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Optimizing persistent currents in a ring-shaped Bose-Einstein condensate using machine learning
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We demonstrate a method for generating persistent currents in Bose-Einstein condensates by using a Gaussian
process learner to experimentally control the stirring of the superfluid. The learner optimizes four different
outcomes of the stirring process: (O.I) targeting and (O.II) maximization of the persistent current winding
number and (O.III) targeting and (O.IV) maximization with time constraints. The learner optimizations are
determined based on the achieved winding number and the number of spurious vortices introduced by stirring.
We find that the learner is successful in optimizing the stirring protocols, although the optimal stirring profiles
vary significantly depending strongly on the choice of cost function and scenario. These results suggest that
stirring is robust and persistent currents can be reliably generated through a variety of stirring approaches.
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I. INTRODUCTION AND BACKGROUND

In a Bose-Einstein condensate (BEC) superfluid, a per-
sistent current (PC) is the quantized circulation of the bulk
fluid in a multiply connected geometry, such as a ring [1,2].
As the phase singularity associated with the PC is located at
the center of the ring, where there is no density, the flow is
stabilized by topology against dissipation [1,3]. While PCs are
of fundamental interest in BEC research, they are also relevant
to atomtronics [4,5], where they can form the basis of compact
matter-wave interferometers [6–8]. PCs are also the basis of
fluxon systems [9] that have potential applications in atom-
tronics [10], for example as qubits which can be physically
relocated [11].

Multiple methods for experimentally generating PCs have
been developed. One can imprint the desired currents directly
to the wave-function phase using an optical potential [12,13],
inducing superfluid flow proportional to the phase gradient
[1]. However, in doing so the phase profile of the condensate
acquires a sharp 2Nπ phase jump for a charge-N current at
some point along the ring leading to significant density exci-
tations [13,14]. Alternatively, orbital angular momentum can
be directly transferred from Laguerre-Gaussian laser modes
[15,16], to the condensate, although the typical efficiency
is limited by mode matching to around 50% [17]. A more
straightforward method is to stir the condensate using an op-
tical barrier, analogous to stirring a classical fluid to generate
flow [18,19]. In this paper, we explore the parameter space
of a stirring method, with an aim to determine optimal stir-
ring profiles with a machine learning approach. Determining
the best-case stirring scenarios will highlight the advantages
and disadvantages of this approach compared to the other
schemes.

Machine learning has increasingly been used for the ex-
perimental control of quantum systems [20–22]. The key
advantage of this approach is the lack of prior knowledge
a machine learner has on the system of interest, allowing
for unique or counterintuitive solutions to a given problem

to be found [21–24]. These solutions can be found even
when there is an incomplete physical model of the system
available, since the learner requires only a restricted set of
data points [25]. Furthermore, computers have the ability
to handle large amounts of data efficiently as compared to
human operators. These factors have established machine
learning as a potentially superior method of experimental
control [26].

The stirring of a BEC to generate a PC is complicated by
a variety of experimental realities that can be challenging or
inefficient to model. For example, there may be density varia-
tions due to trap imperfections or roughness that can cause the
PC to degrade or decay [27]. The BEC also has a finite lifetime
within which stirring, system dynamics, and data extraction
must occur, introducing time restrictions to the stirring pro-
cess [28]. Aggressive stirring of the system will likely result
in the generation of undesirable excitations such as quantum
vortices and phonons [29]. These aspects suggest the stirring
can be a complex process covering a large parameter space
that may be challenging to accurately describe and control.
Thus, under a set of desired constraints, optimal stirring pa-
rameters for this complex system are not a priori obvious.
For example, various approaches have moved the barrier at
constant speed [29,30] or accelerating [31] speed profiles, but
it is unclear which approach is superior. The stirring barrier
must also be removed after inducing flow at some optimal
rate. Finally, one might be interested in creating the current
in the shortest time possible, to minimize the effect of atom
loss due to a finite BEC lifetime. This large parameter space
motivates the use of machine learning approaches to optimize
the stirring process, subject to user-chosen sets of constraints.
Recently, machine learning optimization of persistent currents
in a ring lattice has been explored in numerical simula-
tions [32], but such approaches have not yet been applied
to experiments.

