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Sequential large momentum transfer exploiting rectangular Raman pulses
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It is proposed to use rectangular Raman pulses for the technique of sequential large momentum transfer. It is
shown that the small parameters that make it possible to use this technology for precision atom interferometry can
be 40–200 times smaller than in the case of the Bragg regime. It is predicted that in the case of a nonequidistant
timing of auxiliary pulses, one can observe oscillations in time of the interference picture with a period inversely
proportional to the recoil frequency. Such an observation would be confirmation that Mach-Zehnder atom
interference is a phenomenon caused by the quantization of the atomic center-of-mass motion. This effect
is calculated for any shape of pulses. One can observe it in the Bragg regime as well. It is proposed to use
noncontinuous composite Raman pulses as auxiliary beam splitters so that the effective Rabi frequency remains
unchanged for the entire process. The gravity phase of an atomic interferometer is calculated for any shape,
duration, and timing of Raman pulses, including the Bragg regime. The phase corrections caused by the finite
pulses’ durations are also calculated for the rectangular Raman pulse shape.
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I. INTRODUCTION

Since its birth about 40 years ago [1], the field of atom
interferometry has matured significantly. The current state
and prospects in this area are presented, for example, in the
reviews in [2–11] and the proposals in [12–21]. For the suc-
cessful implementation of these programs, it is important to
increase the phase of the atomic interferometer (AI), without
enlarging the error of the phase measurement. Such an in-
crease can be achieved by using AIs with a long interrogation
time T and a large momentum transfer (LMT) during the in-
teraction of an atom with pulses of optical fields. The highest
value of T = 1.15 s was achieved [22] for freely falling atoms,
while for atoms trapped in an optical lattice, the time between
the first and last Raman pulses was increased to 1 min [23].

One may consider the nonlinear interaction of atoms with
a resonant standing-wave pulse as the first implementation of
the LMT technique. In this case, owing to the LMT, higher
spatial harmonics of the atomic density arise [see Eq. (4)
in [1]]. Various modifications of LMT used to produce such
harmonics are briefly described in the Appendix.

Using the combination of adiabatic rapid passage and mul-
tiphoton Bragg diffraction allowed one to achieve an LMT
of 5h̄k [24], where k = |k|, with k the effective wave vector
associated with the atomic beam splitter. The theory of mul-
tiphoton Bragg diffraction was developed and calculation of
the phase of the AI at an LMT of 5h̄k was implemented in
the article [25]. It was shown [26] how the Bloch oscillation
technique leads to an LMT beam splitter, and a beam splitter
having an LMT of 5h̄k was experimentally demonstrated.
An efficient scheme based on fast adiabatic passage at an
LMT of 10h̄k was proposed in [27]. A Raman beam splitter,
having an LMT of 16h̄k [28], allowed one to increase the
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recoil line splitting [29] by 15 times. Owing to the Bragg
diffraction many times repeated, a beam splitter having an
LMT of 45h̄k [30] coherently splits the atomic cloud into
two components separated from each other by a distance of
54 cm. In Ref. [31] a three-path AI with an LMT of 56h̄k was
created for precision measurements of the recoil frequency.
Exploiting optical lattices as waveguides and beam splitters
promises an LMT of 100h̄k or more [32]. Instead of Bragg
diffraction, one can use pulses of a traveling wave, resonant
to the transition between the ground and metastable excited
states. This approach was realized in Ref. [33], where an
LMT of 146h̄k was created. Twin-lattice atom interferometry
leads to an LMT of 204h̄k [34]. The combination of the fifth-
order Bragg scattering and the pulse of the Bloch oscillations
allowed one to increase the LMT to 405h̄k [35]. Using the
pulse of the Bloch oscillation [36], one achieved an LMT of
500h̄k [37]. Owing to these achievements, currently, LMT is
one of the promising methods for improving the accuracy of
atomic navigators [38,39], gravimeters [40], and gyroscopes
[41]. The results of the gravity acceleration and rotation rate
measurements are summarized in Ref. [5].

A. Sequential large momentum transfer

One of the varieties of LMT is the sequential method,
which uses a sequence of π pulses having opposite effec-
tive wave vectors. Sequential LMT (SLMT) was studied in
Refs. [28,30,33], and in articles [30,33] SLMT was success-
fully used for the Mach-Zehnder AI (MZAI). One can use
three types of beam splitters here: I, when the internal state
of the atom stays the same during interaction with a pulse
of a resonant optical field; II, when, during a one-photon
transition, an atom is excited from the ground to a metastable
excited state; and III, when the Raman pulse transfers the atom
from one (ground) sublevel to another (excited) sublevel of the
ground state.
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In Ref. [1] the type-I beam splitter was a standing wave.
Atom interference in the field of a standing wave was ob-
served in Refs. [42,43]. In the Bragg regime, both a standing
wave [44] and counterpropagating waves with a specially cho-
sen frequency difference [30] can be used. Either a standing
[1] or a traveling wave [45] was used as a type-II beam
splitter. Type-II SLMT was observed in Ref. [33]. However,
for most of the precision gravimeters and gyroscopes listed in
the review in [5], Raman pulses, a type-III beam splitter, were
used.

One can find a comparison of type-I and -III interferome-
ters in Ref. [46], which considers the case when two atomic
beam splitters having opposite effective wave vectors act si-
multaneously. This field configuration, the Raman standing
wave, was proposed in Ref. [47]. It is now better known as the
double-diffraction technique [48,49]. A further development
of this approach, a combination of three Raman beam splitters,
was proposed in Ref. [50].

For SLMT, it is important that under the action of a π pulse,
the momentum of the atom does not change, or changes only
by ±h̄k. For a type-I splitter, this can only be achieved in the
Bragg regime, when the small parameter of the problem is
given by

ε = (ωkτ )−1 � 1, (1)

where τ is the pulse duration and

ωk = h̄k2

2M
(2)

is the recoil frequency, with M the mass of the atom. Since
there are many π pulses in the SLMT, no matter how small
the parameter (1) is, corrections to the atomic wave function,
repeated many times, can lead to significant changes in the
interference pattern. In the experiment [30]

ε ≈ 0.18. (3)

Unlike Ref. [51], we do not consider here issues related to
frequency noise, or pulse fidelity. Even with beam splitters
that are ideal in these respects, π pulses can be imperfect just
because their duration is not long enough.

The disadvantage of type-III beam splitters, Raman pulses,
are the ac Stark shifts of the atomic levels that do not coin-
cide. On the other hand, SLMT can be realized for any value
of ε. Raman pulses can have both long and short durations
corresponding to the Bragg regime (ε � 1) and the opposite
Raman-Nath regime

ε � 1. (4)

In this article, we will consider SLMT with Raman pulses
only. In this case, the MZAI scheme is shown in Fig. 1.

If the mirror pulse (second Raman pulse) is a resonant π

pulse, then the atoms change their momenta and internal states
with probability 1. In this case, the diagram has only two
branches, red and blue. Atomic interference is the interference
of the amplitudes of an atom in an excited state e, which arise
when an atom moves along these branches. In this case, the
contrast of the interference pattern is equal to 1. If the second
pulse is not ideal, then the atoms do not change their state with
a small amplitude (see the gray lines in the recoil diagram).

FIG. 1. Recoil diagram for the MZAI. Atoms in the ground and
excited states are shown by solid and dashed lines, respectively.

Obviously, this only leads to a decrease in contrast and does
not affect the phase of the MZAI.

The situation changes for SLMT, when in addition to the
three main Raman pulses there are four sets of auxiliary π

pulses, after the first, before and after the second, and before
the third main pulses. Consider the simplest case, when each
of the sets consists of only one π pulse (see Fig. 2).

FIG. 2. SLMT. Each of the four sets of auxiliary pulses contains
one π pulse. The main and auxiliary pulses are shown with green
and cyan arrows, respectively. Thin, blue or red lines correspond to
the resonant branches of the diagram, along which the momentum of
the Raman field ±h̄k is transferred to the atom and the internal state
of the atom changes. The thick horizontal lines correspond to the
nonresonant branches of the diagram, along which the atoms remain
in the ground state g and the momentum of the atom also does not
change.
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Each of the auxiliary pulses must satisfy the two require-
ments [30]: (i) It must be a resonant π pulse on the resonant
branch of the recoil diagram and (ii) one has to choose the
pulse parameters in such a way that the state of the unexcited
atom on the other (nonresonant) branch remains unchanged.
If both requirements are met exactly, then, by successively ap-
plying auxiliary pulses n times with alternative wave vectors
±k, one obtains a beam splitter with momentum transfer

�p = (n + 1)h̄k, (5)

and the excitation probability of an atom in a uniform gravity
field g oscillates as

w = 1
2 [1 − cos(α + φg)], (6a)

φg = (n + 1)k · gT 2, (6b)

where the parameter α, like the parameters α′ and α′′ below
in Eqs. (8) and (14), are parts of the AI phase, independent of
gravity.

In the Raman-Nath regime (4), when the pulse is so
short that the violation of resonance conditions becomes
insignificant, one can ignore both the first and the second
requirements. In this case, the SLMT is twice as efficient,
leading to the momentum transfer

�p = (2n + 1)h̄k. (7)

The SLMT in the Raman-Nath approximation was observed
in Ref. [33] for the one-photon transition. We are not
aware of Raman beam splitters operating in the Raman-Nath
regime (4).

Condition (ii) can be satisfied in the Bragg regime (1).
In this case, if the Raman pulse is resonant to a transition
along one of the branches, then it is not resonant for the other
branch, and with accuracy (1) one can assume that the state of
the atom remains unperturbed along the other branch. If the
pulse is not perfect and the parameter ε is not small enough,
then the pulse ceases to be a mirror, splits the states of the
atom, and parasitic gray trajectories appear (see Figs. 1 and 2).
One sees that, unlike the usual MZAI, in the MZAI with one
auxiliary π pulse, parasitic trajectories lead to the appearance
of parasitic interference ports, due to which a small addition
to the signal (6) arises, which oscillates like

�w = β cos(α′ + k · gT 2). (8)

It should be emphasized that for precision measurements it is
not enough that this correction be small; it is necessary that
the amplitude of this correction be less than the accuracy of
the MZAI phase measurement φerr,

|β| < φerr. (9)

Only in this case does SLMT lead to progress in improving
the accuracy of precision measurements. The error in the
differential measurements of the MZAIs phases was [52]

φerr ≈ 2 × 10−5 rad. (10)

One sees from Fig. 2 that parasitic ports are spatially separated
from the main port by a distance

�z = vrT, (11)

FIG. 3. Same as in Fig. 2 but for n = 2, when each set of aux-
iliary pulses contains two π pulses with opposite effective wave
vectors. One included only color output ports in consideration.

where vr = |vr |, with

vr = h̄k
M

(12)

the recoil velocity. Under the experimental conditions [30]
k = 1.61 × 107 m−1, M = 87 a.u., and T = 1.04 s, the ports
are separated from each other by a distance of �z = 1.2 cm.
If, despite thermal expansion, the size of the atomic cloud, as
well as the size of the detector, is less than �z, then one can
exclude the influence of parasitic ports.

