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Repulsion-driven metallic phase in the ground state of the half-filled t-t ′ ionic Hubbard chain
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An unusual metallic phase is argued to develop in the one-dimensional ionic Hubbard model, at half-
filling and zero magnetization, at intermediate electron-electron repulsion U when second-neighbors hopping
is allowed and tuned close to a topological Lifshitz transition (connected with a change of the Fermi sur-
face in the noninteracting system). The metallic state lies between a band insulator phase at low repulsion
and a correlated (Mott-like) insulator phase at high repulsion. In approaching the latter, the model supports
short-range antiferromagnetic order and spontaneous dimerization of both bond charge and nearest-neighbor
antiferromagnetic correlations. A combination of mean-field and effective-field theory (bosonization) provides
an analytical understanding of the physical processes underlying the argued phase transitions. The ground and
low-energy excited states of finite-length chains are explored by density-matrix renormalization-group (DMRG)
calculations, providing numerical evidence for the intermediate gapless phase. Such finite systems are attainable
by cold atoms in optical lattices for a wide range of the parameter U .
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I. INTRODUCTION

Atomic gases stored in artificially engineered optical
lattices offer an unique possibility to simulate and study
condensed-matter systems with unconventional, or less
achievable in actual materials, properties [1–3]. Among the
advantages of these systems is the possibility to manipulate
the strength of the interaction using the Feshbach reso-
nance [4], which enables monitoring of the evolution of the
ground-state properties of the quantum many-body system
with interaction, starting from the weak coupling till the limit
of very strong interaction. Competition between the (kinetic)
delocalization energy and interaction is profoundly seen in
low-dimensional quantum systems and leads to a very rich
set of many-body phases displayed in the remarkable ground-
state (GS) properties of these systems [5,6].

Optical lattices can be generated in various geometries,
including two-dimensional triangular [7,8], kagome [9], and
hexagonal [10,11] structures as well as quasi-one-dimensional
few-chain systems with zigzag [12] or ladder [13,14] geom-
etry. In addition, the optical engineering allows the details
of the lattice structure to be manipulated, in particular to
introduce a bias for atom occupation energy on neighboring
sites and thus to create a bipartite lattice [15,16] or ladder
with nonequivalent legs [17]. This makes the ground-state
phase diagram of the system even more complex and opens
the possibility to experimentally investigate the nature of var-
ious quantum phase transitions between different phases with
remarkable properties. In particular, fermionic atomic gases
with repulsion on optical lattices provide an excellent testing
ground to study insulator-insulator and metal-insulator tran-
sitions driven by the interplay between the effects caused by
correlations, geometrical frustration, and nonequivalence of
atomic sublattices [18–20]. Also, emergent effects connected

with the topological Lifshitz transition [21] are of prime cur-
rent interest [22–27].

In this paper we consider the one-dimensional model of
interacting fermions given by the following Hamiltonian:

H = − t
L∑

i,σ

(
c†

i,σ ci+1,σ + H.c.
)

+ t ′
L∑

i,σ

(
c†

i,σ ci+2,σ + H.c.
)

+ �

2

L∑
i,σ

(−1)ini,σ + U
∑

i

ni,↑ni,↓. (1)

Here, c†
i,σ (ci,σ ) creates (annihilates) a fermion with spin

σ =↑,↓ on site i and ni,σ = c†
i,σ ci,σ is the spin σ particle den-

sity operator. The nearest-neighbor (n.n.) hopping amplitude
is denoted by t , the next-to-nearest-neighbor (n.n.n.) hopping
amplitude by t ′ (t, t ′ > 0), � is the potential energy difference
between neighboring sites, and U is the on-site Coulomb
repulsion. The Hamiltonian (1) commutes with the number
operator of particles with spin σ , Nσ = ∑

i ni,σ . Below in this
paper we restrict our consideration to the case of the half-filled
band with zero magnetization, with particle number eigenval-
ues N↑ = N↓ = L/2, and to repulsive interaction U > 0.

For � = 0, the Hamiltonian corresponds to the t-t ′ Hub-
bard model [28,29] in the case of the half-filled band, the
prototype model to study the metal-insulator transition in one
dimension [30–35]. At t ′ < 0.5t the system is in a gapped
insulating phase for arbitrary U > 0, but at t ′ > 0.5t is char-
acterized by the quantum phase transition from a charge
gapless metallic behavior at U < Uc into an insulating phase
at U > Uc [30–32]. The qualitative change of the ground-state
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FIG. 1. Dispersion relation Ek for the t-t ′ (nonionic, � = 0)
chain at different values of t ′/t . The dashed line indicates the chem-
ical potential at half-filling. At t ′ = 0.5 t a Lifshitz transition takes
place, changing the structure of the Fermi surface from two to four
Fermi points.

properties of the system at t ′ > 0.5t emerges as the result of
the topological Lifshitz transition in the ground state of the
free system, where the number of Fermi points doubles [29]
(see Fig. 1). It has been shown that at fixed U and increasing
t ′ the insulator-to-metal transition is described in terms of the
commensurate-incommensurate transition [36,37] with a tran-
sition curve determined by the relation Mc(U ) = 2t ′

c − t2/t ′
c,

where Mc(U ) is the charge (Hubbard) gap at the given U and
t ′ = 0 [34].

For t ′ = 0 and � �= 0 the Hamiltonian (1) describes the
ionic Hubbard model (IHM) [38–41]. At finite � the trans-
lational invariance is explicitly broken, the lattice unit is
doubled, and the density imbalance between neighboring sites
shows up via the presence of a long-range-ordered (LRO)
charge density wave (CDW) pattern in the ground state for ar-
bitrary U > 0 [43]. On the other hand, the repulsive Hubbard
interaction suppresses density inhomogeneities and favors an-
tiferromagnetic ordering on neighboring sites. Competition
between these tendencies is resolved in the ground-state phase
diagram via the presence of two, excluding each other, phase
sectors—the band insulating CDW phase at U < Uc1 and
correlated Mott insulating phases at U > Uc2, separated by
a narrow intermediate bond-ordered wave (BOW) phase [41].
The nature of the corresponding phase transitions has been
also first established within the continuum-limit bosonization
description, showing the Ising type (charge) transition at Uc1

from a CDW band insulator phase to a BOW insulator phase
and the second (spin) Kosterlitz-Thouless type transition at
Uc2 from the BOW to a correlated Mott insulator [41]. Sub-
sequent numerical studies have unambiguously proven this
phase diagram [42–46].

At U = 0 the model can be easily diagonalized
in the momentum space (see Appendix A). For
t ′ < t ′

∗ = 0.5t
√

1 + (�/2t )2 − �/8 (assuming � > 0) the
ground state corresponds to the standard CDW band insulator
with direct gap, at t ′

∗ < t ′ < t ′
c to the band insulator (BI)

with indirect gap and at t ′ > t ′
c = 0.5t

√
1 + (�/2t )2 + �/8

to the metal. In this case the Lifshitz transition is shaded

FIG. 2. Dispersion relation Ek for the t-t ′ ionic chain at � = 0.8 t
and different values of t ′/t . The dashed line indicates the chemical
potential at half-filling. The panels with t ′ = 0.0, 0.35 t show a band
insulator with direct gap, while the one with t ′ = 0.55 t illustrates
an indirect gap and quadratic dispersion for quasiparticles and holes
close to the insulator-metal transition. In the panel with t ′ = 0.8 t
the system becomes gapless, with well-defined linear dispersion for
quasiparticles and holes around four Fermi points. The unit cell
has two sites; here the Brillouin zone is expanded to show the two
dispersion branches side by side.

by the presence of the band gap and displays itself in the
insulator-metal transition, where a Fermi surface with four
points opens (see Fig. 2).