Here, we use reinforcement learning through the open-
source Machine-Learning Online Optimization Package (M-
LOOP) [33] to explore the stirring parameter space. Using the
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FIG. 1. (a) A simplified diagram of the main apparatus used to generate and control BECs. The light from the digital micromirror device
(DMD) is shown by the green beam along the projection (Obj. 1) and imaging (Obj. 2) objectives. The light used for Faraday imaging
propagates along the same direction. (b–e) Experimental images demonstrating the stirring process using the DMD projected light. The ring
trap shown here has a larger width than the subsequent optimizations for illustrative clarity. (f) A typical time-of-flight experiment using stirring
as described in Sec. II, with red dots indicating spurious vortices.

Gaussian process learner in M-LOOP and applying it to four
separate optimization conditions, we find that the learner is
able to successfully optimize the stirring process, generating
the desired PCs while minimizing spurious vortices. However,
we find that the optimized parameters vary widely depending
on the chosen cost function and target parameters. The results
suggest that stirring is robust against variations in the particu-
lar details of the stirring profile.

II. EXPERIMENTAL IMPLEMENTATION

Our experiment implements configured optical potentials
with blue-detuned repulsive light to both trap a 87Rb BEC
in a ring and simultaneously stir it, as shown in Fig. 1. The
optical potential for the ring geometry and stirring is generated
using a digital micromirror device (DMD). The DMD is an
array composed of 2560 × 1600 mirrors that can be individ-
ually switched “on” and “off” corresponding to ±12◦ tilts,
respectively. This enables the creation of a “binary” hard-wall
trapping potential [34]. A detailed description of the process
for creating and configuring BECs using this apparatus can be
found in our prior work [34,35].

The experimental sequence is shown in Fig. 1. The atoms
are initially trapped in a 100-µm diameter disk. A separation
barrier is then inserted, growing from zero to 7-µm width
over 100 ms symmetrically about a mean radius of 34 µm.

This insertion method was observed to be sufficiently slow to
avoid density excitations. This process results in two separated
condensates: an outer ring BEC where the PC is created,
and an inner reference BEC that has a uniform phase, and
can be interfered with the outer BEC resulting in a pattern
from which the PC winding number can be inferred [36].
Simultaneously, a 3-µm-thick stirring barrier is inserted into
the ring BEC by linearly increasing the barrier thickness from
0 µm. This barrier is used for the stirring of the outer ring, sub-
ject to machine learning controlled parameters (see Sec. III)
which aim to generate the desired persistent current. After the
stirring process is completed, the stirring barrier is removed
by linearly decreasing its thickness over the removal time
TR while maintaining the same angular velocity. The stirring
region and reference BEC are then interfered by releasing
the system from the trap, and imaged in time of flight (TOF)
[13,19,37].

The number of spiral fringes resulting from the interfer-
ence of the ring and reference condensates identifies the phase
winding number of the ring, which is directly proportional
to the PC flow speed [37]. Spuriously generated quantum
vortices can form due to the stirring and are resolvable as
density dips in TOF, as seen in Fig. 1. A single TOF image
can thus be used to determine both the winding and vortex
number. A detailed description of the image analysis is given
in Appendix A.
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III. MACHINE LEARNING IMPLEMENTATION

A. Stirrer parametrization

Machine learning control of the stirring is implemented
with Gaussian process regression via the freely available
package M-LOOP [33,38]. As a reinforcement machine learn-
ing method, M-LOOP requires an external measure of the
error produced by the parameter model chosen by the learner
[25,39]. This error can be quantified using a cost function.
The choice of cost function can vary specific to the type of
optimization required, but there is one underlying property
across all choices: the cost should be minimized when the
parameter set is optimized [20,24].

We begin by specifying the angular stirring function of the
barrier:

θ (t ) = α

(
t

A

)P

, (1)