The situation changes if several π pulses are used in each
auxiliary set, n > 1. The case n = 2 is shown in Fig. 3. One
sees that the distance between the main and parasitic ports
decreases to the value

�z = vrd, (13)

where d is the delay between adjacent auxiliary pulses. At d =
200 µs [53], �z ≈ 2.4 µm. One may encounter technological
difficulties in creating detectors and atomic clouds of such a
small size. Otherwise, the ports overlap and parasitic signals
occur. For example, a port caused by the interference of the
blue-orange and red-purple branches (see Fig. 3) results in a
parasitic signal

�w = β cos(α′′ + 2k · gT 2). (14)

With a larger number of auxiliary pulses, the role of
parasitic terms can increase even more. Thus, for precision
interferometry, it is necessary to use such beam splitters that
satisfy requirements (i) and (ii) with the greatest accuracy.
To satisfy requirement (i), it is enough to adjust the Raman
frequency detuning of a given pulse to the frequency of the
transition between the atomic momentum states before and
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after the action of the field, while for requirement (ii) we
propose in this paper to use Rabi oscillations [54] instead of
the Bragg regime [30]. For the nonresonant branch, one can
find such a pulse duration

τ ∼ ω−1
k (15)

at which the probability of state splitting on this branch will
be exactly 0. Below we find this duration for a rectangular
Raman pulse and calculate the phase of the MZAI.

Since the pulse on the resonant branch must have an area
π , the effective Rabi frequency 
 of a two-quantum transition
between atomic states for auxiliary pulses may not coincide
with the Rabi frequency for the main pulses. This, to a certain
extent, is a technological challenge: the implementation of
SLMT with sets of pulses having different intensities and
durations. To circumvent this difficulty, we propose to use
composite pulses [55], and we consider only noncontigious
composite pulses (NCPs) [56]. These pulses, as in Ref. [30],
must be in resonance with atomic transitions |p + mh̄k〉 ↔
|p + (m − 1)h̄k〉, where m > 1 is an integer; their frequencies
differ from the frequencies of the main pulses, resonant to
transitions |p〉 ↔ |p + h̄k〉, and they also differ from each
other. However, the Rabi frequency for all pulses is the same
and the sum of the pulse durations in a given NCP should be
equal to 2τ , where τ is the duration of the first and third main
π
2 pulses. If the composite pulse consists of two rectangular
pulses, then each of them can have a duration τ .

Below we consider the NCP consisting of three rectangular
pulses. If the durations of the first and third pulses coincide,
then obviously the duration of each of the rectangular pulses
can vary in the range [0, τ ]. Under the action of a composite
pulse, the atom performs Rabi oscillations during each of the
pulses and nutation of atomic coherence takes place in the
time between rectangular pulses. Below we find such delay
between pulses

τb ∼ ω−1
k , (16)

under which, owing to a combination of nutation and Rabi
oscillations, requirement (ii) is satisfied precisely.

B. Recoil phase

It is well known that atomic interference is caused by the
quantization of the motion of the atomic center of mass. When
the incident atomic momentum state |p〉 splits into two states
|p〉 and |p + h̄k〉 after passing through the beam splitter, the
coherence between these states evolves as

ρ(p + h̄k, p, t ) ∝ exp(−iωp+h̄k,pt ), (17)

where the frequency of transition between states

ωp+h̄k,p = 1

2Mh̄
[(p + h̄k)2 − p2] = ωD + ωk, (18a)

ωD = k · p
M

, (18b)

along with the Doppler frequency shift ωD, contains a quan-
tum term, the recoil frequency (2). If t ∼ T one can expect
that the AI phase contains Doppler and quantum terms

φD ∼ ωDT, (19a)

φq ∼ ωkT . (19b)

Despite this, the phase of the well-known and widely used
MZAI does not contain any quantum term in a uniform gravity
field [see Eq. (6b) for n = 0]. The reason is that, although
quantum corrections affect changes in the atom’s coordinates
at the moments of interaction with the second and third
beam splitters, the corresponding quantum terms compensate
each other in a uniform gravity field (see Appendix A in
Ref. [57]). We would like to emphasize that the derivation
of the expression for the AI phase is purely quantum (see
examples of this derivation in Refs. [40,57,58]), but the result
of these derivations, Eq. (6b), is purely classical. The absence
of a quantum phase (19b) allows one to be in doubt that
the MZAI phase is caused by the matter-wave interference
(a sentiment held by the present author). Examples of the
derivation of the expression for the phase without using the
atomic center-of-mass motion quantization can be found in
[59].

The quantum contribution arises in the rotating reference
frame [60], in the nonuniform gravity field in the presence
of the gravity-gradient tensor [61,62], in the presence of
the gravity-gradient tensor of the second order [63], or in a
strongly inhomogeneous source mass field [63]. The quantum
term in the gravity-gradient field of the source mass was
observed in [64] using the LMT method. In all these cases,
the magnitude of the quantum terms is small compared to the
phase φq in Eq. (19b). We predict here that the situation may
change dramatically in the presence of auxiliary pulses. If the
ultimate goal is not to create a high-precision gravimeter, but,
as in [64], to observe the quantum term, and the timing of
these pulses is comparable to the interrogation time T , then
the quantum term turns out to be large and grows as n/ln n
with increasing momentum transfer.

It should be noted, however, that the quantum term does
not arise if, as in the experiments in [30,33,53], the auxiliary
pulses are equidistant in time. With nonequidistant timing, the
quantum term does not depend on the shape and duration of
the pulse; it is the same for the rectangular pulses considered
here, as well as in the Bragg regime [30]. However, for SLMT
in the Raman-Nath approximation (4), for the both Raman
beam splitters and atomic clocks [33], the quantum term must
be recalculated.

C. Article structure

In this article, we use the Schrödinger equation in momen-
tum space. In contrast to the same approach in Refs. [57,65],
here we take into account the motion of the atom during the
time of interaction with the pulse.

The overall plan of the paper is as follows. In the next sec-
tion we use the solutions of the Schrödinger equation for the
interaction of an atom with a rectangular pulse to determine
the parameters of the NCPs, consisting of one, two, and three
rectangular pulses. In Sec. III we calculate the MZAI phase.
In Sec. IV we consider two types of quantum parts of MZAI
phases. In Sec. V, an expression for the gravity part of the
MZAI phase is obtained. We calculate the part of the gravity
phase, independent of the duration of the main and auxiliary
pulses, and corrections linear in these durations.
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FIG. 4. Atomic level diagram.

II. MAIN RELATIONS

Let us consider the interaction of a three-level atom with
the pulse of the field of two traveling waves resonant to adja-
cent atomic transitions

E(x, t ) = (E1 exp{i[q1 · x − ω1t − φ1(t )]}
+ E2 exp{i[q2 · x − ω2t − φ2(t )]}) f (t ) + c.c.,

(20)

where Ei, qi, ωi, and φi(t ) are the amplitudes, wave vectors,
frequencies, and phases of the waves, respectively, and f (t )
is the shape of the pulse acting at the moment T and having
a duration τ . We assume that the two atomic states |g〉 and

|e〉 are sublevels of the hyperfine structure of the ground-state
manifold of the atom, while the third state |o〉 is a sublevel of
the excited-state manifold; the fields E1 and E2 are resonant
to the atomic transitions g → o and e → o (see Fig. 4). The
location of the sublevels |g〉 and |e〉 on the atomic energy
diagram is not important. However, we consider sublevels |g〉
and |e〉 to be ground and excited. The Hamiltonian of the
interaction of an atom with a field is

H = p2

2M
− Mg · x + h̄

2
(
1 exp{i[q1 · x − �1t − φ1(t )]}

× |o〉〈g| + 
2 exp{i[q2 · x − �2t − φ2(t )]}
× |o〉〈e| + H.c.) f (t ), (21)

where p is the momentum of the atom; g is the gravity field;


1 ≡ −2
dog·E1

h̄
, (22a)


2 ≡ −2
doe·E2

h̄
(22b)

are the Rabi frequencies of atomic transitions, with d the
dipole moment operator; and

�1 = ω1 − ωog, (23a)

�2 = ω2 − ωoe (23b)

are frequency detunings of the fields. The amplitudes of
atomic levels evolve as

i∂t ã(e, p, t ) =
(

p2

2Mh̄
− iMg · ∂p

)
ã(e, p, t ) + 
∗

2

2
exp{i[�2t + φ2(t )]} f (t )ã(o, p + h̄q2, t ), (24a)

i∂t ã(g, p, t ) =
(

p2

2Mh̄
− iMg · ∂p

)
ã(g, p, t ) + 
∗

1

2
exp{i[�1t + φ1(t )]} f (t )ã(o, p + h̄q1, t ), (24b)

i∂t ã(o, p, t ) =
(

p2

2Mh̄
− iMg · ∂p

)
ã(o, p, t ) + 
1

2
exp{−i[�1t + φ1(t )]} f (t )ã(g, p − h̄q1, t )

+
2

2
exp{−i[�2t + φ2(t )]} f (t )ã(e, p − h̄q2, t ). (24c)

One assumes that the frequency detuning is large enough

�1 ≈ �2 ≈ �, (25a)

|�| � max{|δ̃|, τ−1
f , |φ̇i|, |qi · g|T, |ωD|, ωk}, (25b)

where

δ̃ = �1 − �2 (26)

is a Raman detuning and τ f is the duration of the forward and backward fronts of the pulse. At this assumption one finds the
expression for the level |o〉 amplitude [66]

ã(o, p, t ) = f (t )

2�
(
1 exp{−i[�1t + φ1(t )]}ã(g, p − h̄q1, t ) + 
2 exp{−i[�2t + φ2(t )]}ã(e, p − h̄q2, t )). (27)
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Then for the amplitudes of the ground-state sublevels one gets

i∂t ã(e, p, t ) =
(

p2

2Mh̄
− iMg · ∂p + |
2|2

4�

)
ã(e, p, t ) + 


2
exp{−i[δ̃t + φ(t )]} f 2(t )ã(g, p − h̄k, t ), (28a)

i∂t ã(g, p, t ) =
(

p2

2Mh̄
− iMg · ∂p + |
1|2

4�

)
ã(g, p, t ) + 
∗

2
exp{i[δ̃t + φ(t )]} f 2(t )ã(e, p + h̄k, t ), (28b)

where

k = q1 − q2, (29a)


 = 
1

∗
2

2�
, (29b)

φ(t ) = φ1(t ) − φ2(t ) (29c)

are the effective wave vector, the Rabi frequency, and the phase of the Raman beam splitter, respectively. Eliminating the ac
Stark shift by a transformation to a rotating interaction picture, i.e., by introducing the amplitudes(

ã(e, p, t )

ã(g, p, t )

)
= exp

[
− i

4�

∫ t

dt ′
(

|
2|2
|
1|2

)
f 2(t ′)

](
a(e, p, t )

a(g, p, t )

)
, (30)

one obtains

i

(
∂t + Mg · ∂p + i

p2

2Mh̄

)
a(e, p, t ) = 


2
f 2(t ) exp[−iδt − iφ(t )]a(g, p − h̄k, t ), (31a)

i

(
∂t + Mg · ∂p + i

p2

2Mh̄

)
a(g, p, t ) = 
∗

2
f 2(t ) exp[iδt + iφ(t )]a(e, p + h̄k, t ), (31b)

where

δ = δ̃ − δS, (32a)

δS = |
2|2 − |
1|2
4�

(32b)

is the ac Stark shift of the Raman line. The presence of an ac Stark shift would significantly complicate the present study. We
will assume that this shift is absent. Experimental methods for eliminating the ac Stark shift were developed in Refs. [67,68]. If,
for example, the Raman pulse has an area π

2 , then from the equation δS = 0 and Eq. (29b) one has

|
1| =
√

π |�|
τ

. (33)