Inclusion of the Hubbard repulsion into the scheme in-
troduces an additional set of complexity: both the metal and
insulating phases experience transition into different insulat-
ing phases at strong repulsion. In a recent publication this
problem has been addressed within the mean-field approxi-
mation [47]. It has been shown that unconventional insulating
phases, characterized by a spin and charge-density modula-
tion with a wavelength equal to four lattice units, become
energetically favorable above the Lifshitz transition and al-
most completely wipe out the metallic phases. This type of
density modulations are absolutely natural for the interacting
fermions with n.n.n. hopping and emerge in the system at
t ′ � t ′

c as a result of the opening of four Fermi points and the
explicit breaking of translational symmetry by the finite ionic
term.

However, in the direct proximity of the insulator-metal
(Lifshitz) transition, at t ′

∗ < t ′ < t ′
c, metallic properties of the

free system are described by particles and holes with quadratic
dispersion, and thus details of the phase diagram deserve
a more accurate analysis than the previous mean-field ap-
proximation. In this paper we address this problem and find
a different scenario. An analytical study based on both an
improved mean-field approximation and tailored bosonization
tools allows the underlying physical processes responsible for
the complex nature of the phase diagram to be understood.

Density-matrix renormalization group (DMRG) computa-
tions, setting t , t ′, and � where the noninteracting system is
gapped but close to the Lifshitz point, support the existence of
a metallic phase at intermediate Hubbard repulsion U . Though
at present we are not able to properly extrapolate finite size
results into a controlled thermodynamic limit, our numerical
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FIG. 3. Schematic phase diagram suggested by our numerical
results. Fixed t ′/t is tuned so that the noninteracting system is close
to the Lifshitz transition, still bearing an indirect excitation gap
(see Fig. 2, lower left panel). The Hubbard repulsion U drives the
system from a band insulator into an unconventional metal (Uc,1)
before reaching the correlated insulator phase (Uc,2). The charge gap
�c is plotted in red, the spin gap �s in blue, and the BOW order
amplitude in green. Areas in solid colors identify the ground-state
phase according to the charge gap, while the green gradient indicates
the presence of spontaneous BOW order (U > U ∗

c ) starting inside the
metallic phase.

exploration suggests the picture shown in Fig. 3. In the con-
sidered range of parameters, the ground-state phase diagram
of the system as a function of the on-site Hubbard repulsion U
consists of three phases: at 0 < U < Uc,1 the band insulating
CDW phase, for Uc,1 < U < Uc,2 a repulsion driven metallic
phase, and for U > Uc,2 a correlated insulator (CI) phase.
The LRO CDW pattern is clearly present, with decreasing
amplitude, in all these phases. A spontaneous BOW order
appears inside the metallic phase, with increasing amplitude
towards its edge; this amplitude starts to decay as soon as the
charge gap reopens, however it remains finite in the CI phase
and continuously evolves into the spin dimerization pattern at
U → ∞.

The paper is organized as follows. In Sec. II A we present
a mean-field approach leading to a renormalization of the
ionicity parameter � due to electron-electron interactions; we
explore the appearance of a metallic phase within this regime.
In Sec. II B we introduce a bosonization scheme allowing the
role of ionicity �, Hubbard repulsion U and n.n.n. hopping
t ′ to be analyzed on equal footing; within this framework
we discuss the different possible ground-state phases of the
present model. We also identify a parameter region where
such phases are realized. In Sec. III we numerically explore
the model with the DMRG technique, selecting intermediate
t ′ and � and a full range for the Hubbard repulsion U . Finally,
in Sec. IV we summarize and discuss the obtained results.

II. QUALITATIVE ESTIMATIONS

A. Self-consistent approach

Because the translation symmetry of the system is explic-
itly broken by the � term in Eq. (1), an alternating pattern
of charge density is present in the ground state at arbitrary U
[43]. For further analysis it is convenient to subtract from the
density operators their vacuum expectation values, rewriting

them in the following way:

ni,σ = 1
2 [1 − (−1)iδρ0(U )]+ : ni,σ :, (2)

where : : denote fluctuations on top of the GS value and
δρ0(U ) is the amplitude of the CDW pattern present in the
ground state at given U . Here, we take into account that
〈 ni,↑ 〉 = 〈ni,↓〉. Using Eq. (2), the Hamiltonian in Eq. (1) can
be rewritten in the following way:

H = −t
L∑

i,σ

(
c†

i,σ ci+1,σ + H.c.
)

+ t ′
L∑

i,σ

(
c†

i,σ ci+2,σ + H.c.
)

+ �r

2

L∑
i,σ

(−1)i : ni,σ : +U
∑

i

: ni,↑ :: ni,↓ :, (3)

where

�r (U ) = � − Uδρ0(U ). (4)

Thus, even in the gapped band insulating phase, where the
charge fluctuations are suppressed and at weak coupling one
could ignore their interaction in the last term of Eq. (3), the
contribution of the on-site Hubbard term is crucial and mani-
fest in the renormalization of the ionic gap given in Eq. (4).

Below in this subsection we restrict our consideration to
the mean-field approximation and neglect the scattering of
quasiparticles (blocked by the band gap) on top of the Fermi
surface given by the last term in Eq. (3). In this case the
Hamiltonian can be easily diagonalized in momentum space
(see Appendix A) to give

Ht−t ′−�r =
∑
k,σ

(
E−

k α
†
k,σ

αk,σ
+ E+

k β
†
k,σ

βk,σ

)
, (5)

where

E±
k = ε′

k ±
√

ε2
k + (�r/2)2 (6)

are the energy dispersions for α and β quasiparticles, corre-
sponding to the “lower” and “upper” bands, respectively.

In the ground state of the half-filled system the L lowest
energy states are filled and the rest L are empty. For t ′ � 0.5t ,
E−

k and E+
k are separated with a direct gap equal to �r ; all

states in the lower band are occupied, whereas in the upper
band all states are empty; the system is in the insulating state.
For t ′ > 0.5t , with increasing t ′ (or reducing �r) bands might
overlap, due to the k-dependent energy shift ε′

k , and the system
experience a transition into the metallic phase.

At given values of the parameters t and t ′, it is useful to
introduce a critical value of the effective ionicity parameter
�cr

r � 0,

�cr
r =

{
4t ′ − t2/t ′ for t ′ � 0.5t,
0 otherwise,

(7)

corresponding to the metal-insulator transition: for
|�r | > �cr

r (|�r | < �cr
r ), the system is in an insulating

(metallic) state. Note that for t ′ < 0.5t the system remains in
the insulating phase for any finite value of |�r |.
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FIG. 4. The self-consistent solution for δρ0(U ) computed for
t ′ = 0.55t , � = 0.8t is shown in solid blue. Actual DMRG data for
δρ(U ) is shown in black dots for comparison. Inset: self-consistent
solution for the renormalized �r as a function of U (in solid
blue). The dashed red line is the critical value for gap closing,
�cr

r = 4t ′ − t2/t ′. The intersection occurs at Ucr ≈ 1.85 t .

Inserting in Eq. (4) the analytical expression for the ampli-
tude of the CDW modulation in the insulating phase,

δρ0 = �rκK (κ )

2πt
, (8)

where K (κ ) is the complete elliptic integral of the first
kind with the modulus κ (t,�r ) = [1 + (�r/4t )2 ]−

1
2 [see

Eq. (A20) in Appendix A], we obtain a self-consistent equa-
tion for �r ,

�r = � − U �rκ (t,�r ) K[κ (t,�r )]

2πt
, (9)

that can be solved iteratively for given U .
The results, for t ′ = 0.55t and � = 0.8t , are shown in

Fig. 4. In the inset we first show the renormalized �r as a
function of U : one can see that U competes with the bare
ionicity �, reducing �r . Eventually, provided t ′ > 0.5t , the
band gap closes at a critical point Ucr when

�r (Ucr ) = �cr
r ≡ 4t ′ − t2/t ′, (10)

driving the system into a metallic phase. For the given pa-
rameters this occurs at Ucr ≈ 1.85 t , in qualitative agreement
with Uc,1 ≈ 2.2 t suggested by the DMRG data discussed in
Sec. III A.

