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Mixing-spacetime symmetry in the Floquet-Bloch band theory
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We discover a class of spacetime symmetries unique to time-periodic systems, which we term “mixing sym-
metry” due to its combination of space and time coordinates in the symmetry transformation. We systematically
enumerate the symmetry groups and classify the corresponding Floquet-Bloch band theories by utilizing the
winding number of quasienergy. Moreover, we provide a comprehensive scheme for the experimental realization
of these symmetries. The particle propagator exhibits an intriguing pattern that remains invariant even under
transformations mixing space and time coordinates. We anticipate that this distinct feature can be observed in
current cold atom experiments.
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I. INTRODUCTION

The study of Floquet-Bloch bands has emerged as a central
topic in the field of nonequilibrium driven many-body dynam-
ics [1–5]. Recent advancements in precise control and probing
techniques have allowed for the realization of Floquet-Bloch
bands in diverse platforms, including photonic waveguides
[6], solid materials [7], and cold atom systems [8]. By employ-
ing periodic driving, these systems offer a unique opportunity
to explore models that are challenging to realize in static
setups [9–12]. Moreover, periodic driving enables the emer-
gence of new states of matter that lack a static analog, leading
to captivating phenomena in condensed matter physics, such
as symmetry breaking [13–16], localization [17–19], and
topological effects [2–5,20].

Symmetry plays a fundamental role in the study of band
theory, exerting profound effects on various aspects of band
structures. Spatial symmetries such as rotation, mirror reflec-
tion, and space inversion have long been recognized for their
ability to protect band crossings or generate degeneracies [21].
Time-reversal, particle-hole, and chiral symmetry have been
utilized in the renowned 10-fold classification of insulators
and superconductors [22]. This classification has been applied
to provide a periodic table for the topological phases [23,24]
and, more recently, it has been extended to the topological
classification of Floquet-Bloch bands [25–28]. Moreover, re-
searchers have recognized the critical interplay between space
group symmetries and topology, culminating in the compre-
hensive topological classification of band structures for all
230 crystal symmetry groups [29–31]. Notably, in the realm of
Floquet systems, the presence of intertwined spatial and tem-
poral translations, including nonsymmorphic symmetries such
as glide time reversal or time glide reflection, can preserve
spectral degeneracy and give rise to novel out-of-equilibrium
phases [32–35].
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But previous studies have generally overlooked a class of
symmetries that is unique to time-periodic systems and absent
in static ones. These symmetries are referred to as mixing
symmetries in this paper. Let us consider the coordinates in
(1+1)-dimensional spacetime as (t, x). A linear coordinate
transformation can be represented as (t ′, x′)T = A(t, x)T . If
the matrix A contains nonzero off-diagonal elements, it is
called a mixing transformation because it combines the space
and time coordinates. One well-known example of a mixing
symmetry is the Lorentz symmetry, which holds significant
importance in quantum field theory. In the context of con-
densed matter physics, the Schrödinger equation treats space
and time differently, making continuous mixing symmetry
impossible. Nevertheless, this does not rule out the possibility
of discrete mixing symmetries [36,37]. Recently, it has been
discovered that the spacetime crystals that exhibit a discrete
Lorentz symmetry can be realized in ultracold atomic gases
confined to an optical lattice [38,39]. But the models are con-
structed on finite-size lattices and do not exhibit continuous
Floquet-Bloch bands in the thermodynamic limit.

In this paper, we present evidence of the existence of con-
tinuous Floquet-Bloch band theory that incorporates mixing
symmetry. We thoroughly identify and classify the mixing
groups in (1+1) dimensions. The resulting Floquet-Bloch
theories are categorized based on both symmetry groups and
the winding number of quasienergy in the Brillouin zone (see
Table I for a summary). Unlike previously studied symme-
tries, the operator of mixing symmetry does not commute
or anticommute with the Hamiltonian. Therefore, we rely
on group representation theory for constructing models. The
band theory with mixing symmetry exhibits a quasi-energy-
momentum relation that remains invariant under mixing
transformations. Consequently, the particle propagator in real
spacetime exhibits invariance when the spacetime coordinates
undergo the transformation A, which is a distinctive character-
istic of mixing symmetry.