At typical values of � = 2π × 10 GHz and τ = 30 µs, the parameter

|
1|/� ≈ 7 × 10−4 (34)

is small enough to neglect the ac Stark splitting of optical transitions e → o and g → o [69].
In an accelerated frame

p = P + Mgt, (35)

using the atom’s initial momentum P as the independent variable, one gets

i

(
d

dt
+ i

(P + Mgt )2

2Mh̄

)
a(e, P, t ) = 


2
f 2(t ) exp[−iδt − iφ(t )]a(g, P − h̄k, t ), (36a)

i

(
d

dt
+ i

(P + Mgt )2

2Mh̄

)
a(g, P, t ) = 
∗

2
f 2(t ) exp[iδt + iφ(t )]a(e, P + h̄k, t ). (36b)

Then one finds that in the interaction representation

a(n, P, t ) = exp

(
−i
∫ t

0
dt ′ (P + Mgt ′)2

2Mh̄

)
c(n, P, t ) (37)

the state vector

c(P, t ) =
(

c
(
e, P + h̄k

2 , t
)

c
(
g, P − h̄k

2 , t
)
)

(38)
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evolves as

iċ = f 2(t )

2

(
0 
 exp

{−i
[
δt + φ(t ) − k · P

M t − 1
2 k · gt2

]}

∗ exp

{
i
[
δt + φ(t ) − k · P

M t − 1
2 k · gt2

]}
0

)
c. (39)

One sees that in the accelerated frame the amplitude of the
atomic state remains unchanged outside the field pulse

c(P, t ) = const at t < T or t > T + τ. (40)

If one chirps the field frequency linearly, i.e., if

φ(t ) = φ + αt2/2, (41)

and if the chirping rate α is close to k · g,

|α − k · g|τ 2 � 1, (42)

then, considering Eq. (39) when

t = T + ε, (43)

where

ε ∼ τ � T, (44)

and neglecting terms quadratic in ε in the phase factors in
Eq. (39), one arrives at the well-known equation for the am-
plitudes of a two-level atom interacting with the pulse of the
field of arbitrary shape with constant frequency and phase

i
dc

dε
= f 2(T + ε)

2

×
(

0 
 exp{−i[νε+φ(P)]}

∗ exp{i[νε+φ(P)]} 0

)
c,

(45)

where

ν ≡ δ(P) = ν (0) + ν (1), (46a)

ν (0) ≡ δ(0)(P) = δ − k · P
M

, (46b)

ν (1) = −(k · g − α)T, (46c)

φ(P) = φ + ν (0)T − 1
2 (k · g − α)T 2. (46d)

After unitary transformation

c = U φ b̃, (47)

where the matrix U is given by

U φ =
(

exp
[− i

2φ(P)
]

0

0 exp
[

i
2φ(P)

]
)

, (48)

one arrives at the phase-independent equation

i
db̃

dε
= f 2(T + ε)

2

(
0 
 exp(−iνε)


∗ exp(iνε) 0

)
b̃. (49)

In the AI phase, the factor exp[± i
2φ(P)] will be responsible

for the Doppler and quantum phases (19), for the gravity phase
(6b), and for the Ramsey phase

φR ∼ δT . (50)

One might conclude that the results to be obtained below for
the quantum, gravity, and Ramsey phases are independent of

the pulse shape f (t ) and do not change from the Raman-Nath
regime (4) to the Bragg regime (1).

Consider now an NCP consisting of � time-separated rect-
angular pulses

f (T + ε) =
{

1 for ε ∈ ⋃�
m=1(τ0,m, τ0,m + τm)

0 in other cases,
(51)

where one turns on a pulse of duration τm at time T + τ0,m so
that

τ0,m =
m−1∑
m′=1

(τm′ + τbm′ ), (52)

where τbm is the delay time between adjacent pulses m and
m + 1. After the next unitary transformation

b̃ = U δb, (53a)

Uδ =
(

exp
(− i

2νε
)

0

0 exp
(

i
2νε

)
)

, (53b)

one finds

i
db

dε
= hb, (54a)

h = 1

2

(−ν 



∗ +ν

)
. (54b)

The solution of this equation is well known. One can achieve
it using composite rotation matrices. Alternatively, one can
represent the h matrix as

h = h · σ ,

where

h = 1
2 {Re 
,− Im 
,−ν}

and σ = {σ 1, σ 2, σ 3}, with σ i the Pauli matrix, and for the s
matrix σ = exp(−iht ) use the expression [70]

f (h · σ ) = 1

2

(
f (h) + f (−h) + h · σ

h
[ f (h) − f (−h)]

)
.

(55)

Immediately after the action of the pulse m, the wave function
of the atom is

b(T + τ0,m + τm) = σ (τm)b(T + τ0,m), (56a)

σ (τ ) =
(

sd (τ ) −isa(τ )
−is∗

a(τ ) s∗
d (τ )

)
, (56b)

sd (τ ) = cos

rτ

2
+ i

ν


r
sin


rτ

2
, (56c)

sa(τ ) = 



r
sin


rτ

2
, (56d)


r =
√

|
|2 + ν2. (56e)

063308-7



B. DUBETSKY PHYSICAL REVIEW A 108, 063308 (2023)

Hence, for 
 = 0, corresponding to the time between pulses
τbm, the s matrix is

sbm =
(

exp
(

i
2ντbm

)
0

0 exp
(− i

2ντbm
)
)

. (57)

The numbering of auxiliary NCPs {ζ , β} will be introduced
below in Sec. III, where we verify that either the pulse dura-
tion at � = 1 or the distance between pulses at � > 1 depends
on the Raman detuning ν on the nonresonant branch of the

recoil diagram so that the total time of action of this NCP is a
function of four parameters {ν, ζ , β, �}, for which one has

τ (ν, ζ , β, �) = τ� +
�−1∑
m=1

(τm + τbm). (58)

For the s matrix one has

s = σ (τ�)sb(�−1)σ (τ�−1) · · · sb1σ (τ1). (59)

Now, returning to the state vector (38) and to the laboratory
frame,

P = p+,T +τ (ν,ζ ,β,�), (60a)

pt ≡ p − Mgt, (60b)

one arrives at the next result

c(e, p+, T + τ (ν, ζ , β, �)) = See

(
p+,T +τ (ν,ζ ,β,�) − h̄k

2

)
c(e, p−, T ) + Seg

(
p+,T +τ (ν,ζ ,β,�) − h̄k

2

)
c(g, p− − h̄k, T ), (61a)

c(g, p+, T + τ (ν, ζ , β, �)) = Sge

(
p+,T +τ (ν,ζ ,β,�) + h̄k

2

)
c(e, p− + h̄k, T ) + Sgg

(
p+,T +τ (ν,ζ ,β,�) + h̄k

2

)
c(g, p−, T ), (61b)

where

S(P) =
(

ŝee exp[−iφ(P)]ŝeg

exp[iφ(P)]ŝge ŝgg

)
, (62a)

ŝ =
(

exp
[− i

2ντ (ν, ζ , β, �)
]
see exp

[− i
2ντ (ν, ζ , β, �)

]
seg

exp
[

i
2ντ (ν, ζ , β, �)

]
sge exp

[
i
2ντ (ν, ζ , β, �)

]
sgg

)
, (62b)

where sαβ is a matrix element of the s matrix (59).
The momentum of the atom changes due to the transfer of the momentum of the photon ±h̄k and under the action of

gravitation g. The change in the momentum of the atom under the action of a uniform gravitational field does not depend on the
initial value of the momentum [see Eq. (60b)] and therefore does not depend on the momentum of the photon transferred to the
atom. This allows one to represent the momenta of an atom as

p± = p′
± + Nh̄k, (63)

where N is the total number of photon momenta transferred to the atom at a given point in the recoil diagram. Below we omit
the prime in the expressions for momenta. If the effective wave vector of a given NCP is equal to ±k, then, keeping in mind the
redefinition (63), one obtains, instead of Eqs. (61),

c(e, p+ + Nh̄k, T + τ (ν, ζ , β, �)) = See

(
p+,T +τ (ν,ζ ,β,�) + (2N ∓ 1)

h̄k
2

)
c(e, p− + Nh̄k, T )

+ Seg

(
p+,T +τ (ν,ζ ,β,�) + (2N ∓ 1)

h̄k
2

)
c(g, p− + (N ∓ 1)h̄k, T ), (64a)

c(g, p+ + Nh̄k, T + τ (ν, ζ , β, �)) = Sge

(
p+,T +τ (ν,ζ ,β,�) + (2N ± 1)

h̄k
2

)
c(e, p− + (N ± 1)h̄k, T )

+ Sgg

(
p+,T +τ (ν,ζ ,β,�) + (2N ± 1)

h̄k
2

)
c(g, p− + Nh̄k, T ). (64b)

The independent variable is the momentum of the atom after
interaction with the NCP, p+. Then from Eqs. (60) it follows
that the momentum of the atom before this interaction is

p− = p+,τ (ν,ζ ,β,�). (65)

One thus takes into account that during the interaction with
the NCP, the atom was accelerated, i.e. before interaction
with a given NCP having a duration τ , the momentum of the
atom p− was smaller by Mgτ than the momentum after the
interaction p+.
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If the NCP {ζ , β} follows the NCP {ζ ′, β ′}, then it follows
from Eq. (40) that

c(p(ζ ,β )
− , Tζ ,β ) = c(p(ζ ′,β ′ )

+ , Tζ ′,β ′ + τ (ν ′, ζ ′, β ′, �′)), (66a)

p(ζ ′,β ′ )
+ = p(ζ ,β )

−,Tζ ,β−Tζ ′ ,β′−τ (ν ′,ζ ′,β ′,�′ ), (66b)

where Tζ ,β is the moment of action of the NCP {ζ , β}, p(ζ ,β )
± is

the atomic momentum before and after the action of this NCP,
and τ (ν ′, ζ ′, β ′, �′) is the duration (58) of the NCP {ζ ′, β ′}.

Equations (66) mean that atomic state c stays unchanged
between NCPs and only atomic momentum changes owing to
gravity.

Knowing p+, one can restore the momenta of atoms before
and after the action of all preceding NCPs applying conse-
quently Eqs. (65) and (66b).

We have not been able to construct an NCP that satisfies
requirement (ii) for an arbitrary �. We have done this only for
the simplest cases � = 1, 2, and 3. Let us consider these cases
separately.