Once having �r (U ), one can compute the CDW amplitude
δρ0(U ) from Eq. (8), which is shown in the main panel of
Fig. 4, in good agreement with exact DMRG data discussed
in Sec. III B 1. Notice that as the renormalized �r decreases,
the CDW amplitude is also reduced by electron repulsion U .

B. Bosonization approach

In this subsection we use the bosonization technique to
obtain a qualitative description of the low-energy properties
of the Hamiltonian in Eq. (3). We restrict our consideration
to the weak-coupling case �r,U � t and t ′ � 0.5t , i.e., the
close proximity to the insulator-metal transition.

Because for the selected set of model parameters the spec-
trum of the free system is either gapped or, in a metallic phase,
has a quadratic dispersion, the straightforward application
of the bosonization technique is not possible. Therefore, we
follow the route developed earlier in studies of the standard
IHM [41], where one starts the description from the weak-
coupling case, linearizes the spectrum in the vicinity of the
two Fermi points kF = ±π/2 (2-FP approach), and goes to
the continuum limit by the substitution

cnσ → inRσ (x) + (−i)nLσ (x), (11)

where Rσ (x) and Lσ (x) describe right-moving and left-moving
fermionic particles, respectively. This approach allows to
treat, within the effective continuum-limit description, the gap
“creating” (�r and U ) and gap “destructing” (t ′) terms on
an equal footing and thus in a transparent way display the
character of their competition [48].

Within the framework of the 2-FP approach the ionic
(�r) and the Hubbard (U ) terms appear as the scat-
tering processes responsible for generation of a gap in
the excitation spectrum. The staggered ionic potential
introduces a single-particle backward scattering process
H�r ∼ �r

∫
dx

∑
σ (R†

σ Lσ + H.c.) and is responsible for gen-
eration of equal excitation gaps in each spin subsystem,
i.e., for formation of the BI phase. The repulsive Hub-
bard term, via the correlated Umklapp scattering processes
HUmk ∼ U

∫
dx(R†

↑R†
↓L↓L↑ + H.c.), is responsible for the for-

mation of the correlated Mott gap in the charge excitation
spectrum.

Development of the gap in the excitation spectrum stabi-
lizes the corresponding band and correlated insulating phases,
respectively. However, since the elementary excitations in the
BI and Mott insulating phases are topologically distinct, they
expel each other, and at t ′ = 0, in the ground state of the half-
filled IHM, the BI and Mott insulating phases are separated by
the intermediate BOW phase [41].

Note that both of the above discussed scattering processes
are intimately connected with the selected structure of the
Fermi surface with two Fermi points ±π/2 separated by π

and become incommensurate at any change of this condition.
The “gap destructing” effect of the t ′ term is directly con-
nected with a change of the commensurate structure of the
Fermi surface. To maintain the half-filling and therefore to
incorporate accurately the effect of the t ′-term within the used
2-FP approach, one has to compensate the shift of the Fermi
energy δEF introduced by the t ′ term by a corresponding
change of the chemical potential term δμ(N↑ + N↓), where

δμ = −δEF =
{

2t ′, t ′ < 0.5t
t2/2t ′, t ′ > 0.5t

(12)

and N↑ + N↓ is the total number of electrons operator.
Now, using the substitution (11) to express the n.n.n.
hopping in terms of right and left fields, we obtain
Ht ′ = −2t ′ ∫ dx

∑
σ (R†

σ Rσ + L†
σ Lσ ) = −2t ′(N↑ + N↓). and,

thus the total contribution of the n.n.n. hopping term into the
effective-field theory is given by the chemical potential term
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μeff(N↑ + N↓), with [48]

μeff =
{

0 for t ′ < 0.5t
2t ′ − t2/2t ′ �= 0 for t ′ > 0.5t

. (13)

The right and left components of the Fermi fields can be
bosonized in a standard way,

Rσ (x) → 1√
2πα0

ei
√

4πφRσ (x)

Lσ (x) → 1√
2πα0

e−i
√

4πφLσ (x), (14)

where φRσ (φLσ ) are right(left)-moving Bose fields and α0

is an infrared cutoff. We define the conjugate fields φσ =
φRσ + φLσ and θσ = φLσ − φRσ , which possess commutation
relations [φσ (x), θσ (x′)] = iπδ(x − x′). We define the charge

φc = 1√
2
(φ↑ + φ↓), θc = 1√

2
(θ↑ + θ↓) (15)

and spin fields

φs = 1√
2
(φ↑ − φ↓), θs = 1√

2
(θ↑ − θ↓) (16)

to describe corresponding degrees of freedom. After some
standard algebra [6] and a rescaling of the fields, we arrive
at the following bosonized version of the Hamiltonian (3):

H =
∫

dx[hs + hc + hcs], (17)

where

hs = vs

2
[(∂xφs)2 + (∂xθs)2] + m0

s

2π2a2
0

cos
√

8πφs, (18)

hc = vc

2
[(∂xφc)2 + (∂xθc)2]

− m0
c

2π2a2
0

cos
√

8πKcφc − μeff

√
Kc

2π
∂xφc, (19)

hcs = − �r

πa0
sin

√
2πKcφc cos

√
2πφs. (20)

Here, m0
s ∼ U and m0

c ∼ U are the bare values of coupling
constants, the charge stiffness parameter is Kc < 1 at U > 0,
and vs and vc are velocities of spin and charge excitations.

At �r = 0 the Hamiltonian (17) describes the Mott
insulator–metal transition in the ground state of the half-
filled Hubbard chain, caused by the change of chemical
potential μeff [34]. Respectively, at m0

s = m0
c = 0, the BI-

metal transition in the ground state of the n.n. free ionic
chain (see Appendix B for details). In each of these limiting
cases the model reduces to the standard Hamiltonian of the
sine-Gordon model with a topological term, describing the
commensurate-incommensurate transition [36,37], which has
been intensively studied in the past using bosonization and
the Bethe ansatz [49,50]. In each case, the transition into
the metallic phase takes place when the chemical potential
exceeds the corresponding charge gap.

In the considered case of coupled fields with two separate
sources for the charge gap formation, the situation is more
complicated. To move forward let us first eliminate the chem-
ical potential term by the gauge transformation

√
2πφc(x) →

√
2πφc(x) + μeff

√
Kc

vc
x (21)

and rewrite the Hamiltonian density in (17) in the following
form:

hs = vs

2
[(∂xφs)2 + (∂xθs)2] + m0

s

2π2a2
0

cos
√

8πφs, (22)

hc = vc

2
[(∂xφc)2 + (∂xθc)2]

− m0
c

2π2a2
0

cos(
√

8πKcφc + 2x/lμ), (23)

hcs = − �r

πa0
sin(

√
2πKcφc + x/lμ) cos

√
2πφs, (24)

where the characteristic length

lμ = vc

μeff
√

Kc
(25)

determines the distance above which the effects of doping
(i.e., deviation of the Fermi points from ±π/2) become vis-
ible. On the other hand, each of the gap-generating terms
separately can be characterized by its own length scales
l� ∼ vF /�r—the ionic term—and lMc ∼ vF /Mc—the Hub-
bard term—where Mc is the correlated charge gap.

At lμ � min{l�, lMc} the gap-creating terms have strongly
oscillating arguments and are wiped off upon integration, and
therefore at large distances the effective theory is given by two
independent Gaussian fields,

Hi =
∑
i=c,s

∫
dx

{
vi

2
[(∂xφi )

2 + (∂xθi )
2], (26)

describing the Luttinger-liquid metallic phase with gapless
charge and spin excitation spectrum. In deriving Eq. (26) we
have taken into account that the perturbation caused by the co-
sine term in the spin channel is marginally irrelevant at U > 0.
Thus, within the used 2-FP approximation, the bosonization
treatment predicts the commensurate-incommensurate nature
of both the BI-metal and metal-CI transitions.