We discuss the possible realization of mixing sym-
metry in cold atoms on an optical lattice. The precise
control achieved at the single-site level in experiments
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TABLE I. Classification of Floquet-Bloch bands with mixing
symmetry. A represents the coordinate transformation with bc =
−a2 ± 1 for the symmetry classes P2 and P4, respectively, while
Ā corresponds to the transformation in the k-E space. The bands
are categorized as singlets, doublets, and quadruplets based on their
mapping under Ā. The winding number, denoted as w, distinguishes
the winding properties of different bands.

A Ā Bands Winding of DR

P2 (
a b
c −a

) −A singlet w = −a−1
b or 1−a

b

doublet w1 = w2 = −a−1
b or 1−a

b

P4 (
a b
c −a

) A doublet w1 = 1−a
b , w2 = −a−1

b

quadruplet w1 = w3 = 1−a
b , w2 = w4 = −a−1

b

allows for programmable Hamiltonians with locally ad-
justable potential energies on each lattice site, facilitated by
microelectromechanical systems mirrors [40,41]. We show
that the Floquet-Bloch band with mixing symmetry can be
implemented using a quadratic quantum Fourier transform
(QQFT) protocol [39] on a driven optical lattice that features
only on-site potential and nearest-neighbor hopping. The mix-
ing symmetry can be observed by locating a Bose-Einstein
condensate on the lattice and monitoring the atom density.

The rest of the paper is organized as follows. In Sec. II, we
introduce our methodology, emphasizing its differences from
the traditional methods of defining symmetries, especially
those that do not involve changes in the time axis. We enu-
merate the mixing groups in Sec. III, followed by a discussion
of their unitary representations in Sec. IV. Our discussion
concludes with the presentation of the necessary and sufficient
conditions for the dispersion relation in a model with mixing
symmetry. In Sec. V, we explore the topology of dispersion
relations that meet the symmetry requirement. Section VI
delves into the construction of the model Hamiltonian using
QQFT. We discuss the mixing symmetry of the single-particle
propagator in real spacetime in Sec. VII, providing insights for
experimentally observing mixing symmetry. We present the
unitary-operator expression of each symmetry transformation
in Sec. VIII. Finally, Sec. IX provides a concise summary of
our findings.

II. METHODOLOGY

When studying a quantum model, the usual approach in-
volves writing the Hamiltonian in real spacetime and then
extracting the underlying symmetry from it. In this paper, we
take a different approach. Our objective is to construct a model
with specific symmetry. We begin by providing a complete list
of the mixing symmetry groups. Next, we establish the unitary
representation of each group within the quasi-momentum-
energy space. In this representation, the symmetry manifests
as a constraint on the dispersion relation (DR), which is the
function E (k) describing the quasienergy E as a function of
quasimomentum k. For continuous Floquet-Bloch bands, we
discover a fundamental equation governing the topology of
the DR, which serves as a basis for band classification. By
finding an E (k) that satisfies both the symmetry and topology

(a) (b)

(c)

FIG. 1. (a) Schematic diagram of a spacetime crystal. The prim-
itive vectors et and ex define the unit cell. The mixing symmetry
transformations, Ae and Ar , correspond to the exchange and rotation
operations, respectively. (b), (c) The Floquet-Bloch-Brillouin zone
and its topological equivalence.

conditions, we obtain the Floquet Hamiltonian ĤF . Finally, we
demonstrate how to realize ĤF using a time-periodic Hamil-
tonian Ĥ (t ) with locality in real spacetime. Our approach is
inspired by the principles of quantum field theory, which relies
on the unitary representation of the Poincaré group [42].