A. Case � = 1

In this case, s =σ (τ ), where τ is the duration of the NCP
and σ (τ ) is given in Eqs. (56). In Eqs. (46) Raman frequency
detuning consists of two terms ν (0) and ν (1). The contribution
to the s matrix (56b) from the term ν (1) can be estimated as

δs = s′ν (1) ∼ (k · g − α)T τ, (67)

where

s′ ≡ ∂s/∂ν (68)

and we take into account that the characteristic size of the
s-matrix dependence on ν is of the order of τ−1. The pa-
rameter (k · g − α)T τ is responsible for the corrections to the
MZAI phase caused by the finite duration of the Raman pulses
[71–73]. We consider this parameter to be small,

δφ ∼ |k · g − α|T τ � 1, (69)

and calculate the MZAI phase up to a correction linear in τ .
Here and below we reserve the denotations ν and νr for the

Raman frequency detuning on the nonresonant and resonant
branches of the recoil diagram, respectively. The effective
Rabi frequency

|
| = π

τ
. (70)

Let us first consider the nonresonant branch of the recoil
diagram. In the zero approximation in δφ we are looking for
such a duration τ of the auxiliary Raman pulse at which the
atom does not change its state with a probability of 100%,

|sgg| = 1. (71)

From Eq. (56c) the solution to this equation is


rτ = 2 jπ, (72)

where j is an arbitrary positive integer. From Eqs. (70) and
(72) one finds that

τ = π

√
4 j2 − 1

|ν (0)| . (73)

In this case, the s matrix is

σ (τ ) = (−1) j I, (74)

where I is the identity matrix. Consider now the amendments
(67). Since

s′
d = − ντ

2
r
sin


rτ

2
+ i

(
1


r
sin


rτ

2
+ ν2τ

2
2
r

cos

rτ

2
− ν2


3
r

sin

rτ

2

)
, (75a)

s′
a = 
ν


r

(
− 1


2
r

sin

rτ

2
+ τ

2
r
cos


rτ

2

)
. (75b)

Then from Eqs. (70) and (72) one gets that, taking into account corrections linear in τ , the s matrix is

s =
(

exp
{
i
[
η

(1)
0 − η

(1)
1 (ν)ν (1)

]} −i(−1) j[π
(4 j2 − 1)/8 j2|
|ν]ν (1)

−i(−1) j[π
∗(4 j2 − 1)/8 j2|
|ν]ν (1) exp
{
i
[
η

(1)
0 + η

(1)
1 (ν)ν (1)

]}
)

, (76a)

η
(1)
0 = jπ, (76b)

η
(1)
1 (ν) = −π (4 j2 − 1)3/2

8 j2|ν| . (76c)

One sees that the correction (46c) due to the small but nonzero
pulse duration results in small off-diagonal s-matrix elements.
This means that even an ideal rectangular pulse leads to a
small splitting of the atomic state on the nonresonant branch
of the recoil diagram. In the following, we will only take into
account the influence of corrections (46c) on the AI phase and
therefore we will neglect the off-diagonal elements of the s
matrix (76a).

Let us now turn to the resonance branch. Here the π

pulse must, with 100% probability, transfer the atom from
one internal state to another while transmitting the momen-
tum ±h̄k. However, at ν = 0, from Eqs. (75), derivatives
{s′

d , s′
a} = {i τ

π
, 0} so that

s =
(

iτν (1)
r /π −i exp(i arg 
)

−i exp(−i arg 
) −iτν (1)
r /π

)
. (77)
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One sees that the mirror, the resonant π pulse, ceases to
be ideal owing to the finite duration of the pulse. With a
small amplitude linear in this duration, the momentum of the
atom and its internal state remain unchanged. The diagonal
elements of the s matrix (77) do not affect the phase of the
MZAI and we neglect them below.

B. Case � = 2

We have already noted that the disadvantage of a single
Raman pulse is that for each new value of the Raman de-
tuning ν (0) one must change the pulse duration according to
Eq. (73) and then change the Rabi frequency according to
Eq. (70). For � > 1 we will consider NCPs, in which the Rabi
frequency is the same as that of the main pulses, and for given
durations of rectangular pulses τm (m = 1, . . . , �), condition
(ii) is reached owing to properly chosen time delays between
pulses τbm (m = 1, . . . , � − 1). Here and below we reserve the
denotation τ only for the duration of the first main π

2 pulse, so
for all pulses the magnitude of the Rabi frequency is

|
| = π

2τ
. (78)

1. Resonant branch ν(0)
r = 0

For the s matrix (57) one obtains

sbm = I + i

2
ν (1)τbmσ 3, (79)

where σ 3 is the Pauli matrix. Then

s = σ

(
�∑

m=1

τm

)
+ δsb, (80a)

δsb = i

2
ν (1)

�−1∑
m=1

τbmσ

⎛
⎝ �∑

m′=m+1

τm′

⎞
⎠σ 3σ

(
m∑

m′=1

τm′

)
. (80b)

Here we have used the law of multiplication for s matrices,

σ (τm)σ (τm−1) = σ (τm + τm−1). (81)

In order for the NCP to be a π pulse, it is necessary that the
sum of durations τm be equal to 2τ ,

�∑
m=1

τm = 2τ. (82)

Then, after the change τ → 2τ in Eq. (77), one will obtain

σ (2τ ) =
(

2iτν (1)
r /π −i exp(i arg 
)

−i exp(−i arg 
) −2iτν (1)
r /π

)
. (83)

For � = 2 we have considered only the symmetric case, when
two rectangular pulses have the same duration

τ1 = τ2 = τ (84)

when δsb = i
2ν (1)τbσ 3, with τb ≡ τb1, and therefore

s =
(

i(2τ/π + τb/2)ν (1)
r −i exp(i arg 
)

−i exp(−i arg 
) −i(2τ/π + τb/2)ν (1)
r

)
. (85)

2. Nonresonant branch

In this case one will get for the s matrix (59)

s = σ (τ )sb1σ (τ ), (86)

where σ (τ ) and sb1 are given by Eqs. (56) and (57). Multiplying the matrices, one gets

s =
(

exp
(

i
2ντb

)
s2

d − exp
(− i

2ντb
)|sa|2 −i exp

(
i
2ντb

)
sasd − i exp

(− i
2ντb

)
sas∗

d

−i exp
(

i
2ντb

)
s∗

asd − i exp
(− i

2ντb
)
s∗

as∗
d exp

(− i
2ντb

)
s∗2

d − exp
(

i
2ντb

)|sa|2
)

. (87)

One sees that for equal durations τ1 and τ2,

see = s∗
gg, (88a)

sge = exp(−2i arg 
)seg. (88b)

Condition (ii) is satisfied if the delay between pulses, τb, is the root of the equation

seg = 0. (89)

Subject to Eq. (78), one gets

τb = τ (2)( j, ν) = 1

ν

[
−2 arctan

(
2ντ√

π2 + 4ν2τ 2
tan

1

4

√
π2 + 4ν2τ 2

)
+ sgn(ν)(2 j + 1)π

]
. (90)

Since τb > 0, then j must be a non-negative integer.
In contrast to the SLMT in the Bragg regime [30], in our case, although the NCP does not excite the atom and does not change

its momentum, it leads to the appearance of a phase factor in the atomic wave function. From Eqs. (87) and (90) one will get for
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this factor

sgg = exp
{
i
[
η

(2)
0 + η

(2)
0 (ν)

]}
, (91a)

η
(2)
0 =

[
j − 1

2
sgn(ν)

]
π, (91b)

η
(2)
0 (ν) = − arctan

[
2ντ√

π2 + 4ν2τ 2
tan

(
1

4

√
π2 + 4ν2τ 2

)]
. (91c)

Let us now turn to the calculation of the correction (67). Direct calculation of the derivative (68) turned out to be unproductive.
Note, however, that the s matrix is a function of two variables ν and τb and therefore

d

dν
s|τb=τ (2) ( j,ν) = s′ + ∂s

∂τb

∣∣∣∣
τb=τ (2) ( j,ν)

dτ (2)( j, ν)

dν
. (92)

From Eqs. (91a), (90), and (87) it follows, correspondingly, that

d

dν
sgg|τb=τ (2) ( j,ν) = −isgg Im

s′
d

sd
, (93a)

dτ (2)( j, ν)

dν
= −1

ν
τ (2)( j, ν) − 2

ν
Im

(
s′

d

sd

)
, (93b)

∂sgg

∂τb

∣∣∣∣
τb=τ (2) ( j,ν)

= i

2
νsgg(|sa|2 − |sd |2), (93c)

and substituting these values into Eq. (92), one calculates consequently s′
gg and δsgg. The correction δseg is calculated in a similar

way. As a result, taking into account Eqs. (88), one arrives at the following expression for the s matrix:

s =
⎛
⎝exp

{−i
[
η

(2)
0 + η

(2)
0 (ν (0) ) + η

(2)
1 (ν (0) )ν (1)

]} −(−1) j sgn(ν (0) )sa|sd |
[
τb + 2 Im

( s′
d

sd

)]
ν (1)

−(−1) j sgn(ν (0) )s∗
a|sd |

[
τb + 2 Im

( s′
d

sd

)]
ν (1) exp

{
i
[
η

(2)
0 + η

(2)
0 (ν (0) ) + η

(2)
1 (ν (0) )ν (1)

]}
⎞
⎠, (94a)

η
(2)
1 (ν) = −τ (2)( j, ν)

2
(|sd |2 − |sa|2) − 2|sd |2 Im

s′
d

sd
. (94b)

As in the preceding section, we will further neglect the diagonal elements of the resonant s matrix (85) and the off-diagonal
elements of the nonresonant s matrix (94a).

C. Case � = 3

Here we also consider only the symmetric case, when

τ3 = τ1, (95a)

τ2 = 2(τ − τ1), (95b)

τb1 = τb2 ≡ τb. (95c)

1. Resonant branch ν(0)
r = 0

Here the σ matrix is given in Eq. (83). Then, computing the matrix (80b) using Eqs. (56c), (56d), and (95), one arrives at the
following expression for the resonant s matrix:

s =
(

iν (1)
r

{
τb cos

[
π
2

(
1 − τ1

τ

)]+ 2 τ
π

} −i exp(i arg 
)

−i exp(−i arg 
) −iν (1)
r

{
τb cos

[
π
2

(
1 − τ1

τ

)]+ 2 τ
π

}
)

. (96)

2. Nonresonant branch

In this case, the s matrix (59) is given by

s = σ (τ1)sbσ (τ2)sbσ (τ1), (97)

where σ (τ ) and sb are given by Eqs. (56) and (57). Taking into account the fact that the effective Rabi frequency 
 does not
change for all components of the symmetric NCP of rectangular pulses and multiplying the matrices in Eq. (97), one arrives at

063308-11



B. DUBETSKY PHYSICAL REVIEW A 108, 063308 (2023)

the result

s =
(

exp(iντb)s2
d1sd2 − exp(−iντb)|sa1|2s∗

d2 − 2sd1|sa2sa1| −i{2sa1 Re[exp(iντb)sd1sd2] + sa2(|sd1|2 − |sa1|2)}
−i{s∗

a12 Re[exp(iντb)sd2sd1] + s∗
a2(|sd1|2 − |sa1|2)} exp(−iντb)s∗2

d1s∗
d2 − exp(iντb)sd2|sa1|2 − 2s∗

d1|sa2sa1|

)
, (98)

where

sdi = sd (τi ), (99a)

sai = sa(τi ). (99b)

If one chooses the delay between rectangular pulses, τb, in such a way that

cos[ντb + arg(sd1sd2)] = |sa2|(|sa1|2 − |sd1|2)

2|sa1sd1sd2| , (100)

then seg = 0 and therefore the NCP satisfies requirement (ii). Figure 5 shows (in gray) the range for which Eq. (100) has a
solution.

The solution of the Eq. (100) is given by

τb = 1

2
τ (3± )( j, ν), (101a)

τ (3± )( j, ν) = 2

ν

(
± arccos

|sa2|(|sa1|2 − |sd1|2)

2|sa1sd1sd2| − arctan
Im(sd1sd2)

Re(sd1sd2)
+ 2 jπ

)
, (101b)

where for each value of ν the integer j can take only those values for which τb > 0. Hence, the wave function of the atom in the
ground state, after the action of the NCP, acquires the phase factor

sgg = exp
[
iη(3± )

0 + iη(3± )
0 (ν)

]
, (102a)

η
(3± )
0 = π, (102b)

η
(3± )
0 (ν) = − arctan

(
2τν√

π2 + 4ν2τ 2
tan

τ1

4τ

√
π2 + 4ν2τ 2

)
± arccos

1

2

∣∣∣∣ sa2

sa1sd1

∣∣∣∣. (102c)

To calculate linear in ν (1) corrections, one can use the equality (92), in which one should make the substitution

τ (2)( j, ν) → 1
2τ (3± )( j, ν). (103)

From Eqs. (102a) and (98) it follows that

d

dν
sgg|τb=0.5τ (3± ) ( j,ν) = i

dη
(3± )
0 (ν)

dν
sgg|τb=0.5τ (3± ) ( j,ν), (104a)

∂sgg

∂τb

∣∣∣∣
τb=0.5τ (3± ) ( j,ν)

= iν(|sa1|2 − |sd1|2)sgg|τb=0.5τ (3± ) ( j,ν), (104b)

respectively. These expressions allow one to extract s′
gg from Eq. (92) [taking into account the replacement (103)] and get δsgg.

