB( fm)
 fm. On the other hand, to elimi-
nate the effect of ϕm in the experiment, we repeat the
measurements in a series of ϕm, for example, {ϕm} =
{0, 90, 180, 270, 360}◦. Then the phase variations will be
{δ�B( fm, ϕm)} = {δ�0, δ�90, δ�180, δ�270, δ�360}. To ob-
tain half of the peak-to-peak values δ�Amp( fm) in this series
of phase variations, the effect of ϕm can be eliminated [43].
In the end, based on the power of a sinusoidal signal and
the factor km, we measure the transfer function using the
following relationship:

|HB(2π fm)|2 = δ�2
Amp( fm)

2πPTime( fm)
= δ�2

Amp( fm)

2π
( kmIm√

2

)2 . (18)

So, we need to record the δ�Amp( fm) and the current ampli-
tude Im in the modulation coils as a function of fm, and find
the correlation factor km from our ac magnetic-field exper-
imental results. We can then calculate the transfer function
|HB(2π fm)|2. The results, which are displayed in Fig. 7, to-
gether with the theoretical values calculated by Eq. (13) in
parameters T = 2 ms and τ = 0.29 ms, clearly demonstrate
the oscillatory behavior and the low-pass filtering character-
istics of the transfer function. The experimental results show
that our interferometer is sensitive to magnetic fields at low
frequencies. The vertical error bars in our results show the
statistical error, which mainly comes from the significant

FIG. 8. Experimental protocol for the fringe recovery scheme.
The artificial noise current is acquired by a data acquisition unit, the
noise compensation phase is obtained based on the transfer function
and subtracting the compensation phase from the original phase to
obtain the real phase.

uncertainty in the measurement of δ�Amp( fm), since our sys-
tem is unshielded and subject to magnetic field noise.

D. Application of the transfer function

The transfer function HB(ω), as a fundamental character-
istic of the multiwave interferometer, frames a link between
the magnetic field and the interferometer phase shift in the
frequency domain, and its general application is to calculate
the phase noise induced by external magnetic field fluctu-
ations according to Eq. (14), which is commonly used to
evaluate the influence on atom interferometer resolution [42].
Furthermore, we consider an application scene where the
atom interferometer is perturbed by an artificial magnetically
noisy environment, which is made by magnetic field white
noise in the direction of the quantization axis. Similarly, the
phase noise induced by the artificial white noise can be eval-
uated with Eq. (14), but if there is a feasible mechanism to
compensate for such phase noise, it implies that the atom
interferometer will be able to acquire effective information
in such a noisy environment, which thus broadens the range
of applications of the transfer function and it can poten-
tially enhance the environmental adaptability of the atom
interferometer.

For the motivation mentioned above, we investigate and
prove, in principle, a transfer function-based interference
fringe recovery scheme in an artificial magnetically noisy
environment, and its implementation protocol is illustrated in
Fig. 8. To simulate such a noisy environment, we utilize the
modulation coils to generate white-noise-type current modu-
lation δINoise to worsen the magnetic-field environment felt by
atoms. In addition, we reduce the free evolution time T to
0.2 ms or 0.4 ms to ensure that we can still acquire
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FIG. 9. Experimental demonstration results for the fringe recovery scheme. (a-i, ii, iii) T = 0.2 ms results. (b-i, ii, iii) T = 0.4 ms results.
The green dots in (a-i) and (b-i) indicate the data without artificial white noise. The black dots in (a-ii) and (b-ii) indicate the data without the
noise compensation and the blue dots in (a-iii) and (b-iii) indicate the data with the noise compensation. In total, there are 20 fringes and 25
data points per fringe, respectively. The red lines are the fitting results.

interference fringes with a reasonable contrast in this mag-
netically noisy environment. Similar to the vibrational noise
compensation scheme in atomic interference gravimetry [42],
when the multiwave atom interferometer is in this mag-
netically noisy environment, the real phase shift should be
expressed as


�Real + 
φothers = 
�B − 
φMod, (19)

where 
φMod is the phase noise introduced by the artificial
magnetically noisy environment, and 
φothers is the sum of
the phase noises contribution by other noise sources, which
includes the original magnetic field noise in our system. The
goal is to verify whether the multiwave interferometer can
compensate the phase noise 
φMod from the original phase
shift 
�B, so as to demonstrate the practicability of the
scheme that we propose. This can be implemented using
the time domain model Eq. (10) of the transfer function.
Thus, 
φMod can be obtained according to the following
relationship:


φMod =
∫ τ+T/2

−τ−T/2
gϕ (t )[kδBNoise]dt, (20)

where δBNoise is the artificial white-noise magnetic field felt by
the atoms, depending on the modulation current δINoise and the
factor km. The detected phase noise 
φMod is subtracted from
the original phase shift 
�B to obtain the corrected phase
shift 
�Real. In this way, the interference fringe is recovered.