We have chosen this approach for specific reasons. Un-
like other symmetries frequently studied in condensed matter
physics, mixing symmetry involves changes in the time axis,
resulting in a lack of energy invariance under these transfor-
mations. Since the Hamiltonian signifies energy, it inherently
undergoes changes during mixing transformations, analogous
to the transformation seen in the well-known example of
Lorentz transformation. Consequently, determining whether
a Hamiltonian, denoted as Ĥ (t ), possesses mixing symmetry
is theoretically challenging, if not impossible, through direct
observation. In quantum field theory, the presence of Lorentz
symmetry is typically established using the action approach or
relying on representation theory. Similarly, when investigating
mixing symmetry in discrete spacetime lattices, the use of the
action approach or group representation theory is essential. In
this paper, we have chosen the latter approach, deferring the
use of the former for future studies.

III. MIXING GROUPS

We are considering a (1+1)-dimensional spacetime where
spatial rotation or mirror reflection is absent, allowing us to
concentrate on the study of mixing symmetry. There are two
noncollinear translational vectors. Without loss of generality,
we assign one vector (ex) to the spatial direction (x axis)
and the other vector (et ) to the temporal direction (t axis),
as shown in Fig. 1. This choice can always be made by
employing a coordinate transformation that rotates et and ex

into the t and x axes, respectively. It is important to note
that we exclusively consider symmorphic groups in this pa-
per. For nonsymmorphic groups, nonsymmorphic symmetries
may become significant when et and ex are not orthogonal to
each other [33]. To simplify the representation, we choose the
lattice constants as the units of time and length, resulting in
et = (1, 0) and ex = (0, 1).
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Suppose that the 2 × 2 matrix A represents a mixing trans-
formation. In this study, we focus on cyclic transformations,
which are the ones that satisfy AM = 1 for some positive inte-
ger M (called the order). By imposing the cyclic condition, we
significantly reduce the number of symmetry groups, enabling
us to exhaustively examine their representations. An arbitrary
symmetry transformation can be expressed as a combination
of A and translation. We denote this combined transformation
as P( j, m, n), which acts on the coordinates as follows:(

t ′
x′

)
= P( j, m, n)

(
t
x

)
= Aj

(
t
x

)
+

(
m
n

)
, (1)

where j, m, and n are integers. P( j, m, n) denotes j times of
mixing transformation, followed by a translation of m units
in time and n units in space. A symmetry group is a set of P’s
that meets the group axioms. The closure under multiplication
requires that the spacetime lattice {(m, n)T |m, n ∈ Z} must
remain invariant under A. Together with the existence of the
inverse element, we infer that the order of A can only be 2,3,4,
or 6 (see Appendix A). The symmetry group can be expressed
as

P = {P( j, m, n)| j = 0, 1, . . . , M − 1; m, n ∈ Z }, (2)

with M = 2, 3, 4, or 6. For given M, the group PM is uniquely
determined by A. The possible A’s in P2,P3,P4, or P6 are
given in Appendix A.

A few examples can help us understand the mixing group.
The form of A in P2 or P4 is shown in Table I, where a, b, c
are integers satisfying bc = −a2 ± 1, respectively. If a = 0
and b = c = 1, then A is the exchange of t and x (dubbed
Ae) and belongs to P2. If a = 0, b = 1, and c = −1, then
A represents a rotation in the t-x plane by 90◦ (dubbed Ar)
and belongs to P4. Figure 1(a) schematically illustrates the
operations of Ae and Ar . The transformation A conserves the
area of the parallelogram formed by two noncollinear vectors
because det(A) = ±1. But A does not necessarily conserve
the Euclidean length of a vector (e.g., consider the case a =
2, b = −3, and c = 1). Therefore, A can be not only rotation,
reflection, or inversion in the t-x plane, but also nonorthogonal
transformations. Notice that A is distinguished from the dis-
crete Lorentz transformation [36], as the latter does not have
a finite order.