Computing the off-diagonal element seg in a similar way, one arrives at the result

s =
(

exp
[−iη(3± )

0 − iη(3± )
0 (ν) − iη(3± )

1 (ν)ν1
] ∓i exp(i arg 
) dτ (3± )

dν

√
4|sa1|2|sd1|2 − |sa2|2ν (0)ν (1)

∓i exp(−i arg 
) dτ (3± )

dν

√
4|sa1|2|sd1|2 − |sa2|2ν (0)ν (1) exp

[
iη(3± )

0 + iη(3± )
0 (ν) + iη(3± )

1 (ν)ν1]

)
,

(105a)

η
(3± )
1 (ν) = dη

(3± )
0 (ν)

dν
− ν

2
(|sa1|2 − |sd1|2)

dτ (3± )( j, ν)

dν
. (105b)

From Eqs. (58) and (73) the total NCP duration is given by

τ (ν, ζ , β, 1) = π

√
4 j2

ζ ,β,1 − 1

|ν| , (106a)

τ (ν, ζ , β, 2) = 2τ + τ (2)( jζ ,β,2, ν), (106b)

τ (ν, ζ , β, 3±) = 2τ + τ (3± )( jζ ,β,3± , ν), (106c)

with τ (2)( j, ν) and τ (3± )( j, ν) given in Eqs. (90) and (101b), respectively.
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FIG. 5. For a given value of the Raman detuning ν, the duration
of the first and third rectangular pulses should be in the gray area.
The straight line corresponds to pulses of equal duration, τ1 = τ2 =
τ3 = 2

3 τ , when the solution (100) exists for any ν.

III. PHASE

Consider the interaction of an atomic cloud with a se-
quence of three main resonant Raman pulses π/2 − π −
π/2, acting at the moments {T1,0, T2,0, T3,0}, having duration

τ − 2τ − τ and effective wave vector k. Suppose that the
atom was launched at t = 0 in the ground state, i.e., at t <

T1,0,

c(e, p, t ) = 0, (107a)

c(g, p, t ) = √
fg(p), (107b)

where fg(p) is the momentum distribution function in the
atomic cloud. Below, up to Eq. (136), to simplify the cal-
culation, we omit the factor

√
fg(p). Regarding the auxiliary

Raman π pulses, we will assume that there is an even number
of them 2n in each of the four sets. All pulses, main and
auxiliary, are numbered with integers {ζ , β}, where 1� ζ � 3.
The numbers of the main pulses are {ζ , 0}, and for the auxil-
iary NCPs at ζ = 1 the values 1 � β � 2n correspond to the
set following the first main π/2 pulse, at ζ = 2 the values
−2n � β � −1 and 1 � β � 2n correspond to the pulses that
preceded or followed after the second main π pulse, and at
ζ = 3 the values −2n � β � −1 correspond to the set pre-
ceding the third main π/2 pulse. Each of the pulses is an NCP,
consisting of 1 � �ζ,β � 3 rectangular pulses. The effective
wave vector and momentum chirp rate are

kζ ,β = (−1)βk, (108a)

αζ,β = (−1)βα (108b)

and the total duration τ (ν, ζ , β, �ζ ,β ) for auxiliary NCPs is
given in Eqs. (106); for the main pulses there are

τ (0, 1, 0, 1) = τ (0, 2, 0, 1)/2 = τ (0, 3, 0, 1) = τ. (109)

Here one takes into account that the main pulses are resonant
for the blue and red branches of the recoil diagram, i.e., for
them ν (0) = 0. In our calculations, we take into account the fi-
nite durations of the Raman pulses. For their timing, following
Ref. [71], we introduce a delay time between pulses

dζ ,m ≡
{

Tζ ,m − Tζ ,m−1 − τ (ν, ζ , m − 1, �ζ ,m−1) for − 2n < m � 2n

T ≡ Tζ ,−2n − Tζ−1,2n − τ (ν, ζ − 1, 2n, �ζ−1,2n) for m = −2n, ζ > 1,
(110)

i.e., we define the interrogation time T as the time between the end of the last auxiliary NCP {1, 2n} and the beginning of the
first auxiliary NCP {2,−2n}, which coincides with the time between the end of the last auxiliary NCP {2, 2n} and the beginning
of the first auxiliary NCP {3,−2n}. From the given T1,0, delays between NCPs (110) and their durations (106) and (109) one can
make up the full timing, the moments of action of each of the pulses Tζ ,β . One can represent them as

Tζ ,β = T (0)
ζ ,β + ϒζ,β, (111)

where T (0)
ζ ,β is T1,0 plus the sum of all preceding delays, while ϒζ,β is the sum of the durations of all preceding pulses.

In this article, we neglect the deviations of pulses from the ideal shape and duration calculated below. Therefore, the gray
lines on the recoil diagram associated with these deviations do not appear. We also assume negligible diagonal elements in s
matrices (77), (85), and (96) and off-diagonal elements in s matrices (76a), (94a), and (105a). So the gray lines associated with
the finite duration of the Raman pulses do not appear either. As a result, only two branches, blue and red, remain on the recoil
diagram. In this case, the wave function of an atom is a column,

χ =
(

χb

χr

)
. (112)

After the action of the π/2 pulse {1, 0} from Eqs. (61) and (107) one will find that this column is(
c(e, p(1,0)

+ + h̄k, T1,0 + τ )

c(g, p(1,0)
+ , T1,0 + τ )

)
=
⎛
⎝S(1,0)

eg (p(1,0)
+,T1,0+τ + h̄k/2)

S(1,0)
gg (p(1,0)

+,T1,0+τ + h̄k/2)

⎞
⎠, (113)
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where the matrix S(P) is given in Eq. (62a). At resonance, when

ν (0)
r = δ

(0)
1,0

(
p(1,0)

+,T1,0+τ + h̄k/2
) = δ1,0 − k

M
· p(1,0)

+,T1,0+τ − ωk ≈ 0 (114)

and |
1,0| given in Eq. (78), from Eqs. (56b), (46a), (46d), and (75a) it follows that

s = 1√
2

(
1 −i exp(i arg 
1,0)

−i exp(i arg 
1,0) 1

)
, (115a)

ν (0)
r = δ1,0 − k

M
· p(1,0)

+,T1,0+τ − ωk, (115b)

νr = −(k · g − α)T1,0, (115c)

φ1,0
(
p(1,0)

+,T1,0+τ + h̄k/2
) = φ1,0 +

(
δ1,0 − k

M
·p(1,0)

+,T1,0+τ − ωk

)
T1,0 − 1

2
(k · g − α)T 2

1,0, (115d)

s′
d = i

√
2

π
, (115e)

respectively. Despite the resonance, we retained the Ramsey term [74] [the second term in the expression for the phase (115d)].
For resonance it is enough that ∣∣ν (0)

r

∣∣ � τ−1. (116)

If

T1,0 ∼ T � τ, (117)

then, despite the resonance condition, one can observe Ramsey fringes at

T −1 �
∣∣ν (0)

r

∣∣ � τ−1. (118)

From Eqs. (113), (62), and (115) one gets(
c(e, p(1,0)

+ + h̄k, T1,0 + τ )

c(g, p(1,0)
+ , T1,0 + τ )

)
= 1√

2

(
exp

(
iψ (b)

1,0

)
exp

(
iψ (r)

1,0

)
)

, (119a)

ψ
(b)
1,0 = −π

2
− φ1,0 + arg 
1,0 −

(
δ1,0 − k

M
· p(1,0)

+,T1,0+τ − ωk

)
T1,0 + 1

2
(k · g − α)T 2

1,0 + 1

2
(k · g − α)T1,0τ, (119b)

ψ
(r)
1,0 =

(
2

π
− 1

2

)
(k · g − α)T1,0τ. (119c)

With the exception of the last beam splitter {3, 0}, all subsequent beam splitters are π pulses. An ideal π pulse does not change
the magnitude of states; only the phases of these states change. These changes, phase augmentations, in sum determine the phase
of the interferometer.

Let us now consider the action of an odd NCP {1, 2m − 1}, for which k1,2m−1 = −k. Before interaction

χ =
(

c(e, π−, T1,2m−1)

c(g, p(1,2m−1)
− , T1,2m−1)

)
= 1√

2

(
exp

(
iψ (b)

1,2m−2

)
exp

(
iψ (r)

1,2m−2

)
)

. (120)

From the recoil diagrams in Figs. 2 and 3 one can conclude that on the resonant branch, for arbitrary m, the preceding Raman
pulses transferred to the atom an odd number of momenta h̄k, i.e.,

π− = p(1,2m−1)
− + (2m − 1)h̄k. (121)

Then, along the blue resonance branch after the NCP, from Eqs. (64b) and (108a) for N = 2m the state of the atom changes as

c(g, π+, T1,2m−1 + τp) = S(1,2m−1)
ge (πs)c(e, π−, T1,2m−1), (122a)

π+ = p(1,2m−1)
+ + 2mh̄k, (122b)

τp = τ (ν, 1, 2m − 1, �1,2m−1), (122c)

πs = π+(4m − 1)h̄k/2, (122d)

π = p(1,2m−1)
+,T1,2m−1+τp

. (122e)
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In this case, under the condition of resonance

ν (0)
r = δ

(0)
1,2m−1(πs) =

{
δ1,2m−1 + k

M
· π

}
+ (4m − 1)ωk ≈ 0, (123a)

νr = (k · g − α)T1,2m−1, (123b)

φ1,2m−1(πs) = φ1,2m−1 +
(

δ1,2m−1 + k
M

· π + (4m − 1)ωk

)
T1,2m−1 + 1

2
(k · g − α)T 2

1,2m−1, (123c)

and then, using the off-diagonal matrix element in the s matrices (77), (83), and (96), from Eqs. (122), (62), and (123) one
obtains

c(g, π+, T1,2m−1 + τp) = 1√
2

exp
(
iψ (b)

1,2m−1

)
, (124a)

ψ
(b)
1,2m−1 = ψ

(b)
1,2m−2 + A(b)

1,2m−1, (124b)

A(b)
1,2m−1 = −π

2
+ φ1,2m−1 − arg 
1,2m−1 +

(
δ1,2m−1 + k

M
·π + (4m − 1)ωk

)
T (0)

1,2m−1

+1

2
(k · g − α)T 2

1,2m−1 + 1

2
(k · g − α)T (0)

1,2m−1τp, (124c)

where A(b)
1,2m−1 is the phase augmentation of the atomic amplitude on the blue branch during interaction with the NCP {1, 2m − 1}.