Since our multiwave interferometer is sensitive to low-
frequency magnetic fields, a reasonable bandwidth of
magnetic-field modulation can amplify the effect of noise.
We choose 500-Hz bandwidth white noise for demonstration.

The typical results are depicted in Fig. 9. The results show
that the data points of fringe become more visible after the
correction and tend to be more centralized on the fitting curve,
which demonstrates the effectiveness of our scheme. It is
seen visually that, before the interference fringe recovery,
the data points are quite noisy so that an effective fitting is
not feasible, but after the correction, it is able to fit the data
points. The phase uncertainty σ�B reaches 0.013 rad for data
without artificial white noise, while with noise, this value
reaches 0.034 rad and 0.019 rad before and after the correction
at T = 0.2 ms, and the goodness-of-fit is 0.77, 0.31, and
0.59, respectively. And at T = 0.4 ms, σ�B reaches 0.019 rad
for noise-free case, while this value reaches 0.050 rad and
0.024 rad before and after the correction, with a goodness-of-
fit of 0.58, 0.17, and 0.47, respectively. According to Eq. (14),
this indicates that the phase noise introduced by δINoise is
effectively compensated.

Although the visibility of the interference fringes is im-
perfect after the correction, which may be due to the system
being unshielded, i.e., the phase noise 
φothers may be rather
large, this transfer function-based fringe recovery mechanism
provides an outlook for improving the performance of the
multiwave atom interferometer, i.e., we can first use magnetic
shielding technology to isolate the majority of magnetic-field
fluctuations, which is pointed out in Refs. [26,50,51], and then
such a mechanism is applied to compensate for the residual
magnetic field fluctuations to enhance the resolution of the
interferometer. Hence, this scheme may be beneficial in the
magnetic-field-impacted atom interference-based experimen-
tal systems and some spinor BEC experiments. The results
demonstrate that, even for a metal vacuum chamber which
brings difficulty for thecalibration of ac magnetic fields to the
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position of atoms, the proposed scheme is still effective. In our
demonstration, the magnetic field noise is measured through
the artificial white current noise. In the case of vibration
compensation in an atomic gravimeter where the seismometer
measures the vibration near the gravimeter, the counterpart for
the multiwave interferometer can be a set of loop antennas
measuring the magnetic field noises, which are not near-dc.
However, how to calibrate the captured magnetic-field noise
from all the directions to the position of the atoms and how to
evaluate the impact of the metal chamber regarding the exter-
nal antennas is far difficult compared to the evaluation of the
coefficient km. Last but not least, in the experiment, we used a
single coil to generate RF fields instead of a pair of Helmholtz
coils. The decaying of the Rabi oscillation in Fig. 6(a) is rather
slow compared to the demonstrated evolution time. Therefore,
the inhomogeneity of the RF fields currently is not the limiting
factor. In brief, a more practical design of the magnetic-field
noise detector, the evaluation of the inhomogeneity of the RF
fields, and T -dependent systematic error can be the concerns
for future work.

V. CONCLUSION

In conclusion, the measurement of Ramsey-type interfer-
ometer transfer function and the investigation of potential
practical applications of the transfer function based on a mul-
tiwave atom interferometer in an unshielded, titanium vacuum
chamber are proposed and demonstrated. To first calibrate
the actual ac magnetic field amplitude at the position of the

atom inside the vacuum chamber, we implement a Raman
spectrum-based solution for ac magnetic-field calibration.
Then, a magnetically sensitive multiwave Ramsey interfer-
ometer is realized based on RF field-coupled Zeeman states.
The transfer function of the multiwave atom interferometer
to magnetic fields with a low-pass filtering characteristic is
subsequently derived by recording the phase variations of the
multiwave interferometer under magnetic-field modulation at
different frequencies. Taking advantage of this characteristic,
we prove, in principle, in the direction of quantization axis,
an effective interferometer phase-correction scheme that al-
lows fringe recovery in the presence of artificial white noise.
This work will pave the way for practical applications of
magnetic-field noise compensation in a magnetically noisy
environment.
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