IV. FLOQUET-BLOCH BAND THEORY

Each quantum theory is a unitary representation of its cor-
responding symmetry group. In our case, we aim to construct
the unitary representations of PM , and we follow a similar
approach as described in Ref. [38]. To denote the unitary oper-
ator of P( j, m, n), we use Û ( j, m, n), which follows the same
multiplication rule as P. The translation operators Û (0, m, n)
commute with each other and share common eigenstates. In
the Floquet-Bloch band theory, the eigenstates of translations
are typically represented as |k, α〉, where k ∈ [−π, π ) denotes
the quasimomentum, α is the band index, and the correspond-
ing quasienergy is denoted as Eα (k) with Eα (k) ∈ [−π, π ).
When the operator Û (0, m, n) acts on |k, α〉, it results in
eiEα (k)m−ikn |k, α〉. The pair [k, Eα (k)] represents a point in the
Floquet-Bloch-Brillouin zone (FBBZ), which is topologically
equivalent to a torus [see Figs. 1(b) and 1(c)]. The DR of

each continuous Floquet-Bloch band, i.e., the set of [k, Eα (k)]
points, forms a loop on the torus.

Since any element in PM can be factorized into
P( j, m, n) = P(0, m, n)P( j, 0, 0), the representation of PM

can be determined by examining the action of the mix-
ing transformation operator Û ( j, 0, 0) on the basis states
|k, α〉. Note that the single-particle Hilbert space is spanned
by |k, α〉. To determine the representation, it is sufficient
to investigate the action of Û (1, 0, 0) since Û ( j, 0, 0) =
Û (1, 0, 0) j . For this purpose, we utilize the multiplica-
tion rule P(0, m′, n′)P(1, 0, 0) = P(1, 0, 0)P(0, m, n) (see
Appendix B) or, equivalently,

Û (0, m′, n′)Û (1, 0, 0) = Û (1, 0, 0)Û (0, m, n), (3)

where (m′, n′)T = A (m, n)T . Acting both sides of Eq. (3) on
|k, α〉, we find that Û (1, 0, 0) |k, α〉 is also an eigenstate of
translation operators, denoted by |k′, α′〉 = Û (1, 0, 0) |k, α〉
without loss of generality. And Eq. (3) determines a relation
between k and k′ (see Appendix B), which reads(

k′
Eα′ (k′)

)
= Ā

(
k

Eα (k)

)
(mod 2π ), (4)

where Ā = det(A)A. Especially, we find Ā = −A and Ā = A
for the symmetry classes P2 and P4, respectively. The modulo
operation in Eq. (4) ensures that [k′, Eα′ (k′)] falls within the
FBBZ. According to the definition, Ā is invertible and then it
is a one-to-one continuous map between FBBZ and itself. In
other words, Ā acts as a homeomorphism on the FBBZ.

Equation (4) reveals that each point [k, Eα (k)] within the
DRs is mapped by Ā to another point within the DRs. Ā
establishes a one-to-one correspondence between the set of
points within the DRs and itself. In a spacetime crystal with N
continuous bands, each with its corresponding DR as a loop on
the FBBZ torus, Ā acts as a homeomorphism. Consequently,
the image of a loop (DR) under Ā is guaranteed to be another
loop (DR). Thus, Ā maps each DR loop to another DR loop,
effectively acting as a permutation of the N bands.

V. TOPOLOGY OF DISPERSION RELATION

Equation (4) is the sufficient and necessary condition for a
unitary representation of PM . In other words, a model Hamil-
tonian Ĥ (t ) possesses mixing symmetry if and only if its
DR satisfies Eq. (4). Constructing a representation involves in
finding the Ā-invariant DRs [solution of Eq. (4)]. For general
Ā, these DRs can be highly nontrivial. For instance, if A is
the exchange Ae, then Āe exchanges the quasimomentum and
quasienergy. Our familiar DRs, such as quadratic or trigono-
metric functions, are not Ā invariant. The nontriviality of
Ā-invariant DRs arises from the fact that their loops exhibit
nontrivial topology. The topology of a loop on a torus is
characterized by a pair of integers, which corresponds to the
fundamental group of the torus. As the DR is a continuous
function of k within the range of [−π, π ), a DR loop must
wind around the torus exactly once in the k direction. The
topology of a DR loop is denoted as (1,w), where w repre-
sents the number of times the DR winds around the torus in
the positive E direction while completing one revolution in the
positive k direction. It is important to highlight that w has long
been recognized as the average particle displacement over one
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(a) (b)

FIG. 2. The blue and red lines represent a doublet, consisting of
a pair of DRs that are mutually mapped by (a) Āe (exchange trans-
formation) and (b) Ār (rotation transformation). The bottom panels
schematically depict the topological equivalence of these doublets
on the FBBZ torus.

period. In each cycle, w units of charge are pumped through
the system [2].