In the expression (124c) we have replaced

Tζ ,β → T (0)
ζ ,β (125)

in the fourth and last terms. This is because in the resonance condition (116)

|νr |ϒζ,β � 1. (126)

We also took into account that one can neglect the term ϒζ,βτ since it is bilinear in pulse durations.
Consider now the nonresonant red branch, where

c(g, p(1,2m−1)
+ , T1,2m−1 + τp) = S(1,2m−1)

gg (π − h̄k/2)c(g, p(1,2m−1)
− , T1,2m−1). (127)

From Eqs. (46) and (123a) one finds

ν = δ1,2m−1(π − h̄k/2) =
{
δ1,2m−1 + k

M
· π

}
− ωk + (k · g − α)T1,2m−1. (128)

Since the terms in curly brackets in Eqs. (123a) and (128) coincide, then

ν = −4mωk + (k · g − α)T1,2m−1. (129)

Thus, knowing that there is no frequency detuning on the resonant branch of the recoil diagram, one is able to determine the
detuning ν on the nonresonant branch. Since at a negligibly small recoil frequency there is no detuning on both branches, then
at ωk �= 0 the detuning ν is determined only by the recoil frequency and the Doppler frequency shift does not contribute to it.

The second term in Eq. (129) is a small correction associated with the finite duration of the NCP. One sees that in order to
fulfill requirement (ii), the total duration of the NCP must be equal to

τp = τ (−4mωk, 1, 2m − 1, �1,2m−1) (130)

given by Eqs. (106). Then using the matrix element sgg in s matrices (76a), (94a), and (105a), from Eqs. (127), (62), and (129)
one finds that

c(g, p(1,2m−1)
+ , T1,2m−1 + τp) = 1√

2
exp

(
iψ (r)

1,2m−1

)
, (131a)

ψ
(r)
1,2m−1 = ψ

(r)
1,2m−2 + A(r)

1,2m−1, (131b)

A(r)
1,2m−1 = −2mωkτp + η

(�1,2m−1 )
0 + η

(�1,2m−1 )
0 (−4mωk ) +

[
1

2
τp + η

(�1,2m−1 )
1 (−4mωk )

]
(k · g − α)T (0)

1,2m−1, (131c)

where η
(�1,2m−1 )
0 is given by Eqs. (76b), (91b), and (102b);

η
(1)
0 (ν) = 0; (132)

η
(2)
0 (ν) and η

(3± )
0 (ν) are given by Eqs. (91c) and (102c), respectively; and η

(�)
1 (ν) are given by Eqs. (76c), (94b), and (105b). In

the last term, we also made a replacement (125).
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The action of the remaining π pulses can be calculated in a similar way. One can verify that the ideal π pulse {ζ , β}, for
which one assigns the duration exactly according to the expressions (106) and which is in resonance with atomic transitions with
an accuracy much lower than the inverse pulse duration, leads only to phase augmentation of the atomic state amplitudes A(b,r)

ζ ,β .
One arrives at the expressions for these augmentations

A(b)
1,m = −π

2
− (−1)m(φ1,m − arg 
1,m) −

(
(−1)mδ1,m − k

M
· π − (2m + 1)ωk

)
T (0)

1,m

+ 1

2
(k · g − α)T 2

1,m + 1

2
(k · g − α)T (0)

1,mτp, (133a)

A(r)
1,m = (−1)mξmωkτp + η

(�1,m )
0 + η

(�1,m )
0 [(−1)m2ξmωk] − (−1)m

{
1

2
τp + η

(�1,m )
1 [(−1)m2ξmωk]

}
(k · g − α)T (0)

1,m, (133b)

A(b)
2,−m = −π

2
+ (−1)m(φ2,−m − arg 
2,−m) +

(
(−1)mδ2,−m − k

M
· π − (2m + 1)ωk

)
T (0)

2,−m

−1

2
(k · g − α)T 2

2,−m − 1

2
(k · g − α)T (0)

2,−mτp, (133c)

A(r)
2,−m = (−1)mξmωkτp + η

(�2,−m )
0 + η

(�2,−m )
0 [(−1)m2ξmωk] − (−1)m

{
1

2
τp + η

(�2,−m )
1 [(−1)m2ξmωk]

}
(k · g − α)T (0)

2,−m, (133d)

A(b)
2,0 = −π

2
+ φ2,0 − arg 
2,0 +

(
δ2,0 − k

M
· p(2,0)

+,T2,0+2τ − ωk

)
T (0)

2,0 − 1

2
(k · g − α)T 2

2,0 − (k · g − α)T (0)
2,0 τ, (133e)

A(r)
2,0 = −π − A(b)

2,0, (133f)

A(b)
2,m = (−1)mξmωkτp + η

(�2,m )
0 + η

(�2,m )
0 [(−1)m2ξmωk] − (−1)m

{
1

2
τp + η

(�2,m )
1 [(−1)m2ξmωk]

}
(k · g − α)T (0)

2,m, (133g)

A(r)
2,m = −π

2
− (−1)m(φ2,m − arg 
2,m) −

(
(−1)mδ2,m − k

M
· π − (2m + 1)ωk

)
T (0)

2,m

+ 1

2
(k · g − α)T 2

2,m + 1

2
(k · g − α)T (0)

2,mτp, (133h)

A(b)
3,−m = (−1)mξmωkτp + η

(�3,−m )
0 + η

(�3,−m )
0 [(−1)m2ξmωk] − (−1)m

{
1

2
τp + η

(�3,−m )
1 [(−1)m2ξmωk]

}
(k · g − α)T (0)

3,−m, (133i)

A(r)
3,−m = −π

2
+ (−1)m(φ3,−m − arg 
3,−m) +

(
(−1)mδ3,−m − k

M
· π − (2m + 1)ωk

)
T (0)

3,−m

−1

2
(k · g − α)T 2

3,−m − 1

2
(k · g − α)T (0)

3,−mτp, (133j)

where

ξm = m + 1
2 [1 − (−1)m]. (134)

In the expressions for augmentations A(b,r)
ζ ,β the duration of the pulse {ζ , β}, τp, and momentum π are given by

τp = τ [(−1)β2ξβωk, ζ , β, �ζ ,β ], (135a)

π = p(ζ ,β )
+,Tζ ,β+τp

. (135b)

The augmentations (133a), (133c), (133e), (133f), (133h), and (133j) refer to the resonant branch of the recoil diagram, while
the augmentations (133b), (133d), (133g), and (133i) refer to the nonresonant branch.

The factor (−1)m reflects the fact that at the transitions g → e and e → g one uses different off-diagonal elements of the
matrix S in Eq. (62) and for them the signs of the phase factors are opposite. As a result, the terms associated with the detuning δ

change sign. However, at the same time, the terms associated with the Doppler shift and the gravitational field remain unchanged,
because for transitions g → e and e → g one uses opposite effective wave vectors ±k.

Using the augmentations (133), one calculates the phases of the atomic state amplitudes before the action of the third main
π/2 pulse {ψ (b)

3,−1, ψ
(r)
3,−1}. We are interested in the total probability of excitation of atoms in the cloud

w =
∫

dp(3,0)
+ fg(p(3,0)

+ )|c(e, p(3,0)
+ + h̄k, T3,0 + τ )|2, (136)
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where we have restored the factor
√

fg(p) from Eq. (107b). At t = T3,0 + τ the amplitude of an atom in an excited state consists
of blue and red components,

c(e, p(3,0)
+ + h̄k, T3,0 + τ ) = c(b)(e, p(3,0)

+ + h̄k, T3,0 + τ ) + c(r)(e, p(3,0)
+ + h̄k, T3,0 + τ ), (137)

for which one has

c(b)(e, p(3,0)
+ + h̄k, T3,0 + τ ) = S(3,0)

eg

(
p(3,0)

+,T3,0+τ + h̄k/2
)
c(g, p(3,0)

− , T3,0), (138a)

c(r)(e, p(3,0)
+ + h̄k, T3,0 + τ ) = S(3,0)

ee

(
p(3,0)

+,T3,0+τ + h̄k/2
)
c(e, p(3,0)

− + h̄k, T3,0). (138b)

After calculations similar to those used in the derivation of Eqs. (119), one obtains(
c(b)(e, p(3,0)

+ + h̄k, T3,0 + τ )

c(r)(e, p(3,0)
+ + h̄k, T3,0 + τ )

)
= 1

2

(
exp

(
iψ (b)

3,0

)
exp

(
iψ (r)

3,0

)
)

, (139a)

ψ
(b,r)
3,0 = ψ

(b,r)
3,−1 + A(b,r)

3,0 , (139b)

A(b)
3,0 = −π

2
− φ3,0 + arg 
3,0 −

(
δ3,0 − k

M
· p(3,0)

+,T3,0+τ − ωk

)
T (0)

3,0

+ 1

2
(k · g − α)T 2

3,0 + 1

2
(k · g − α)T3,0τ, (139c)

A(r)
3,0 =

(
1

2
− 2

π

)
(k · g − α)T (0)

3,0 τ. (139d)

In Eq. (137) the independent variable is the momentum of the atom after the action of the pulse {3, 0}, p(3,0)
+ . Using Eqs. (65) and

(66b), one can calculate the values of all other momenta in Eqs. (133). Such calculations would be necessary if we were only
interested in one of the ports in Figs. 1–3. The total excitation probability (136) is the sum of the probabilities over all possible
ports. For this response, in Eq. (136) one introduces a new integration variable

pi = p(3,0)
+,T3,0+τ . (140)

From Eq. (60b) it follows that all pulses in Eqs. (133) coincide with pi.
This coincidence is a consequence of the fact that in Eq. (63) one selected in the momentum the parts associated with the

transfer of photon momenta Nh̄k and the momentum that changes only under the action of the gravitational field.
The integrand in Eq. (136) is a rapidly oscillating function momentum pi with a period of the order of M/kT . One chooses

the timing of the pulses in the AI such that these oscillations disappear. If, in addition, the atomic cloud is cooled to such a
temperature that the momentum in the functions of the parameters sd and sa from Eqs. (56) can be considered to be the same as
the average momentum in the cloud, then one will receive

w = 1
2 (1 − cos φ), (141)

where the phase of the atomic interferometer is

φ = π + ψ
(b)
3,0 − ψ

(r)
3,0 = π +

3∑
j=1

Aj,0 +
2n∑

m=1

(A1,m + A2,−m + A2,m + A3,−m), (142a)

Aζ ,β ≡
{

ψ
(b)
1,0 − ψ

(r)
1,0 for {ζ , β} = {1, 0}

A(b)
ζ ,β − A(r)

ζ ,β for {ζ , β} �= {1, 0}. (142b)

Then from Eqs. (119b), (119c), (133), (139c), and (139d) one arrives at the next result

φ = φ̄ + φR + φD + φq + φ̄q + φ(0)
g + φ(1)

g , (143)

where

φ̄ = −φ1,0 + 2φ2,0 − φ3,0 −
2n∑

m=1

{
(−1)m[φ1,m − φ2,−m − φ2,m + φ3,−m] + η

(�1,m )
0 + η

(�2,−m )
0 − η

(�2,m )
0 − η

(�3,−m )
0

}
, (144)

the Ramsey phase

φR = −δ1,0T1,0 + 2δ2,0T (0)
2,0 − δ3,0T (0)

3,0 +
2n∑

m=1

(−1)m
(−δ1,mT (0)

1,m + δ2,−mT (0)
2,−m + δ2,mT (0)

2,m − δ3,−mT (0)
3,−m

)
, (145)
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the Doppler phase

φD = k
M

· pi

(
T1,0 − 2T (0)

2,0 + T (0)
3,0 +

2n∑
m=1

(
T (0)

1,m − T (0)
2,−m − T (0)

2,m + T (0)
3,−m

))
, (146)

the quantum phases

φq = ωk

(
T1,0 − 2T (0)