where the constant A = 400 ms is introduced to ensure the
stirring is slow enough to prevent destroying the BEC. The
parameters controlled by the machine learner are as follows:
(1) stirring time of the barrier after insertion, T ; (2) removal
time of the barrier after the stirring time, TR; (3) stirring
exponent, P; and (4) angular coefficient, α. Each parameter
is given a lower and upper bound: (1) 100 � T � 1500 ms,
(2) 10 � TR � 450 ms, (3) 1 � P � 4.5 (dimensionless), and
(4) 1.75 × 10−2 rad � α � αmax, where αmax = 3.49 rad in
the case of optimizations considered in Sec. III and αmax =
10.5 rad for those considered in Sec. V. This was done to
restrict the parameter space initially (Sec. IV) for a simpler
optimizations while increasing complexity with a larger pa-
rameter space in the later optimizations (Sec. V) to test the
limitations of the learner employed. The lower bound on T
is selected so that even for the minimum stirring time suf-
ficient fringes are generated for the detection algorithm to
operate accurately [40] (see also Appendix A). The upper
bound is imposed due to the frame-rate constraints on the
DMD, ensuring that the sequence projected onto the BEC is
smooth when the stirring occurs, avoiding the stirring barrier
moving around the ring in large discrete jumps. Bounds on
TR are also chosen such that the removal time is comparable
to the insertion time. The ranges for α and P were chosen
by observation to ensure parameters that both were suffi-
cient to consistently generate observable spiral fringes and
did not result in aggressive stirring such that the BEC was
destroyed.

B. Cost functions

Two main optimizations are considered: targeting a specific
winding number, with the cost function

CT = |NT − NW | + NV + 10
T

Tmax
, (2)

and maximizing the winding number, with the cost function

CM = −NW + NV + 10
T

Tmax
. (3)

Here, the measured winding number NW and the measured
spurious vortex number NV are obtained from the image

analysis (Appendix A). The target winding number NT is cho-
sen prior to optimization. The maximum allowed stirring time
Tmax is introduced for optimizations O.III and O.IV where we
impose a time restriction for the stirring process (Sec. V). This
time restriction on stirring is made so that any experiments
which require both stirring and observation of subsequent
dynamics of the BEC system can be made within the BEC
lifetime, ≈20 s for our system. By minimizing the stirring
time, we make more time available for these subsequent dy-
namics to be observed. Otherwise, we set Tmax → ∞ such that
the last term in the cost functions vanishes. Cost is computed
using an average measure of cost for five instances of the
experiment. The standard error of this cost measurement is
used as the uncertainty estimate for the cost. This uncertainty
is not incorporated into the cost itself, but is fed directly to
M-LOOP alongside the cost. M-LOOP is then able to estimate
errors on the parameter landscapes [e.g., Fig. 3(b)] using these
input uncertainties.

While vortices are the primary spurious effects we are
interested in minimizing, density excitations (sound) may also
result depending on the stirring profile [41]. This information
is not readily extracted from the TOF images, although it
may affect the regularity of the fringe pattern. Minimizing
sound excitation may be an additional refinement in future
implementations of this approach.

Equation (2) is minimized when the winding number is
exactly NT and no vortices are present in the system, resulting
in optimization to the target. Equation (3) is minimized for
the largest possible winding number given a minimized vortex
number, thus maximizing the PC. The weights on each term
were chosen such that any spurious vortices are weighted
equally to the error in the winding for Eq. (2) or to how
large the winding becomes in Eq. (3). This ensures that the
best “score” is assigned not only in achieving the target or
maximizing the current, but also when spurious vortices are
removed. When including the stirring time penalty, the factor
of 10 ensures that that longer stirring times are heavily pun-
ished, to the same level of having ten spurious vortices for
every stirring time T near the upper limit Tmax.

IV. OPTIMIZATIONS O.I AND O.II: VARIABLE
STIRRING TIME

We begin our investigation by fixing the stirring exponent
P = 2 (constant acceleration) and considering Tmax → ∞ to
remove the stirring time penalty from Eqs. (2) and (3), mean-
ing the stirring time is limited only by its upper bound.

A. Optimization O.I: Targeting

Using Eq. (2) as a cost function aims to realize a tar-
get winding number. This case is desirable for experiments
investigating various initial conditions of a superfluid shear
layer such as with the superfluid Kelvin-Helmholtz instability
[42,43] or when fluxons [9,10] are experimentally initialized
by stirring. A target winding number of NT = 20 is chosen.
This choice was made since a winding of 20 was already
known to be achievable in the experiment though manually
optimized stirring. The general process for optimization is
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FIG. 2. Process flow chart showing the general stirring parameter optimization process using M-LOOP over 50 iterations. Each iteration is
in reality composed of five experimental runs, taken with the same parameter settings. The cost of each iteration is computed as the average
cost for these five runs. This results in a mean cost and uncertainty (standard error) returned to M-LOOP for each parameter setting.

described in Fig. 2. After 50 iterations, the learner was termi-
nated, and the results of the procedure can be seen in Fig. 3.