In the opposite case, where lμ � max{l�, lMc}, doping
is ineffective and may be neglected. The corresponding
effective-field theory coincides with that of the standard IHM
[41], i.e., the theory of the two Gaussian fields in Eq. (26)
coupled by the effective potential

Vcs = Ms

2π2a2
0

cos
√

8πφs + Mc

2π2a2
0

cos
√

8πKcφc

− �r

πa0
sin

√
2πKcφc cos

√
2πφs, (27)

where Mc and Ms are considered as phenomenological pa-
rameters characterizing charge and spin gaps. In the gapped
regime fluctuations of the corresponding fields are suppressed
and the properties of the system are determined by the vacuum
expectation values of the fields φs and φc, which correspond
to the minimum of the potential energy in Eq. (27). Below in
our analysis we follow the route developed in Ref. [41].

At weak U , where l� < lμ � lMc is the shortest length
scale in the theory, the minimum of the potential energy is
reached at the following two sets of minima (defined mod-
ulo 2π ): 〈φs〉 = 0,

√
2πKc〈φc〉 = π/2 and 〈√2πφs〉 = π ,

〈√2πKcφc〉 = −π/2. These sets characterize the BI phase.
Indeed, in this case the alternating on-site charge density
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operator

Q(x) = (−1)ini ∼ sin
√

2πKcφc cos
√

2πφs (28)

acquires a finite vacuum expectation value. Moreover, the
vacuum-vacuum transitions, �φs(c) = ±π , describe stable
topological excitations carrying the charge Q = �φc/π = ±1
and spin Sz = �φs/2π = ±1/2 and therefore coinciding with
massive single-fermion excitations of the BI.

At strong repulsion, where the large correlated (Hubbard)
charge gap lMc < lμ � l� determines the shortest length scale
of the system, the situation changes and each minimum in
the charge sector splits into two degenerate minima: 〈φs〉 = 0,
〈√2πKcφc〉 = φ0, π − φ0, and 〈√2πφs〉 = π , 〈√2πKcφc〉 =
−φ0, −π + φ0, where

φ0 = arcsin(π�r/2Mc).

These new sets of minima support, besides the CDW order,
also the BOW order because for 〈√2πKcφc〉 �= ±π/2 the
dimerization operator

D(x) =
∑

σ

(−1)n(c†
i,σ ci+1,σ + H.c.)

∼ cos
√

2πKcφc(x) cos
√

2πφs(x) (29)

acquires a finite expectation value in the new vacuum. The
location of the minima in the spin sector, and hence the spin
quantum numbers of the topological excitations, are the same
as in the BI phase. However, the charge quantum numbers
become fractional, depending on φ0. The Z2 degeneracy of
the spontaneously dimerized state implies the existence of
topological kinks carrying the spin S = 1/2 and charge Q =
±2φ0/π [41].

Thus, eventually, with increasing Hubbard repulsion, at
l� � lMc the BOW pattern is generated in the ground state.
If the transition takes place at l� � lMc < lμ, i.e., within the
gapped phases, one recovers the phase diagram of the standard
IHM [41]. However, if the same transition takes place at
lμ < l� � lMc , i.e., in the metallic phase, although the charge
excitation spectrum is gapless, in the ground-state coexistence
of the LRO CDW and BOW patterns will be present.

C. Large U spin chain limit

To complete our qualitative analysis, notice that the be-
havior of the spin gap substantially depends on the value of
the parameter t ′/t . At strong repulsion U � t, t ′,� the spin
degrees of freedom are described by the Hamiltonian of the
frustrated Heisenberg chain

HHeis = J
∑

n

Sn · Sn+1 + J ′ ∑
n

Sn · Sn+2, (30)

where [51]

J = 4t2

U

[
1 − 1

U 2

(
4t2 − �2

)] + O(1/U 5), (31)

J ′ =4t ′2

U

[
1 − 1

U 2

(
4t ′4 − t4

t ′2

)]
+ O(1/U 5). (32)

Excitation spectrum of the spin chain (30) is gapless at
J ′/J < 1/4 and gapped at J ′/J > 1/4 [52,53]. Consequently,

at large U and t ′ < 0.5 t the spin excitation spectrum is gap-
less, while at t ′ > 0.5 t it is gapped. Hence, at t ′ < 0.5 t with
increasing U after the appearance of the BOW phase the spin
gap closing transition takes place [41], while at t ′ > 0.5 t the
spin gap remains finite in the whole area of the CI phase even
at large U .

III. NUMERICAL EXPLORATION

In order to test the validity of the picture obtained in the
previous section, we investigated numerically the predicted
insulator-metal-insulator transitions and relevant order param-
eters in the different phases. To this end we have performed
DMRG [54] calculations on finite-length L chains with open
boundary conditions (OBC). The employed code relies on the
ITENSOR software library [55].

The parameter region of interest, as described in Sec. I,
is the full range of Hubbard repulsion U > 0 in the close
proximity of the insulator-metal (Lifshitz) transition of the t-t ′
ionic chain. This is achieved with t ′ � t ′

c, where we expect to
find a band insulator phase (induced by � at low U ), a metallic
phase at intermediate U (induced by second-neighbor hopping
amplitude t ′ > 0.5t), and a correlated insulator phase for large
U . We found it convenient to set the energy scale as t = 1, to
choose � = 0.8 and t ′ = 0.55 (being t ′

c ≈ 0.638), exploring
the effects of Hubbard repulsion U from the noninteracting
regime (U = 0) up to large enough values to reach a Mott-like
insulator, estimated as U ∼ 4.0.

As the Hamiltonian H in Eq. (1) commutes with the total
number operator N = N↑ + N↓ and the total magnetization
operator Sz = (N↑ − N↓)/2, one can compute the lower
eigenvalue states of H within subspaces with given quantum
numbers N for the number of electrons and Sz for the total spin
projection. We then denote by E0(N, Sz ) the lowest eigenvalue
and by E1(N, Sz ) the first excited eigenvalue in the given
subspace.

Specifically, we have focused on the following states (no-
tice that, because of spin symmetry, reversing the sign of Sz

does not change the eigenvalues):
(1) N = L, Sz = 0, the ground state with lowest eigen-

value E0(L, 0) and the internal excitation with first excited
eigenvalue E1(L, 0);

(2) N = L, Sz = 1, the spin-flip state with lowest eigen-
value E0(L, 1);

(3) N = L + 1, Sz = +1/2, a one-particle state with low-
est eigenvalue E0(L + 1, 1/2);

(4) N = L − 1, Sz = +1/2, a one-hole state with lowest
eigenvalue E0(L − 1, 1/2);

(5) N = L + 2, Sz = 0, the two-particle state with lowest
eigenvalue E0(L + 2, 0);

(6) N = L − 2, Sz = 0, the two-hole state with lowest
eigenvalue E0(L − 2, 0).

These states were computed using maximal bond dimen-
sions up to 800, the truncation error being lower than 10−8.
However, when the energy difference between E1(N, Sz ) and
E0(N, Sz ) is too small, DMRG convergence towards the
ground state becomes difficult. Such difficulties indeed arose
in the presumably metallic region, expected to be gapless in
the thermodynamic limit, as we increased the chain length.
Within our resources, for some values of U , we could not
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ensure convergence for chains beyond a hundred sites. More-
over, the size-scaling behavior with inverse length 1/L might
change at some critical length [45], making any extrapola-
tion technique from moderate lengths into the thermodynamic
limit uncertain. We do not attempt in the present work to
provide precise extrapolations. We limit ourselves to show
confident finite size data, adding suggested thermodynamic
extrapolations only when the scaling tendency with 1/L seems
stable. We find that the suggested results support the validity
of our analytical predictions, as described schematically in
Fig. 3.

The square of the total spin operator S = ∑
i(c

†
i,σ

σσσ ′

2
ci,σ ′ )

also commutes with the Hamiltonian, then the total spin S is
a good quantum number. However, it is not additive and can
not be fixed along DMRG sweeps. We have computed, for
each state obtained, the expectation value 〈S2〉 to check coin-
cidence with S(S + 1) for a given integer or half-integer S.