2,0 + T (0)
3,0 +

2n∑
m=1

(2m + 1)
(
T (0)

1,m − T (0)
2,−m − T (0)

2,m + T (0)
3,−m

))
, (147a)

φ̄q =
2n∑

m=1

{−η
(�1,m )
0 [(−1)m2ξmωk] − η

(�2,−m )
0 [(−1)m2ξmωk] + η

(�2,m )
0 [2(−1)mξmωk]

+ η
(�3,−m )
0 [(−1)m2ξmωk] + (−1)mξmωk[−τ ((−1)m2ξmωk, 1, m, �1,m ) − τ ((−1)m2ξmωk, 2,−m, �2,−m )

+ τ ((−1)m2ξmωk, 2, m, �2,m ) + τ ((−1)m2ξmωk, 3,−m, �3,−m )]
}
, (147b)

the gravity phases

φ(0)
g = 1

2
(k · g − α)

(
T (0)2

1,0 − 2T (0)2
2,0 + T (0)2

3,0 +
2n∑

m=1

(
T (0)2

1,m − T (0)2
2,−m − T (0)2

2,m + T (0)2
3,−m

))
, (148a)

φ(1)
g = (k · g − α)

{
T (0)

1,0 ϒ1,0 − 2T (0)
2,0 ϒ2,0 + T (0)

3,0 ϒ3,0 + τ

[(
1 − 2

π

)
T (0)

1,0 − 2T (0)
2,0 + 2

π
T (0)

3,0

]

+
2n∑

m=1

[
T (0)

1,mϒ1,m − T (0)
2,−mϒ2,−m − T (0)

2,mϒ2,m + T (0)
3,−mϒ3,−m

+{ςm+1τ ((−1)m2ξmωk, 1, m, �1,m ) + (−1)mη
(�1,m )
1 [(−1)m2ξmωk]}T (0)

1,m

− (ςmτ ((−1)m2ξmωk, 2,−m, �2,−m ) − (−1)mη
(�2,−m )
1 [(−1)m2ξmωk )]T (0)

2,−m

−{ςm+1τ ((−1)m2ξmωk, 2, m, �2,m ) + (−1)mη
(�2,m )
1 [2(−1)mξmωk]}T (0)

2,m

+{ςmτ ((−1)m2ξmωk, 3,−m, �3,−m ) − (−1)mη
(�3,−m )
1 [2(−1)mξmωk]}T (0)

3,−m

]
}

, (148b)

and the parameter

ςm ≡ 1
2 [1 − (−1)m]. (149)

IV. DOPPLER AND QUANTUM PHASES

The ultimate requirement for the MZAI is the zeroing of
the Doppler phase (146), i.e., timing must be chosen in such a
way that

φD = 0. (150)

Otherwise, the interference term in the excitation probability
will be washed out when averaged over the momenta. In the
absence of NCPs (n = 0), one will satisfy Eq. (150) if T1,0 −
2T (0)

2,0 + T (0)
3,0 = 0; however, then the quantum phase (147a) is

also zeroed. The situation changes in the presence of NCPs.
From Eq. (110) one can express the pulses’ timing through
the delays T1,0 and T and delays between NCPs dζ ,β as

T (0)
2,0 = T1,0 + T +

2n∑
m=1

(d1,m + d2,−m+1), (151a)

T (0)
3,0 = T (0)

2,0 + T +
2n∑

m=1

(d2,m + d3,−m+1), (151b)

T (0)
ζ ,m = T (0)

ζ ,0 +
m∑

m′=1

dζ ,m′ , (151c)

T (0)
ζ ,−m = T (0)

ζ ,0 −
m∑

m′=1

dζ ,−m′+1, (151d)

where m > 0. From these equations one can find that the
Doppler phase and the quantum phase are given by

φD = k
M

· pi

2n∑
m=1

m fm, (152a)

φq = ωk

2n∑
m=1

m2 fm, (152b)
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FIG. 6. Proposal for observing the quantum phase timing of the
NCPs between the (a) first and second and (b) second and third main
pulses at n = 20, ε = 1/2, and T = 2d1,1.

where

fm ≡ −d1,m − d2,−m+1 + d2,m + d3,−m+1. (153)

It is obvious that for fm �= 0, one can arrange the NCPs in
such a way that the Doppler phase will be equal to 0 and
atomic interference will occur, but the quantum phase will
not disappear. We have calculated and offer the following
possibility. Assume that the NCPs in the second and fourth
sets are mirror images of the NCPs in the first and third sets,

d2,−m+1 = d1,m, (154a)

d3,−m+1 = d2,m. (154b)

The Doppler phase will be guaranteed to be zeroed if

fm = (−1)m

m
f . (155)

If, moreover, it is required that

d2,m = [1 + (−1)mε]d1,m, (156)

then from Eqs. (153)–(155) for intervals between NCPs one
gets

d1,m = d1,1

m
. (157)

The timing of NCPs spaced at intervals (156) and (157) is
shown in Fig. 6 for ε = 1

2 .
Here one arrives at the expression for the quantum phase

φq = εωk
(
T (0)

1,2n − T1,0
) 2n

ψ (2n + 1) + γ
, (158)

where ψ (z) is the digamma Euler function and γ is the Euler
constant. For large n, the quantum phase grows as

φq = εωk
(
T (0)

1,2n − T1,0
) 2n

ln 2n + γ
. (159)

The quantum phase is shown in Fig. 7.

Phase φ̄q

If the recoil frequency is comparable to the inverse pulse
duration, then a smooth quantum phase dependence appears
not on the distance between the pulses, but on the pulse
duration. It arises owing to the fact that the amplitude of the
atom in the ground state |g〉 on the nonresonant branch of
the recoil diagram changes its phase, remaining unchanged
in absolute value. The changes are due to the fact that the
diagonal elements of the s matrices (76a), (94a), and (105a)
contain phase factors and also to the fact that the pulse du-
ration depends on the Raman detuning on the nonresonant
branch [see Eq. (106)], which, according to Eq. (129), is

FIG. 7. Quantum phase as a function of the number of NCPS.
Exact (158) and asymptotic (159) dependences are plotted in black
and red, respectively.

determined by the recoil frequency. In the case of rectangular
pulses, we calculated these changes [see phase augmentation
in Eqs. (133b), (133d), (133g), and (133i)].

If all NCPs belong to the same class, �ζ,β = const, then
from Eqs. (91c), (102c), (132), (106), and (147b) one could
make sure that the phase φ̄q does not depend on recoil fre-
quency,

φ̄q|�ζ,β=1 = π

2

2n∑
m=1

(−1)m
(−

√
4 j2

1,m,1 − 1 −
√

4 j2
2,−m,1 − 1

+
√

4 j2
2,m,1 − 1 +

√
4 j2

3,−m,1 − 1
)
, (160a)

φ̄q|�ζ,β=2 = π

2n∑
m=1

(−1)m(− j1,m,2 − j2,−m,2

+ j2,m,2 + j3,−m,2), (160b)

φ̄q|�ζ,β=3± = 0. (160c)

In these equations, we omitted terms that are multiples of 2π .
To obtain a phase dependent on ωk , it is necessary that at least
one NCP differs from others in the number of rectangular

FIG. 8. Smooth dependence of the phase as a function of the
duration of the first rectangular pulse in the NCP τ1 for different
values of the parameter 4nωkτ .
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pulses included in it. We have considered the case when for all NCPs �ζ,β = 2, except for the NCP {1.2n}, for which �1.2n = 3±.
From Eqs. (90), (91c), (101b), (102c), and (147b) one arrives at the result

φ̄q = φ̄q|�ζ,β=2 + π

2
+ �±(4nωk ), (161a)

�±(ν) = −2 arctan

[
2ντ√

π2 + 4ν2τ 2
tan

(
1

4

√
π2 + 4ν2τ 2

)]
+ arctan

(
2ντ√

π2 + 4ν2τ 2
tan

τ1

4τ

√
π2 + 4ν2τ 2

)

+ arctan
Im(sd1sd2)

Re(sd1sd2)
∓
(

arccos
1

2

∣∣∣∣ sa2

sa1sd1

∣∣∣∣+arccos
|sa2|(|sa1|2−|sd1|2)

2|sa1sd1sd2|
)

. (161b)

The dependences (161b) are shown in Fig. 8.

V. GRAVITY PHASE

The main reason for using SLMT is the increase in the gravitational phase of the AI. For this phase, from Eqs. (151) and
(148a) one obtains

φ(0)
g = (k · g − α)

{
(2n + 1)T 2 + T

2n∑
m=1

[(2n + 1 − m)d2,−m+1 + (2n + 1 + m)d2,m + 2md3,−m+1]

+ 2n + 1

2

⎡
⎣
(

2n∑
m=1

(d2,m + d3,−m+1)

)2

−
(

2n∑
m=1

(d1,m + d2,−m+1)

)2
⎤
⎦

+ 1

2

2n∑
m=1

⎡
⎣( m∑

m′=1

d1,m′

)2

−
(

m∑
m′=1

d2,−m′+1

)2

−
(

m∑
m′=1

d2,m′

)2

+
(

m∑
m′=1

d3,−m′+1

)2
⎤
⎦

+
(

2n∑
m=1

(d1,m + d2,−m+1)

)(
2n∑

m=1

[(2n + 1 − m)d2,−m+1 + (2n + 1 + m)d2,m + 2md3,−m+1]

)

−
(

2n∑
m=1

(2n + 1 − m)d3,−m+1

)(
2n∑

m′=1

(d2,m + d3,−m+1)

)}
. (162)

Let us go to the calculation of the correction (148b). In the timing of a given Raman pulse (111), the ϒζ,β part is the sum of
the durations of all preceding pulses, i.e.,

ϒζ,m =
{∑m−1

m′=0 τ (ν, 1, m′, �1,m′ ) for ζ = 1

ϒζ−1,2n + τ (ν, ζ − 1, 2n, �ζ−1,2n) +∑m−1
m′=−2n τ (ν, ζ , m′, �ζ ,m′ ) for ζ > 1.

(163)

Here it is convenient to pick out the durations of the main pulses (109) so that

ϒ1,m = τ + �1,m, (164a)

ϒ2,m =
{
τ + �2,m for − 2n � m � 0
3τ + �2,m for 0 < m � 2n,

(164b)

ϒ3,m = 3τ + �3,m. (164c)

Calculations bring one to the next result

φ(1)
g = φgτ + φga, (165a)

φgτ = (k · g − α)τ

{
T

(
4n + 2 + 4

π

)
+ 2

2n∑
m=1

[
1

π
(d1,m + d2,−m+1) +

(
1

π
+ m

)
(d2,m + d3,−m+1)

]}
, (165b)

φga = (k · g − α)

{
−2T (0)

2,0 �2,0 + T (0)
3,0 �30 +

2n∑
m=1

[(
�1,mT (0)

1,m − �2,−mT (0)
2,−m − �2,mT (0)

2,m + �3,mT (0)
3,−m

)
+ {

ζm+1τ ((−1)m2ξmωk, 1, m, �1,m ) + (−1)mη
(�1,m )
1 [(−1)m2ξmωk]

}
T (0)

1,m
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+ {
ζmτ ((−1)m2ξmωk, 2,−m, �2,−m ) − (−1)mη

(�2,−m )
1 [(−1)m2ξmωk]

}
T (0)

2,−m

+ {
ζm+1τ ((−1)m2ξmωk, 2, m, �2,m ) + (−1)mη

(�2,m )
1 [2(−1)mξmωk]

}
T (0)

2,m

+ {ζmτ ((−1)m2ξmωk, 3,−m, �3,−m ) − (−1)mη
(�3,−m )
1 [2(−1)mξmωk]}T (0)

3,−m

]
}

. (165c)

In the absence of auxiliary NCPs, at n = 0, one returns to the
well-known result [72]

φg = (k · g − α)

[
T 2 + τT

(
2 + 4

π

)]
. (166)

One should note that the correction (165a), as well as
the gravitational phase (162), grows with the increase in the
number of NCPs.