The cost versus run number is shown in Fig. 3(a) and
illustrates how the learner evolved in choosing parameters and
their effectiveness in experimentally acquiring a circulation
of NT = 20. We note that in this scheme it is difficult to
discern between large cost values due to the measured wind-
ing number being vastly different to the target or whether
it is due to many spurious vortices. Generally, spurious vor-
tices vary greatly shot to shot and so large cost values with
larger uncertainties can be associated with large spurious
vortex numbers. In contrast, the winding will be relatively
stable shot to shot and data points associated with these
defects will have lower uncertainty. The blue curve super-
imposed on the data tracks the running minimum cost. As
can be seen, convergence is quickly achieved, justifying the
cutoff run number of 50 since we see no significant im-
provement in the cost or parameters. With these parameters,
the cost landscape forms a four-dimensional region. Land-
scape curves, shown in Fig. 3(b), are computed as the cross
sections of the cost landscape for each of the three param-
eters, chosen such that the other two parameters coincide
with experimentally minimal costs. The optimum stirring pa-
rameters can be read directly from the global minima of
the curves.

Figure 3(c) shows the results of stirring under the learner-
proposed optimum parameters. For this particular image, no
spurious vortices were observed while the winding count
is NW = 19. Averaging over five runs under these optimum
parameters, it was found that the mean winding was NW =
19.6 ± 0.3 with NV = 0.2 ± 0.2 spurious vortices. The opti-
mal stirring time T is 760.6 ms, near the middle of its bound
range. The optimal removal time TR = 176.2 ms is relatively
short, near its lower bound. The coefficient parameter α ex-
hibits multiple minima but has one clear global minimum
at 0.786 rad. Using these, it is possible to also deduce the
final speed of the barrier from Eq. (1) to be vB = 8.9 × 10−3

rad/ms or equivalently vB = 0.38 mm/s at the inner radius
of 32.25 µm. The optimum parameters, along with the pa-
rameters for the subsequent optimizations, are summarized in
Table I.

B. Optimization O.II: Maximization

Optimization O.II seeks to maximize the winding number
while suppressing spurious vortices. This can be achieved by
running M-LOOP with the cost function in Eq. (3). Figure 4
shows the outcome of this optimization. There is immediately
a clear and steady decrease in cost after the final training run,
leading to a plateau in the cost for the final runs indicated by
the minimum cost curve in Fig. 4(a). This behavior suggests
convergence to an optimal parameter set.

The parameter landscapes show the optimized parameter
choices as clear global minima of the curves. Unlike the
targeting optimization, all curves contain a single minima.
The optimal stirring protocol applies aggressive movement
of the barrier, indicated by the large α = 2.36 rad, but for a
relatively short stirring time at T = 335.3 ms and removal
time TR = 15.2 ms. These parameters correspond to a final
barrier speed of vB = 1.0 × 10−2 rad/ms or vB = 0.44 mm/s
at a radius of 32.25 µm. An example TOF image using the
optimized parameters is shown in Fig. 4(c), which contains
25 windings. The parameters result in NW = 25.8 ± 0.4, with
NV = 0.2 ± 0.2 over five experimental runs.

C. Remarks on the optimizations

Considering first Figs. 3(a) and 4(a), we observe that dur-
ing training runs the computed cost and uncertainty vary
significantly from run to run. The concept behind this random

TABLE I. Summary of optimized parameter values for the
optimization cases O.I (targeting), O.II (maximization), O.III (time-
limited targeting), and O.IV (time-limited maximization). v is the
PC flow speed in the middle of the ring, while cs ≈ 1300 µm/s is the
speed of sound. The final speed of the barrier is indicated by vB.