In this sense we have found that, for any considered repul-
sion U and length L, the half-filled, nonmagnetized ground
state is a singlet state with S = 0. The internal excitation and
the spin-flip states form a triplet with S = 1. Consistently with
spin symmetry, they are degenerate, E1(L, 0) = E0(L,±1).
This is the lowest excitation of the ground state. We have
found no signal of another exciton state lying below the spin
triplet, in contrast with the situation observed in the nearest
neighbors IHM [45].

For the ground state we have also computed the local
charge and spin densities, and spin correlations along the
chains, with the aim of discussing order parameters in the
different phases.

We describe below the results of different measures we
have performed, setting t = 1, t ′ = 0.55, and � = 0.8, on
chains of several lengths up to 128 sites.

A. Energy gaps

One can define different gaps with respect to the half-filled
ground state, corresponding to the different possible excita-
tions. We consider the following:

(1) the internal gap �int in the subspace with N = L and
Sz = 0,

�int = E1(L, 0) − E0(L, 0); (33)

(2) the spin gap �s corresponding to spin-flipped states
Sz = ±1 with N = L,

�s = E0(L, 1) + E0(L,−1) − 2E0(L, 0)

2
; (34)

(3) the one-particle gap �1 corresponding to the addition
or subtraction of one electron,

�1 = E0(L + 1, 1/2) + E0(L − 1, 1/2) − 2E0(L, 0); (35)

(4) the two-particle gap �2 corresponding to the addi-
tion or subtraction of charge while keeping the magnetization

FIG. 5. One-particle gaps �1, for t ′ = 0.55 t and � = 0.8 t . Data
from finite chains of different lengths L = 48, 64, 96, 128 is shown
(some points for L = 128 are not included). One can distinguish
the band insulator phase for low U , signals of a gapless region for
intermediate U , and a reentrance to a large U insulator phase.

Sz = 0,

�2 = E0(L + 2, 0) + E0(L − 2, 0) − 2E0(L, 0)

2
. (36)

Notice that a chemical potential should be added to ensure
that the half-filling N = L sector contains the ground state of
the system. However, chemical potential contributions cancel
out in these gap constructions, then gaps can be computed
directly from the eigenvalues of the Hamiltonian in Eq. (1).

From the degeneracy of the spin triplet one can see that
�int = �s. Moreover, the present definition of the spin gap
coincides with the difference between the triplet and sin-
glet energies at half-filling [E (N = L, S = 1) − E (N = L,

S = 0)] used elsewhere. From the same relation, as there is
no exciton state below the spin gap, we assume that �2 is a
meaningful measure of the charge gap. We denote �2 as �c

in the following.
We first show in Fig. 5 the one-particle gap �1, which

involves the change of both charge and spin quantum num-
bers. The key feature of this plot is the apparent presence of
a gapless region for intermediate U . Notice that some points
for L = 128 with convergence difficulty are not included; in
these cases the gap seems to be so small that our procedures
have not been able to separate the ground state from the first
excited level.

In order to analyze separately charge and spin degrees of
freedom, we show in Fig. 6 the two-particle charge gap �c

(�2). As expected for finite systems [45], we observed that
�c > �1. The existence of a gapless region at intermediate
U , in the thermodynamic limit, is not evident from the largest
length studied and requires a detailed size scaling analysis. In
Fig. 7 we show that the 1/L scaling behavior is very different
at low, mid, or large U . A power law L−ν in the BI phase, and
a quadratic polynomial in the CI phase, fit well the finite size
data providing the suggested extrapolation in Fig. 6 (in gray).
However, in the region 2.2 � U � 2.7 it is apparent that larger
sizes are needed to define 1/L scaling. Though we do not
propose an extrapolation, a graphical inspection suggests the
presence of the unusual gapless phase in this region.
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FIG. 6. Two-particle charge gap �c, for t ′ = 0.55 t and � =
0.8 t . Data from finite chains of different lengths L = 48,

64, 96, 128 is shown, together with a proposed extrapolation where
appropriate (hollow circles). The band insulator phase for low U
and the correlated insulator phase for large U can be distinguished.
At intermediate U the lengths computed do not provide a definite
scaling tendency; we argue in Fig. 7 that our data is consistent with
a gapless thermodynamic limit.

Next we show in Fig. 8 the spin gap �s, coincident with
the internal excitation gap in the half-filled, nonmagnetized
subspace of states. Being the lowest excitation of the ground
state, we have not reached good DMRG convergence in the
2.2 � U � 2.7 region where the internal excitation could not
be separated from the ground state. From the available data we
show in Fig. 9 the scaling tendency. One finds a finite spin gap
in the band insulator region, a possibly spin gapless phase in
the intermediate region, and a reopening of the spin gap in the
correlated insulator region. In this last region we observed a
regular scaling behavior that leads to a sensible mathematical
extrapolation: a quadratic fit provides a small but nonvanish-
ing, decaying, spin gap in the thermodynamic limit (shown
in the inset). This is consistent with the spin dimerized phase
predicted in Sec. II C. The suggested extrapolation is plotted
in Fig. 8 (in gray). Further investigation, exceeding our nu-
merical resources, is needed in the intermediate region.

From the shown data one can infer for low U a band insu-
lator type region (BI, noncorrelated) with (almost) �c = �s.
The gaps decay as the repulsion U penalizes double occupa-
tion of low-potential (odd) sites and promotes n.n.n. hopping
t ′ between high-potential (even) sites. The charge gap �c and
the spin gap �s presumably close at Uc,1 ≈ 2.2 (we cannot
resolve whether they would close at the same point), giving
rise to the repulsion-driven metallic phase. When larger repul-
sion U gets strong enough to also penalize double occupation
of high-potential sites, the charge gap reopens and starts to
grow with U . This occurs at Uc,2 ≈ 2.7. It is expected that the
charge gap increases linearly in this region, from the fact that
our computations are done with a fixed number of particles
instead of fixing the chemical potential (see Ref. [56] and
Appendix B for a discussion). Interestingly, the spin gap also
reopens close to Uc,2, and grows to a maximum in a narrow
range of U , as if bound to the charge gap. This unusual
behavior seems not to be captured by the 2-FP bosonization

FIG. 7. Finite size scaling of the charge gap for different values
of the Hubbard repulsion, with L ranging from 32 to 128 sites. An
extrapolation is shown as a guide to the eye when appropriate. Top
panel: for low U the charge gap scaling can be fitted with a power law
�c(∞)/t + L−ν , and clearly extrapolates towards a nonzero band
insulator gap (for U = 0 we added large size free-electron results,
in red stars). Middle panel: in the intermediate region the scaling
concavity changes from positive to negative. A naive extrapolation
from our finite size data is misleading, meaning that there should be
a change in the scaling tendency at larger lengths. Though refined
computations are needed, a graphical inspection strongly suggests
that the present results are consistent with a gapless thermodynamic
limit. Bottom panel: for larger U the negative scaling concavity
smoothly gives place to a polynomial behavior. For U � 2.8 t a
quadratic extrapolation is again clearly nonzero, corresponding to the
correlated (Mott-like) insulator phase.

approach in Sec. II B. Beyond a peak value at U ≈ 2.80 the
spin gap starts to decay while the charge gap keeps growing,
signaling a strongly correlated insulator phase. In order to
investigate the role of the ionicity � in the gap formation, we
have additionally explored the range 0 � � � 0.9, keeping
t = 1 and t ′ = 0.55 close to the Lifshitz point. Without reach-
ing further numerical precision, we have observed that when
the ionic potential amplitude � is lower, the argued metallic
region starts at lower Uc,1 and is eventually present since the
free point U = 0 when � is low enough. The value of Uc,2

where the charge gap reopens is less sensitive to the ionicity.
The spin gap peak close to Uc,2 was observed for any �. An
estimation of the transition points according to the ionicity
parameter is shown in Fig. 10.
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FIG. 8. Spin gap �s, for t ′ = 0.55 t and � = 0.8 t . Data from
finite chains of different lengths L = 48, 64, 96, 128 is shown only
where DMRG convergence is reached. The band insulator phase
for low U with similar spin and charge gaps can be distinguished.
The correlated insulator phase for large U shows a rise of the spin
gap followed by a slow decay. An extrapolation is shown when
appropriate (hollow circles, see details in Fig. 9).