VI. DISCUSSION

The model adopted here, a rectangular pulse of the optical
field, is widely used in atomic interferometry and in the theory
of atomic clocks [75]. At the same time, we are not aware of
the consideration of corrections related to the nonideal pulse
shape. Such corrections arise due to the nonpermanent field
amplitude inside the pulse and due to the nonzero duration of
the forward and backward fronts of the pulse τ f . So instead
of one small parameter (1) in the Bragg regime, in our case at
least two parameters should be small,

δ|
|/|
| � 1, (167a)

ωkτ f � 1, (167b)

where δ|
| is the deviation of the Rabi frequency from a
constant value. The article [76] reported that the field intensity
was kept constant with an accuracy of 1%, meaning that

δ|
|/|
| ∼ 5 × 10−3 (168)

can be implemented.
In Ref. [77] the front durations were 10 ns; with a typical

value of ωk ∼ 105 s−1 one has the estimate

ωkτ f ∼ 10−3. (169)

The fact that the small parameters (167) are 40 or 200 times
smaller than the parameter (1) allows us to hope that the
SLMT option proposed here is feasible.

It should be noted that the durations of the fronts cannot
decrease indefinitely, since for the applicability of the adia-
batic elimination of the upper level amplitude in Eq. (27) the
front duration must be long enough,

�τ f � 1. (170)

With a typical value of � ∼ 2π × 1 GHz, �τ f ∼ 60. If, how-
ever, one will be able to create pulses with picosecond fronts,
then in order to use them in atomic interferometry, one must
first increase the one-photon detuning � and, accordingly, the
field intensity also needs to be increased.

We predict that the MZAI quantum phase will not dis-
appear in our case. It arises due to the phase (46d) in the
Schrödinger equation (45), which is also valid in both Bragg
(1) and Raman-Nath (4) regimes. Nevertheless, the quantum

phase was not observed in either the Bragg regime in [30]
or the Raman-Nath regime in [33]. One can explain it by
the fact that in those articles the auxiliary pulses were timed
out at equal distances and in this case the combination of
delays between NCPs in Eq. (153) fm = 0. If one places the
NCPs nonequal distances, then our expression (152b) for the
quantum phase φq can be directly used in the Bragg regime
[30]. Here, for example, one can use the nonequidistant NCPs
timing shown in Fig. 6.

Our result cannot be used in the Raman-Nath regime,
since in this case the atomic momentum in the recoil diagram
changes along both branches. An example of such a diagram
is shown in [33]. In the Raman-Nath regime, the calculation
of the quantum phase must be carried out again. We hope to
carry out this calculation in the future.

If the time budget for auxiliary NCPs is comparable to the
interrogation time T , then the quantum phase (158) at n ∼
ε ∼ 1 is comparable to the maximal expected quantum phase
(19b). This is the fundamental difference between our case
and the quantum phases considered in Refs. [60–64], where
the quantum phases were only small additions.

Like the gravity phase (6b), the quantum phase grows with
an increase in the number of auxiliary NCPs, i.e., with an in-
crease in momentum transfer. However, since the momentum
transfer occurs gradually, increasing by h̄k under the action
of each NCP, the quantum phase grows more slowly than the
gravity one in the factor ln n [see Eq. (159)].

In this work, as in other papers, we assumed that the in-
terrogation time T is the same between the first and second
and between the second and third main Raman pulses. The
SLMT technique allows us to make these times different,
since the resulting Doppler phase can be compensated by
Doppler phases during the operation of auxiliary NCPs. With
such an opportunity, a quantum phase should also arise. We
hope to consider this option in the future.

The quantum phase (158) is linear in time. This is not the
only phase linear in time. Another linear phase observed by
B. Young [78] is the Ramsey phase (145). In order to extract
the quantum phase, we propose to scale all the delay times
between pulses into a factor 1 + x,

{T1,0, dζ ,β} → (1 + x){T1,0, dζ ,β}. (171)

If simultaneously one scales the Raman detunings as

δζ ,β → δζ ,β/(1 + x), (172)

then the Ramsey phase (145) remains unchanged; only the
quantum phase grows linearly in x, and the excitation prob-
ability w is a periodic function of x with period

�x = 2π

(
εωk (T (0)

1,2n − T1,0)
2n

ψ (2n + 1) + γ

)−1

. (173)
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To avoid violating the resonance condition (116) during scal-
ing, the parameter x must be small,

x � (ωkτ )−1. (174)

Since even for n ∼ 1 and ε ∼ 1,

�xωkτ ∼ τ

T (0)
1,2n − T1,0

� 1, (175)

one can observe many periods of quantum oscillations of
the excitation probability without significantly violating the
resonance condition.

We predict a quantum effect, the dependence of the phase
on the pulse durations τ and τ1, the term φ̄q. Unlike the phase
linear in T (19b), the term φ̄q is a nonlinear function of {τ, τ1}.
Another difference from the term (19b) is that it is specific
only to the variant of SLMT considered here. Neither in the
Bragg regime (1) nor in the Raman-Nath regime (4) does the
term φ̄q occur. Its appearance is due to the fact that the Raman
frequency detuning on the nonresonant branch of the recoil
diagram is proportional to the recoil frequency [see Eq. (129)].
This leads to the fact that in the case of NCPs of type � = 1,
the pulse duration at which, owing to Rabi oscillations, the
atom is not excited on the nonresonant branch also depends on
ωk [see Eqs. (73) and (129)]. If the NCPs type is � > 1, then
the frequency detuning (129) is the atomic coherence nutation
frequency in the space between pulses. Therefore, the delay
between pulses τb also depends on ωk [see Eqs. (90), (101b),
and (129)]. Despite that the atoms remain in the ground state
on the nonresonant branch of the recoil diagram, the phase of
the amplitude of this state changes [see Eqs. (91) and (102)]
and this change also contributes to the φ̄q phase. If the rapidly
oscillating quantum phase φq vanishes at an equidistant lo-
cation of the NCPs, then the smooth phase φ̄q also ceases to
depend on the recoil frequency if all NCPs are of the same
type [see Eqs. (160)]. It is necessary to use NCPs of different
types. In Sec. IV we carried out the calculation in the case
when all NCPs are of type � = 2, except for NCP {1, 2n},
whose type is �1,2n = 3.

Another effect that disappears in the convenient MZAI but
appears when additional beam splitters are turned on is the
gravitational redshift [79].

Finally, the gravity phase (148a), being quadratic in the
Raman pulses’ timing, apart from the main term, the first term
in curly brackets in Eq. (162), contains cross terms, combina-
tions of interrogation time and delays dζ ,β , between auxiliary
NCPs, and terms quadratic in dζ ,β . All these terms are pieced
together in Eq. (162). From a mathematical point of view,
the gravity phase is caused by the phase terms (46d) in the
Schrödinger equation (45). Since this equation is valid for any
pulse shape f (t ), our result (162) will also be correct in the
Bragg regime, under the conditions of the experiment in [30].

The correction associated with the finite duration of the
Raman pulse, on the contrary, depends on the pulse shape
[80]. Therefore, the result (165) is only correct for rectangular
NCPs.

In this work, we considered only MZAIs. The SLMT
method can lead to a significant increase in the AI phase in
other cases as well, for the asymmetric MZAI [57], atomic
two-loop gyroscopes [81], and gravity gradiometers [82]. Cal-
culations of the SLMT technique for these AIs are left for

future work. As for the two-loop AIs, as shown in Ref. [61],
the AI response occurs simultaneously with the stimulated
echo response, the phase of which is sensitive to gravity
acceleration. Two methods have been proposed to resolve this
problem, the adjustable momentum transfer [61] and the time-
skewed pulse sequence [83]. For atomic gyroscopes, both
methods have been implemented in [83–86]. For the atomic
gravity gradiometer, only the time-skewed method was used.
However, even a small distortion in time led to the appearance
of a significant background proportional to the gravity accel-
eration [82]. No background should occur in the adjustable
momentum transfer method.
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APPENDIX: HIGHER-ORDER DENSITY HARMONICS

The atomic resonant Kapitza-Dirac effect [87] in the field
of a standing wave and its analogs lie at the heart of many
atomic beam splitters. The momentum transfer to an atom,
which is a multiple of h̄k, and the subsequent interference of
atomic states with different momenta leads to the appearance
of higher harmonics of the atomic density. Density harmonics
with a period up to λ/10, where λ is the standing wavelength,
have been observed in AIs [88]. Modifications of the standing
wave, i.e., the triangular potential [89] and the bichromatic
standing wave [90], have been proposed; moreover, transfer
of momentum to an atom ±21h̄k was observed [89]. Despite
the scattering of atoms at large angles, the scattering indicatrix
contains not only the desired states ±nh̄k but also neighbor-
ing states . . . (±n − 2)h̄k, (±n − 1)h̄k, (±n + 1)h̄k, (±n +
2)h̄k . . .. The asymptotes for n � 1 inner tails of this indi-
catrix were obtained in Refs. [91,92]. A complete indicatrix
for three types of optical potentials was obtained in Ref. [93],
where it was also shown that, due to neighboring momentum
states, the interference pattern with a period of λ/2n has a
smooth envelope with a period of λ/2, and because of this, it is
obvious that the possibility of using an AI of this type is doubt-
ful, both for precision measurements and for nanolithography.
To get rid of this difficulty, one can use [65] the Stern-Gerlach
effect [94], i.e., an atom scattering in a magnetic field having
a uniform gradient. It has been shown that one can obtain
an atomic lattice with a period of 100 nm and a smooth
envelope of size approximately equal to 100 µm, which arises
owing to the weak inhomogeneity of the magnetic-field gradi-
ent. Another multicolor scheme was proposed in Ref. [95],
where the beam splitter consisted of three traveling waves
with frequencies and wave vectors {
, k}, {
 + δ1,−k}, and
{
 + δ2,−k}. If the frequency detunings are chosen in such
a way that n1δ1 + n2δ2 = 0, then this combination of fields
creates an amplitude or phase diffraction grating for atoms
with a period λ/2(n1 + n2). If the standing wave is replaced
by two counterpropagating waves in the lin ⊥ lin configura-
tion, then such a field will be a diffraction phase grating for
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atoms with a period of λ/4 [96,97]. Note also that the Raman
standing-wave method was proposed [47]. This technique is
now widely known as the double-diffraction scheme [48].
The main point of the method is that two Raman pulses with
opposite effective wave vectors ±k lead to splitting of the
initial momentum state |g, p〉 into two states |e, p ± h̄k〉. Since
k ≈ 4π/λ, then the interference between the scattered states
leads to density modulation, the atomic lattice with a period

λ/4. If one of the Raman pulses has the configuration lin ‖ lin
and the configuration of the other is lin ⊥ lin, then the Raman
standing wave induces an atomic lattice with a period λ/8
[47]. Scattering potentials with period λ/8 were calculated for
various components of the hyperfine splitting of 85Rb [98].
One can expect that the Raman standing-wave method, in
combination with the multicolor technique, produces density
harmonics with a period λ/8n.
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