Optimization T (ms) TR (ms) α (rad) P v/cs vB/cs

O.I 721 176 0.786 2 0.27 0.38
O.II 335 15.2 2.36 2 0.35 0.34
O.III 240 100 2.64 1 0.25 0.22
O.IV 164 100 8.22 3.5 0.25 0.84
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FIG. 3. M-LOOP output graphics for optimization to a target of
NT = 20 windings [optimization O.I: cost function given by Eq. (2)].
(a) Cost vs run number over 50 runs. The initial 20 random runs
are shown before the vertical dashed line. Filled (red) points rep-
resent the randomly chosen parameter runs, and open (blue) points
represent the runs with machine learner chosen parameters. Filled
(red) points following the training can also be observed, which also
represent random walks designed to drive the learner out of potential
local minima while testing the optimum parameters. The solid (blue)
line tracks the minimum cost achieved as a function of run number.
(b) The predicted landscape for each of the three parameters com-
puted using the costs. The dashed (red) line represents the stirring
time parameter T , the solid (green) line represents the removal time
TR, and the dotted (blue) line represents the angular coefficient α.
Parameter values are normalized to lower and upper (Pmin and Pmax)
bounds using (P − Pmin)/(Pmax − Pmin). Uncertainties, shown by the
shaded regions for each curve, are computed through M-LOOP by
feeding the learner an error estimate for each run. (c) The -ms TOF
image resulting from using the optimum parameters in stirring. This
particular image contains 19 fringes.

training is to walk through as large a portion of the parameter
space as possible before the optimization effectively begins.
Doing so ensures that the Gaussian process regression is more
accurately able to produce meaningful landscape curves [33].
Following the training, we observe a rapid stagnation of the
cost in both optimization cases. This is indicated by the mini-
mum cost curves superimposed on Figs. 3(a) and 4(a), which

FIG. 4. M-LOOP output graphics for maximization of the winding
number [O.II: cost function given by Eq. (3)]. (a) The cost vs the run
number over 50 runs. (b) The predicted landscape showing the opti-
mum parameter choices. The dashed (red) line represents the stirring
time parameter T , the solid (green) line represents the removal time
TR, and the dotted (blue) line represents the angular coefficient α.
Uncertainties are indicated by the shaded regions. (c) 5-ms TOF
image under optimized parameters. This particular image shows 25
fringes.

show a drop after training to a sudden plateau suggesting
convergence.

For maximization O.II, the optimal parameters can be in-
terpreted as those which reach the upper limit for the winding
or flow speed of the persistent current before the shedding
of vortices from the stirring barrier cannot be avoided, i.e.,
the critical velocity has been reached [44]. Applying Eq. (B2)
(Appendix B) using the final winding numbers for both the tar-
geting and maximization case gives a flow speed of vT(R) ≈
347 µm/s and vM(R) ≈ 457 µm/s respectively (at the inner
ring radius R = 32.25 µm). Equivalently, this gives the crit-
ical velocity of the experimental system to be vM ≈ 0.35cs

where cs ≈ 1.3 mm/s is the two-dimensional (2D) speed of
sound for the system [see Appendix B, Eq. (B3)]. This critical
velocity measurement is consistent with previous estimates of
vortex shedding due to flow past an obstacle [45–47], sug-
gesting the current is limited by features or roughness in the
optical potential and that the machine learner has optimized
the stirring process to this limit. We also note that the final
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barrier and fluid speeds for O.I do not coincide, as shown in
Table I, indicating that the fluid is out of equilibrium with the
barrier for this stirring protocol. This behavior is discussed in
more detail in Sec. VI.

Overall, the machine learner is able to optimize two differ-
ent stirring protocols for different final PC conditions. Given
the constant angular acceleration used in the stirring profile
here, an experimenter might opt to maximize the current via
stirring using the same profile as O.I for longer times, given
that this is the most straightforward approach. Remarkably,
the machine learner finds a different and more efficient ap-
proach to stirring: aggressively stirring for a shorter period of
time.

V. OPTIMIZATIONS O.III AND O.IV: MINIMUM
STIRRING TIME

Motivated by the above results, we next repeat the previous
optimizations while attempting to minimize the stirring time.
The learner now has to satisfy the desired winding conditions
with a cost penalty for long stirring times T . We no longer
hold P = 2, in Eqs. (3) and (2), instead allowing it to be a
parameter optimized by the learner. This extra flexibility is
allowed in order to compensate for the added complexity in
the cost function, giving the learner more control over the
barrier motion. Tmax = 1500 ms is now the maximum allowed
stirring time, which is consistent with the upper bound on the
stirring time T . Since the cost was observed to vary weakly
with the barrier removal time (see Figs. 3 and 4) the removal
time is fixed to TR = 100 ms, simplifying the cost functions
and aiding convergence.