B. Order parameters

For the computed ground states we have evaluated the
local expectation values ρi,σ = 〈ni,σ 〉 for each site and qi,σ =
〈c†

i,σ ci+1,σ + H.c.〉 for each bond, as well as spin-spin cor-
relations 〈Sz

i Sz
j〉, with the aim of revealing the existence of

magnetic order. The following local densities are then con-
sidered:

(1) local charge density ρi = ρi,↑ + ρi,↓;
(2) bond charge density qi = qi,↑ + qi,↓.
The local spin density σi = 1

2 (ρi,↑ − ρi,↓) and the bond
spin density qi,↑ − qi,↓ do vanish, as expected from the SU (2)
symmetry of the model and the zero magnetization condition.

1. Charge density wave

Our results for the induced CDW order (ionicity) are sum-
marized in Fig. 11. Local charge density ρi is found to be
alternating around the half-filling average ρ̄i = 1, following
the pattern induced by ionic potential. According to Eq. (1),
even sites have higher local potential so they are less occupied
by electrons. We show in the inset the charge density in the
central portion of a chain sample (U = 2.5, L = 96, gapless
region) to illustrate the CDW order. A similar alternating pat-
tern is observed in the band insulator and correlated insulator
phases; boundary effects disappear in a few sites and the
occupation alternation gets homogeneous in the bulk.

The CDW amplitude for chains of length L was then com-
puted as

δρ = 1

L

L∑
i=1

(−1)i+1ρi, (37)

comparing the occupation of odd and even sites along the
chains. According with the short range of boundary effects,
we found that the finite size scaling is linear in 1/L. These
results provide full support for the mean-field approach devel-
oped in Sec. II A and are in concordance with the mean-field

FIG. 9. Finite size scaling of the spin gap for different values
of the Hubbard repulsion, with L ranging from 32 to 128 sites.
Top panel: for low U a power law scaling of the spin gap suggests
nonzero extrapolations, with values similar to the charge gap (for
U = 0 large size free-electron results are also shown, in red stars).
The extrapolated spin gap decreases smoothly with U , while the
scaling maintains the slope and concavity. We estimate that it is
nonzero up to U ≈ 2.1 t . Middle panel: in the intermediate region
the scaling looks almost linear, but a naive extrapolation would
lead to meaningless results; this means that for larger lengths there
should be a crossover in the scaling tendency. Though we have not
reached DMRG convergence for larger systems in this region, the
behavior might be compatible with a gapless thermodynamic limit
up to U ≈ 2.7 t . Bottom panel: a singular behavior is observed at
U = 2.8 t , where the spin gap reopens and gets a peak value. For
higher U � 2.9 t the scaling gets a slight negative concavity and
a quadratic extrapolation decreases smoothly towards zero. Inset: a
quadratic extrapolation in this region suggests nonvanishing, decay-
ing, spin gaps.

parameter δρ0 defined in Eq. (2). We show in the main panel
of Fig. 11 the finite size values of δρ and the corresponding
extrapolation. It is clear that δρ decreases with U , as the
Hubbard repulsion penalizes local occupation larger than one
[cf. the mean field δρ0(U ) in Fig. 4].

2. Bond-ordered wave

In the thermodynamic limit the Hamiltonian in Eq. (1) is
symmetric under reflection with respect to a site. This implies
that all bonds are equivalent, and one expects that the bond
charge density qi should be homogeneous. However, a spon-
taneous parity symmetry breaking is known to occur in the
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FIG. 10. Estimated transition points for different ionicities � and
t ′ = 0.55 t . Uc,1 corresponds to the band insulator-metal transition
where the charge gap vanishes, and Uc,2 to the metal-correlated
insulator transition where the charge gap reopens.

(t ′ = 0) IHM at intermediate repulsion U [41,45], manifest as
a BOW phase with a twofold degenerate, dimerized ground
state characterized by alternating bond charge density qi. We
address in this section the appearance of such a BOW phase
in the t-t ′ ionic Hubbard model.

The use of OBC in the ionic chain with even number of
sites L explicitly breaks the reflection symmetry, as the edge
sites have different ionic potential ±�/2. This induces an
alternation of qi, as shown in sample plots in the inset of
Fig. 12. One then has to distinguish the true BOW order in
the bulk from the oscillating boundary effects. To this end we
have evaluated the average oscillation amplitudes of qi in the
ground state of finite-length chains as

BOW = 1

L − 1

L−1∑
i=1

(−1)iqi, (38)

FIG. 11. The amplitude of local charge density alternation δρ

decreases smoothly with U . Data is averaged along chains of length
L = 48, 64, 96, 128 and extrapolated linearly in 1/L. Notice that the
slope is slightly different in the metallic region. Inset: detail of the
CDW in a portion of a chain sample (L = 96 sites) for U = 2.5 t
in the metallic phase; the same alternating occupation pattern is
observed for all U .

FIG. 12. Average BOW amplitude for finite-length chains with
L ranging from 48 to 128 sites. Extrapolation to the thermodynamic
limit is only suggested (hollow circles) where the scaling tendency
is well defined (see Fig. 13). No bond order is present in the BI
phase but a BOW amplitude appears and increases rapidly within the
metallic phase (U � 2.52 t is shown), then decreases slowly in the CI
phase. Inset: samples of the charge bond density in a chain of length
L = 96 sites with OBC. The density oscillates and the difference
between odd and even bonds is always enhanced at the end bonds;
for the shown U = 2.0 t the amplitude decays to zero towards the
chain center but for U = 2.7 t it decays to a finite steady value that
signals the bulk BOW order in the L → ∞ limit.

and then studied their scaling behavior with 1/L. In Fig. 12
we show the finite size BOW amplitudes for a wide range of
U and suggest the extrapolated values where we find them
trustable, from the analysis of the scaling behaviors provided
in Fig. 13. In the BI phase the behavior is linear, leading to
the absence of BOW order. Our present data is not enough
to resolve the scaling behavior in the intermediate region,
where the curvature cannot be clearly fitted. Starting within
the gapless region, and extending into the correlated insulator
phase, a quadratic extrapolation clearly indicates BOW order.
From this analysis we suggest that the BOW order starts at
some U �

c located between 2.5 and 2.6, and has a peak value
where the charge gap reopens. Such a profound manifestation
within the charge and spin gapless phase of the correspond-
ing quantum phase transition at U ∗

c makes this metallic state
highly unusual. This main result is indicated in the schematic
phase diagram in Fig. 3.

The BOW order remains present in the CI phase, with an
amplitude that decreases with U . As discussed in Sec. II B,
we do expect this remnant BOW order, as in the large U limit
the Hamiltonian in Eq. (1) can be mapped onto a J-J ′ spin
S = 1/2 Heisenberg model with large enough J ′ > J/4 as to
be in the dimerized regime.

3. Spin dimerization and antiferromagnetic order

As the expectation values of spin components vanish at
every site, the magnetic order is investigated by means of the
correlation functions 〈Sz

i Sz
j〉 with

Sz
i = (c†

i,↑ci,↑ − c†
i,↓ci,↓)/2. (39)
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FIG. 13. BOW amplitude scaling. We show the finite size BOW
amplitudes in different regions of the Hubbard repulsion, and their
suggested extrapolations when trustable. Top panel: the average
along the chains includes important boundary effects that in the
BI phase extrapolate linearly to zero. There is no bond order in
this phase. Middle panel: in the metallic phase, up to U = 2.5 t the
scaling behavior is not well defined from the computed lengths. No
extrapolation is done. Bottom panel: starting at U = 2.5 t , within
the metallic phase, a quadratic extrapolation leads to nonzero BOW
amplitude. Still, the scaling behavior at U = 2.5 t might change for
larger lengths. A maximum is reached at U ≈ 2.7 t , presumably
coinciding with Uc,2 at the onset of the charge gap.