If Ā maps band α to α′, their DRs’ winding numbers
(wα and wα′) are connected to each other according to (see
Appendix C)

±
(

1
wα′

)
= Ā

(
1

wα

)
. (5)

Equation (5) is our key result, which constrains the topology
of an Ā-invariant DR. It has no solution for Ā in P3 or P6,
indicating that these symmetry classes have no representation
with continuous bands. By substituting the expression of A
into Eq. (5), we obtain the band classification for P2 and
P4. In P2, bands are classified as singlets or doublets. A
singlet remains invariant under Ā, while a doublet consists of
two bands mapped by Ā into each other, sharing the same
winding number. For P4, bands are classified as doublets
with odd-function DRs of k and quadruplets (quartets of four
bands). There are no singlet bands since wα′ = wα contradicts
Eq. (5). Additionally, the two bands in a doublet have different
winding numbers. Table I summarizes the classification of
Floquet-Bloch bands with mixing symmetry.

Except for A with a = ±1 (unconventional space inversion
or time reversal), the DR’s winding number must be nonzero.
Figure 2 presents examples of DRs that satisfy Eq. (5).
Figure 2(a) shows a doublet pair of bands, mapped into each
other by Āe in P2. Both bands have a winding number of +1.
Figure 2(b) shows a doublet pair of bands, mapped into each
other by Ār in P4. The two bands have winding numbers of
+1 and −1, respectively.

The simplest DRs with mixing symmetries [solution of
Eq. (4)] are linear ones: E (k) = wk, where w = ±1,±2, . . .

represents the winding number. From Eqs. (4) and (5), we
can fully determine the mixing symmetries of any linear
Floquet-Bloch band (see Appendix D). In the P2 symmetry
class, a linear band is a singlet, which remains invariant under
the map Ā with elements satisfying a = −bw ± 1 and c =
−bw2 ± 2w. On the other hand, in the P4 symmetry class,

two bands E (k) = wk and E ′(k) = w′k can form a doublet,
where w′ = w ± 1 or w′ = w ± 2 (see Appendix D).

By utilizing the Ā-invariant Eα (k), we can readily establish
the many-body quantum theory by introducing the creation
operator ĉ†

k,α
and the annihilation operator ĉk,α and expressing

the symmetry operators in terms of them [38]. Specifically,
the time translation operator is Û (0, 1, 0) = eiĤF , where ĤF is
the effective Floquet Hamiltonian,

ĤF =
∑
k,α

Eα (k) ĉ†
k,α

ĉk,α. (6)

Note that the symmetry condition of DRs is independent of
whether the particles are bosons or fermions. The operators
ĉk,α, ĉ†

k,α
are either commutative or anticommutative, depend-

ing on the species of particles.
A few comments are necessary. First, we ignore the in-

teraction between particles in the model (6). Constructing an
interacting theory is significantly more challenging and falls
beyond the scope of the current paper, as the mixing symme-
try imposes constraints not only on the DR but also on the
particle interactions. Second, for an exhaustive enumeration
of quantum theories, we should also consider the possibility of
Û (1, 0, 0) being an anti-unitary operator, which is discussed
in Appendix B.

VI. REALIZATION WITH LOCAL Ĥ (t )

We aim to realize a given Floquet Hamiltonian ĤF or,
equivalently, the energy band E (k), in a cold atom system
on an optical lattice. To achieve experimental feasibility, it
is crucial that the time-periodic Hamiltonian Ĥ (t ) possesses
locality in real spacetime. However, this poses a challenge
due to the nonzero winding numbers of the DRs, which is
a characteristic feature of mixing symmetry. Although some
pioneering experiments have been conducted in the context
of topological Thouless pumping [44,45], the presence of
nonzero winding numbers adds complexity to the scenario.