A. Optimization O.III: Targeting

Figure 5 shows the outcomes from target optimization sub-
ject to a time cost imposed by Eq. (2). The stirring time curve
in Fig. 5(b) shows a global minimum near 240 ms, which is
close to its lower boundary of 100 ms, indicating that only
short stirring times are required to achieve the desired winding
target. The power parameter also has its global minimum at
its lower bound value P = 1 and the associated coefficient
α = 2.64 rad. This results in an instantaneous and constant
angular velocity of 6.6 × 10−3 rad/ms, corresponding to 0.28
mm/s at the inner radius of 32.25 µm. Spurious vortices were
more prevalent in this optimization, as shown in the exam-
ple image, Fig. 5(c). Here we also observe 18 windings.
Averaging over five separate images, a winding number of
NW = 18.4 ± 0.4 is observed with NV = 1.0 ± 0.3 spurious
vortices.

B. Optimization O.IV: Time-limited maximization

Figure 6 shows the outcome of trying to maximize the
winding by employing Eq. (3) with a time cost for M-LOOP.
The learner was able to find optimized parameters as indicated
by the clear minima in the landscape curves of Fig. 6(b). All
global minima lie away from the boundaries of the param-
eters in this optimization. The stirring is highly nonlinear,
with a value of P = 3.5. The stirring time was optimized to
T = 163.5 ms suggesting that the learner correctly identi-
fied the cost function and time restriction. Accompanying the

FIG. 5. M-LOOP output graphics for time-limited targeting a
winding number of NT = 20 windings [O.III: cost function given by
Eq. (2)]. (a) The cost vs the run number over 50 runs. The color
convention is consistent with Fig. 3. (b) The predicted landscape
showing the optimum parameter choices. The dashed (red) line rep-
resents the stirring time T landscape while the dotted (blue) line
represents the acceleration coefficient α. Here, the solid (green) line
represents the exponent parameter P. Uncertainties are indicated by
the shaded regions. (c) 5-ms TOF image under optimized parameters.
This particular image shows 18 fringes.

short, nonlinear stirring is a large, α = 8.22 rad, coefficient
contributing to the highly aggressive stirring. In this case, the
final barrier speed is vB = 2.5 × 10−2 rad/ms or 1.1 mm/s at
a radius of 32.25 µm. Under this proposed optimal stirring, the
resulting BEC looks similar to Fig. 6(c) which contains five
spurious vortices but only 18 windings. An average winding
number of NW = 18.4 ± 0.4 with NV = 4.5 ± 0.5 spurious
vortices is observed overall. Likely this smaller winding, rel-
ative to O.II, is due to the tradeoff placed in the cost function
weights between the winding and the stirring time, which are
necessary to enable the fast creation of the PC.

C. Remarks on the time-limited optimizations

The time series of the cost versus run number for O.III
in Fig. 5(a) shows a small dip followed by stagnation within
ten machine learner controlled runs. Both cases exhibit the
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FIG. 6. M-LOOP output graphics for time-limited maximization
of the windings number [Optimization IV: cost function given by
Eq. (3)]. (a) The cost vs the run number over 50 runs. (b) The pre-
dicted landscape shows the optimum parameter choices. The dashed
(red) line represents the stirring time T landscape while the dotted
(blue) line represents the acceleration coefficient α. Here the solid
(green) line represents the exponent parameter P. Uncertainties are
indicated by the shaded regions. (c) 5-ms TOF image under opti-
mized parameters. This particular image shows 18 fringes.

characteristic random cost distribution during training, and the
effectiveness of said training is highlighted by the smoothness
of the parameter landscape curves in Figs. 5(b) and 6(b).
In both cases, the parameter landscape curves have minima
near the lower boundary of the stirring time T . This suggests
that the learner correctly includes the added restriction on the
stirring time.

Observing the time series for both O.III and O.IV,
Figs. 5(a) and 6(a) respectively, we see the cost versus run
number in both cases stagnates rapidly, suggesting fast con-
vergence. However, the convergence in winding number is
exactly the same between the two cases. Since both cases
share NW = 18.4 ± 0.4, both have a flow speed of v(R) ≈
325 µm/s or v ≈ 0.25cs (at R = 32.25 µm). For O.III, this
is close to the target. For O.IV however, this flow rate is
far from the critical velocity measured in O.II. The inabil-
ity of the learner to optimize the stirring as desired arises
from the fact that the cost function is designed with a

new weighted punishment term for the stirring time, intro-
ducing a tradeoff between maximum winding and shortest
stirring.