On general grounds, the Hubbard repulsion U > 0 induces
antiferromagnetic correlations. The nearest-neighbor spin cor-
relations 〈Sz

i Sz
i+1〉 might be expected to be homogeneous in the

thermodynamic limit because of the site reflection symmetry;
however, spontaneous spin dimerization is known to occur in
antiferromagnetic J-J ′ spin chains [52,53]. The n.n.n. hop-
ping terms t ′ in the present model introduce antiferromagnetic
n.n.n. spin couplings that could induce such an effect. In order
to detect spin dimerization in the ground state, we define a n.n.
spin correlation wave (SCW) order parameter

SCW = − 1

L − 1

L−1∑
i=1

(−1)i
〈
Sz

i Sz
i+1

〉
. (40)

The use of OBC conditions in finite chains explicitly breaks
the reflection symmetry and induces oscillations of the n.n.
spin correlations. In analogy with the discussion of the BOW
order, we have followed a scaling analysis to separate bulk
from boundary contributions. It suggests a clear thermody-

FIG. 14. Spin dimerization order parameter SCW for finite-
length chains with L ranging from 48 to 128 sites. Extrapolation to
the thermodynamic limit is only suggested (hollow circles) where the
scaling tendency is well defined. Spin dimerization is absent in the
BI phase but appears within the gapless phase, with a peak amplitude
roughly where the correlated charge gap opens. Inset: profiles of
local correlations 〈Sz

i Sz
i+1〉 for values of U in the BI phase and at

the metal-CI transition, both for L = 96 sites chains.

namic limit for low and high values of U but does not provide
a well-defined scaling tendency in the intermediate region.
Our finite size results and the suggested extrapolation, where
confident, are shown in Fig. 14; the inset illustrates the pres-
ence (or absence) of the SCW in the bulk. The results support
that the spin dimerization takes place within the gapless phase,
with a peak amplitude where the correlated charge gap opens.
By comparing with Fig. 12 it is apparent that the BOW order
and the spin dimerization belong together.

Farther neighbors spin-spin correlations decay with dis-
tance. The observed decay rate is compatible with an
exponential behavior in the BI phase, with a correlation length
of a few sites that increases as the spin gap decreases with

FIG. 15. Large distance spin correlations 〈Sz
cSz

c+r〉, where
c = L/2 is a central site in a L = 128 sites chain, for U = 2.6 in
the metallic region. An antiferromagnetic order is present, but it is
hard to distinguish whether correlations follow an exponential decay
with large correlation length or an inverse distance power law.
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larger U. In the CI phase our data is compatible with a
quasi-long-range antiferromagnetic order, with alternate cor-
relations decaying like an inverse distance power law; this is
consistent with the mapping into a J-J ′ Heisenberg spin chain
discussed in Sec. II B and the very small spin gap discussed
in Sec. III A. In the intermediate metallic region we observe
the formation of a short-range antiferromagnetic order, as
illustrated in Fig. 15 in a chain of L = 128 sites for U = 2.6.
The decay rate presumably undergoes a crossover from expo-
nential, with a large correlation length, into a quasi-long-range
order.

IV. SUMMARY AND CONCLUSIONS

In the present work we investigate the ground state of an
extended one-dimensional ionic Hubbard model with nearest-
neighbors hopping t , next-to-nearest-neighbors hopping t ′,
ionic potential �, and Hubbard on-site repulsion U , setting
t ′ in an intermediate regime where previous studies [47] have
not been conclusive. We restrict the analysis to half-filling and
zero magnetization states.

We have focused on a fixed value of t ′ and �, where the
free t-t ′-� chain is still an indirect gap insulator, close to the
would-be Lifshitz transition if � was absent. Then, we inves-
tigate the effects of the Hubbard repulsion. Numerically, we
set t ′ = 0.55 t and � = 0.8 t . Because for the selected set of
model parameters the low-energy physics of the noninteract-
ing particles is given by excitations with nonlinear dispersion,
it is a challenge to analyze the effect of electron-electron
interactions U on the system.

On the analytical side we have followed a bosonization
approach starting from the free fermion system, with two
commensurate Fermi momenta. As t ′ > 0.5 t shifts the Fermi
points, a chemical potential is introduced to reestablish them
so that perturbations due to �, U , and t ′ can be treated on
equal footing. It comes out that three independent length
scales determine the behavior of the ground state: one asso-
ciated with the renormalized ionic gap, one associated with
the Hubbard correlated gap, and a third one associated with
the chemical potential. When the chemical potential exceeds
the ionic and correlated gaps, the metallic phase is established
by means of a commensurate-incommensurate transition. Fea-
tures of the standard IHM, such as the appearance of the
BOW order and dominance of correlations, occur within this
metallic phase while the charge gap remains zero. Instead,
when the ionic gap or the correlated gap (excluding each
other) become larger than the effective chemical potential,
the band insulator or the correlated insulator phases, re-
spectively, are formed. These findings can be qualitatively
appreciated in Fig. 16, where we compare the charge gap
obtained for the IHM (t ′ = 0) with the chemical potential due
to t ′ > 0.5 t .

On the numerical side we have explored a wide range of
U using the DMRG technique. We show that the Hubbard
repulsion competes with the ionic free electron state, reducing
the charge gap. Though a vanishing gap makes it difficult
to separate the ground state from excitations, our finite size
results suggest that the Hubbard repulsion drives the system
into a gapless ground state at some critical point Uc,1. This is
reminiscent of the so-called interaction-resistant metals [57].

FIG. 16. Qualitative argument comparing the charge gap for the
standard IHM (� = 0.8 t , t ′ = 0, rough DMRG computation in red
circles) and the chemical potential introduced by t ′ > 0.5 t in the
bosonization approach (for t ′ = 0.55 t). When the t ′ = 0 charge gap
is lower than the effective Fermi level (blue surface), fluctuations
dominate and the metallic state is stabilized. Spontaneous generation
of the BOW order occurs inside the metallic phase, making it highly
unusual. The estimated boundaries of the insulator phases in Fig. 6
are compatible with this simple picture.

The gapless state is alleged to persist in a wide window
of Uc,1 < U < Uc,2, with neither charge gap nor spin gap
and with a long-range order CDW pattern induced by the
ionic potential. After a critical point U ∗

c (Uc,1 < U ∗
c < Uc,2)

the state also supports short-range antiferromagnetic order,
spontaneous charge bond order, and nearest-neighbors spin
correlation dimerization. These features characterize a very
unusual metallic state.

Larger repulsion gives rise to a correlated insulator (Mott-
like) phase at some critical point Uc,2. The charge gap opens
linearly with U , while the spin gap also opens slightly after
Uc,2, showing a small peak to decay later presumably not
closing at any U . The CDW and the BOW, with decaying
amplitude, coexist with quasi-long-range antiferromagnetic
order in this correlated insulator phase.

Additional analytical insight is obtained for large U by
freezing the charge degrees of freedom at one electron per
site, thus mapping the model into a spin S = 1/2 Heisenberg
J-J ′ chain. As one gets J ′/J > 1/4, the spin system lays in the
dimerized phase. This explains the persistence of the BOW
order and the finite 1/U spin gap within the explored range
of U .

We expect that the present predictions could be traced in
fermionic cold-atom systems in suitable engineered optical
lattices.
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APPENDIX A: DIAGONALIZATION OF THE IONIC CHAIN

In this Appendix we consider the exactly solvable case of
the t-t ′ ionic chain given by the Hamiltonian

Ht−t ′−�r = −t
L∑

i,σ

(c†
i,σ ci+1,σ + H.c.)

+ t ′
L∑

i,σ

(c†
i,σ ci+2,σ + H.c.)

+ �r

2

L∑
i,σ

(−1)ini,σ . (A1)

To diagonalize the Hamiltonian (A1) it is convenient to intro-
duce a unit cell with two sites and operators

am,σ ≡ c2m−1,σ , bm,σ ≡ c2m,σ , m = 1, . . . , L/2

and rewrite the reduced version of the Hamiltonian in the
following way:

Ht−t ′−�r = −t
∑
m,σ

[a†
m,σ (bm,σ + bm−1,σ ) + H.c.]