VI. CONCLUSION AND OUTLOOK

The first aim of this paper was to realize optimal stir-
ring parameters for creating PCs with a stirring barrier. The
machine learning algorithm was successful in this endeavor,
creating PCs for each of the optimizations explored, while
minimizing spurious vortices [48]. While our initial hypoth-
esis was that there would be a unique approach to optimal
stirring, the results depended greatly on the choice of cost
function and the constraints chosen. In the case of variable
stirring time without penalty (O.I and O.II), the learner chose
dramatically different stirring times, stirring gently for a long
time (O.I) and stirring aggressively for a short time (O.II). For
the variable time optimizations (O.III and O.IV), the choice of
parameters is even more distinct. O.III found the best protocol
was to instantaneously accelerate the barrier to move with
constant angular velocity, while O.IV found that aggressive
stirring with a highly nonlinear profile, P = 3.5, was optimal.

These results suggest that while the learner can success-
fully control stirring for desired results and minimum cost,
the problem of determining an optimal stirring profile is un-
derconstrained by the chosen parameters. We take this result
to imply that stirring to create a PC is a robust process, and
can be successfully achieved with a variety of stirring profiles.
From a practical perspective, the relatively counterintuitive
approach of aggressive stirring for a short time at constant
speed (O.III) may be the best approach, since this minimizes
atom loss due to the finite lifetime of the BEC. Another
interesting feature of these optimizations is that there are some
out-of-equilibrium dynamics between the fluid and barrier.
This is seen through the difference in final barrier speeds
relative to the superfluid velocity. For example, O.IV resulted
in a final barrier speed of vB = 0.84cs for a final superfluid
speed of v = 0.25cs, but relied on a short stirring time of 164
ms. These results suggest counteradiabatic stirring protocols
may be advantageous, provided the barrier beam is removed
at the right time. Previous work has explored the possibility
of spatial rapid adiabatic passage for engineering angular
momentum states in a short time [49,50]. Future extension of
similar approaches to stirring of persistent currents may be a
fruitful area of both theoretical and experimental future work.

Overall, the successful optimizations demonstrate the
suitability of using machine learners for the creation and
control of PCs through stirring, albeit with no universal
stirring protocol. These results suggest useful future
applications of the algorithm. Since PCs establish a basis
for atom interferometry [51–53], having high levels of
control over PCs using machine learning can be desirable
for engineering atom interferometers [54,55]. Beyond
interferometry, it is possible to apply this algorithm to prepare
PC states with specified winding numbers for studies in
quantum turbulence, such as determining the dynamics of the
Kelvin-Helmholtz instability [42,43]. Atom inertial sensors
have used PCs as a source of synthetic rotation for calibration
[56], and this method presents a precise way of creating
these references. The general structure of the feedback loop
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FIG. 7. Processing of a TOF image using the Gaussian blob algo-
rithm. (a) The original image. (b) Masked image to remove the fringe
region. The processed image is also smoothed using a Gaussian filter.
(c) Laplacian of the masked and filtered image. Thresholding of the
image is now possible and the sharp ring edges can be masked out.
(d) Detected vortex positions (green solid circles) superimposed on
the original image. Additional details can be found in Refs. [59–61].
Note that due to the masking of the fringe region, vortices in this
region are not detected despite being clearly present as evident in the
warping and forking of the fringes.

described could also be adapted to optimize alternative
methods for generating PCs, such as phase imprinting [13].
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APPENDIX A: IMAGE PROCESSING

Images of the BEC are produced using Faraday imaging
[57,58]. Automatic image processing is used to extract the
winding number and vortex number from the Faraday images.
Vortices become directly resolvable in TOF as clusters of dark
pixels or density dips, which means that detection of such
sites can be treated analogously to blob detection in general
image processing [59–61]. The use of this algorithm ensures
successful detection of vortices outside of the fringe region but
tends to count dark fringes as vortex objects as well. To avoid
this issue, the algorithm is restricted to operate only outside
the fringe region through masking while the fringe region is
analyzed using a Fourier signal method discussed in more
detail below. Specifically, we restrict the vortex detection to
the outer ring where stirring occurs.

FIG. 8. Example of the processing of a TOF image using the
winding counting algorithm. (a) Fourier amplitude for mode numbers
1–50. The largest amplitude mode is taken to be the winding number.
Mode numbers at or under the cutoff mode of n = 3 are indicated by
the black dashed vertical line and are highlighted in red. This cutoff
is introduced since these modes have a large amplitude but do not
reflect the fringe number. The investigation does not require modes
close to n = 3 to be detected. The largest amplitude has a mode num-
ber of 24, indicated by the orange dot-dashed line. (b) Color coded
image highlighting the region of interest (green ring) considered in
the example, superimposed on the original image. Note that only one
small region of interest is shown here, while in practice 11 similar
rings of varying radii are considered. These 11 rings overlap slightly
since their inner radii are separated by 0.25 µm while their thickness
remains fixed at 1 µm. Over the 11 rings for the example image the
mean fringe number is 24.8 ± 0.4 where the uncertainty is estimated
as the standard error of the 11 ring measurements. The observed
count in this particular image is 24 fringes.

Vortices may still be present in the fringe region and
can be observed as either a warping or a fork in a fringe
which separates into two fringes, most clearly observable
in Fig. 7(a). This results in an increased standard deviation
when estimating the winding number as described below.
The fringe number standard deviation is simply added to the
vortex number NV when computing the average cost for the
set of five runs. Although this potentially overestimates the
number of vortices in the fringe region by mixing the standard
deviation in achieved winding number into NV , we find that
this approach successfully minimizes spurious vortices in both
the masked and interference fringe regions. Note that any
spurious vortices in the interior of the reference condensate
are ignored by the algorithm since they are not caused by the
stirring process.

A Fourier signal algorithm can be used for the counting
winding number and its standard deviation for the aforemen-
tioned estimate of NV . We begin by considering the fringe
region as indicated by the solid green line in Fig. 8(b). The
azimuthal Fourier transform is determined and the mode with
the largest Fourier amplitude is identified as corresponding to
the winding number for the selected region. A cutoff mode
of n = 3 is introduced since the signal of these modes is
generally large, leading to erroneous detection of winding
numbers that do not correspond to the observed spiral pat-
tern. We found this cutoff value sufficient for reducing this
effect.

The spiraling nature of the fringes requires some care in
considering how to best extract the winding number from the
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discrete Fourier transform. The solution is to subdivide the
region into 11 overlapping rings of 1-µm thickness. These
smaller rings are set apart via their inner and outer radii being
translated by 0.25 µm. This choice allows the entire fringe
region to be spanned by a series of thin rings over which the
accuracy of the detection is improved. The standard deviation
of the winding number across the rings is used to estimate
the number of vortices in the fringe region. Finally, in order
to extract a useful measure of winding number, the mean
of the mode number with the largest amplitude is selected
which need not be an integer. Figure 8(a) shows the Fourier
amplitudes for the considered modes for the small ring region
considered in the image in Fig. 8(b).

APPENDIX B: ESTIMATING FLOW SPEED
FROM WINDING NUMBERS

It is possible to estimate the speed of the PCs generated
by these different stirring processes via the velocity-phase
relationship in a supercurrent:

�v(�r, t ) = h̄

m
∇φ(�r, t ). (B1)

Assuming that the winding is in the azimuthal direction, θ̂ ,
due to the ring geometry, any radial derivatives of the phase

are zero. The PC should not decay making the speed indepen-
dent of time. Therefore, the flow speed can be computed via

�v(r) = h̄

m

1

r
NW θ̂ . (B2)

The speed of sound in the quasi-2D BEC system can be
estimated for comparison using the relation

cs =
√

μ2D

m
, (B3)

where μ2D is the effective 2D chemical potential of the
persistent current ring region. μ2D can be deduced from
the condensed atom number in the ring Nc ≈ 9.6 × 105

along with the inner and outer radii of the ring, rI =
36 µm and rO = 50 µm respectively, using the following
relation [62]:

μ2D = 2

5

(
3

2

gNc

√
mω2

z

π
(
r2

O − r2
I

)
)2/3

. (B4)

Using a vertical trapping frequency of ωz = 2π × 108 Hz and
the s-wave scattering length as = 98.13a0 to compute the ef-
fective 2D interaction parameter g = 4π h̄2as/m, we compute
that μ2D ≈ 2.5 × 10−31 J/kg and therefore cs ≈ 1.3 mm/s.
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