+ t ′ ∑
m,σ

[a†
m,σ am+1,σ + b†

m,σ bm+1,σ + H.c.]

− �r

2

∑
m,σ

(
n(a)

m,σ − n(b)
m,σ

)
, (A2)

where n(a)
m,σ = a†

m,σ am,σ , n(b)
m,σ = b†

m,σ bm,σ are spin σ particle
density operators on odd (a) and even (b) sites, respectively.

Performing the Fourier transformation

am,σ =
√

2

L

∑
k

eikmak,σ ,

bm,σ =
√

2

L

∑
k

eik(m+ 1
2 )bk,σ , (A3)

where k = 4π
L ν, with integer ν, − L

4 < ν � L
4 , and introducing

a two-spinor

�† = (a†
k,σ

, b†
k,σ

,) � =
(

ak,σ

bk,σ

)
, (A4)

we rewrite the Hamiltonian in momentum space as

Ht−t ′−�r = �†Ĥ�, (A5)

where

Ĥ = ε′
kI + εk τ̂x − 1

2
�r τ̂z, (A6)

εk = −2t cos
k

2
, ε′

k = 2t ′ cos k, (A7)

I is an identity matrix, and τ̂x and τ̂z are Pauli matrices.
Diagonalization of the Hamiltonian in the form (A6) is
straightforward. The Bogolyubov transformation

ak,σ
= cos ϕkαk,σ

+ sin ϕkβk,σ
,

bk,σ
= − sin ϕkαk,σ

+ cos ϕkβk,σ
, (A8)

where the angles ϕk,σ are chosen as

tan 2ϕk = 2εk

�r
, cos 2ϕk,σ

= �r√
4ε2

k + �2
r

, (A9)

diagonalizes the Hamiltonian (A5) as

Ht−t ′−�r =
∑
k,σ

(E−
k α

†
k,σ

αk,σ
+ E+

k β
†
k,σ

βk,σ
), (A10)

where

E±
k = ε′

k ±
√

ε2
k + (�r/2)2 (A11)

are the energy dispersions for α and β quasiparticles, respec-
tively.

In the ground state of the half-filled system the L lowest-
energy states are filled and the rest are empty. For t ′ = 0,
E−

k and E+
k do not overlap and are separated with a direct

gap equal to �r ; all states in the lower band are occupied,
whereas in the upper band all states are empty; the system is
in the insulating state. In the case of a finite t ′, however, these
bands might overlap, due to a k-dependent energy shift ε′

k . For
t, t ′ > 0 the global minimum of the upper E+

k band is always
at k = π ,

E+
k=π = −2t ′ + |�r |/2. (A12)

The E−
k (lower) band shows a richer composition of maxima:

at

t ′
∗ = 0.5t

√
1 + (�r/4t )2 − |�r |/8, (A13)

the position of the global maximum of the lower band
is changed from k = π , E−

k=π
= −2t ′ − |�r/2| (t ′ < t ′

∗), to
k = 0, E−

k=0 = 2t ′ − 2t
√

1 + (�r/4t )2 (t ′ > t ′
∗). These possi-

bilities are illustrated in Fig. 2 in the main text.
Hence, for t ′ < t ′

∗, the system is a band insulator with a
direct gap in the excitation spectrum

�dir = E+
k=π − E−

k=π = |�r |, (A14)

while for t ′
∗ < t ′ < t ′

c, where

t ′
c = 0.5t

√
1 + (�r/4t )2 + |�r |/8 (A15)

is an insulator with the indirect gap

�ind = |�r |/2 + 2t
√

1 + (�r/4t )2 − 4t ′ (A16)

in the excitation spectrum. The gap decreases linearly with
increasing t ′ and vanishes at t ′ = t ′

c. It is useful to reverse the
problem and determine the critical value of the effective ion-
icity parameter �cr

r � 0 corresponding to the metal-insulator
transition at given values of the parameters t and t ′,

�cr
r =

{
4t ′ − t2/t ′ for t ′ � 0.5t
0 otherwise

. (A17)

For |�r | > �cr
r (|�r | < �cr

r ), the system is in an insulating
(metallic) state. Note that for t ′ < 0.5t the system is in the
insulating phase for any finite value of |�r |.

We complete our analysis by evaluating the ground-state
charge distribution in the insulating phase. The average on-site
charge density is

〈ni〉 = 1 − (−1)iδρ0, (A18)
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where

δρ0 = 1

L

∑
i,σ

[〈
n(a)

m,σ

〉 − 〈
n(b)

m,σ

〉 ]

= 1

L

∑
k,σ

cos 2ϕk[〈α†
k,σ

αk,σ
〉 − 〈β†

k,σ
βk,σ

〉] (A19)

is the charge imbalance between “a” (odd) and “b” (even) sub-
lattices (that is, the amplitude of the CDW pattern), induced
by the ionic �r term.

In the band insulating ground state 〈α†
k,σ

αk,σ
〉 = 1 and

〈β†
k,σ

βk,σ
〉 = 0 for −π < k � π . Therefore,

δρ0 = 1

2π

∫ π

0
dk cos 2ϕk = �rκK (κ )

2πt
, (A20)

where K (κ ) is the complete elliptic integral of the first kind
with the modulus

κ = [1 + (�r/4t )2 ]−
1
2 . (A21)

APPENDIX B: THE BAND INSULATOR PHASE

To assess the accuracy of the 2-FP approach, let us apply
the bosonization analysis in the exactly solvable case of the
free t-t ′ ionic chain, where the Hubbard repulsion is included
only via the renormalization of the ionic term. At U = 0
the system is decoupled into the identical up and down spin
component parts H = ∫

dx[h↑ + h↓], where for each spin
component the Hamiltonian is the sine-Gordon model with
topological term

hσ = vF

2
[(∂xφσ )2 + (∂xθσ )2] − μeff√

π
∂xφσ

− �r

2πα0
sin

√
4πφσ , (σ =↑,↓), (B1)

with μeff given by Eq. (13) in the main text. Each of these
Hamiltonians is the standard one for the commensurate-
incommensurate transition [36,37]. At μeff = 0, the model
is described by the theory of two commuting sine-Gordon
fields with β2 = 4π . In this case the excitation spectrum is
gapped and the excitation gap is given by the mass of the up
(down) field soliton M↑ = M↓ = �r/2. In the ground state the
φ↑ and φ↓ fields are pinned with vacuum expectation values
〈0|φσ |0〉 = √

π (n + 1/4), with integer n giving the LRO in-
phase distribution of electron density in the ground state

ρc(x) � (−1)n 1

πα0

∑
σ

sin[
√

4πφσ (x)]. (B2)

Thus, at low t ′ < 0.5t (μeff = 0) the ground state of the sys-
tem corresponds to a CDW-type band insulator with a single
energy scale given by the ionic potential �r .

At t ′ > 0.5t (μeff �= 0) it is necessary to consider the
ground state of the sine-Gordon model in sectors with nonzero
topological charge. Competition between the chemical po-
tential term (i.e., t ′ > 0.5t) and the commensurability energy
given by �r finally drives a continuous phase transition from a
gapped (insulating) phase at μeff < μc

eff to a gapless (metallic)
phase at μeff > μc

eff, where

μc
eff = �r/2. (B3)

Using Eq. (13) we easily obtain that the critical value of the
n.n.n. hopping amplitude t ′, obtained in the 2-FP approach
from the condition (B3), coincides with the exact value given
in (A15).

As we observe, the insulator-metal transition at t ′ > t ′
c is

connected with a change of the topology of the Fermi surface
and a corresponding redistribution of the electrons from the
lower (−) band into the upper (+) band. At the transition point
the derivative of the ground-state energy with respect to the
chemical potential displays a singular behavior of the usual
square-root type ∂E0/∂μ ∼ −(μ − μc)1/2 when the chemical
potential is constant, or linear dependence ∂E0/∂μ ∼ −(μ −
μc) in the case of fixed particle density [56].
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