Let us consider a specific example: the linear DRs E (k) =
wk with w �= 0. Upon Fourier transformation, the Floquet
Hamiltonian ĤF contains infinitely-long-range hopping terms
in real space, making them currently inaccessible using ex-
isting technology. In fact, if Ĥ (t ) exhibits locality (i.e.,
short-range hopping) and simultaneously maintains space
translational symmetry at each time t , then the DRs of ĤF

must possess zero winding (see a proof in Appendix E).
Therefore, in order to have an Ā-invariant DR, Ĥ (t ) must
break instantaneous translational symmetry.

To design Ĥ (t ) for a given DR, we employ the recently
developed QQFT protocol [39], which gives rise to highly
flexible Hamiltonian engineering so that the DRs become
completely programmable and the long-range tunnelings in
ĤF become accessible to optical lattice experiments. In one
period, denoted as [0,1), the time-dependent Hamiltonian is
expressed as

Ĥ (t ) =
D∑

p=1

Ip(t ) Ĥp. (7)

Here, Ip(t ) is the indicator function, which is defined as 1
for t ∈ [(p − 1)/D, p/D) and zero elsewhere. The parameter

063304-4



MIXING-SPACETIME SYMMETRY IN THE … PHYSICAL REVIEW A 108, 063304 (2023)

(a) (b)

(c)

FIG. 3. (a) The sequence of Ĥp operations with p = 1, . . . , 39
in one period (t ∈ [0, T ]) for a lattice of size L = 8. The lattice
sites, labeled as ∼0–7, are represented by black dots. The purple and
blue rectangles depict the swap and local Fourier operations between
neighboring sites, respectively. The green squares represent the on-
site-potential operation. (b) The linear dispersion relation E = 2k.
(c) The probability density |�(t, x)|2 as a particle propagates.

D represents the depth of the Hamiltonian sequence. Each
Ĥp contains only on-site potentials and nearest-neighbor hop-
pings. It can generally be written as Ĥp = ∑

x(g(p)
x ψ̂†

x ψ̂x+1 +
u(p)

x ψ̂†
x ψ̂x + H.c.), where ψ̂†

x and ψ̂x are the creation and
annihilation operators at site x, respectively, and g and u de-
note the hopping strength and on-site potentials, respectively.
The unitary evolution over one period is given by e−iĤF =
e−iĤD/D · · · e−iĤ2/De−iĤ1/D. For a lattice model with L sites,
the depth D scales as L ln L for large L [39], in the QQFT
protocol. As the system size increases, the effort required
for simulation grows superlinearly. In recent developments in
cold atom technology, spatially resolved control of the atom-
confining potential has been achieved, enabling the realization
of a sequence of local Hamiltonians such as Eq. (7). It has
been shown that systems with sizes up to several tens of sites
are accessible in present experiments [39,43].

Figure 3(a) illustrates the sequence of Ĥp operations that
generate E (k) = wk on a chain of length L = 8. Within each
period, a total of 39 operations are performed, including 32
swaps between neighboring sites, 6 local Fourier transforma-
tions, and one evolution of the on-site potential. For more
detailed information, please refer to Appendix E.

The other method for achieving linear DRs has been docu-
mented [46]. But the advantage of QQFT lies in its capability
to simulate arbitrary DRs, including nonlinear ones, as shown
in Fig. 2(a).

VII. MIXING SYMMETRY IN THE WAVE FUNCTION

To observe the mixing symmetry, one can utilize the fact
that the mixing symmetry manifests itself in the particle prop-
agator in real spacetime (see Appendix F for the detail). For a
particle initially located at position x = 0 and time t = 0, its

wave function at a later time (multiples of the period) satisfies

�α (t, x) = �α′ (t ′, x′), (8)

where (t ′, x′)T = A(t, x)T and t, x are arbitrary integers. α′ is
the map of band α under Ā. For α′ = α (a singlet band in the
P2 class), Eq. (8) imposes a strong constraint on the wave
function. For α′ �= α, Eq. (8) provides a connection between
the wave functions in different bands (see Appendix F).

For a concrete example, let us see a linear band with
E (k) = wk, in which the particle moves at a constant speed,
just like a classical particle. The wave function is calculated
to be �α (t, x) = δx,wt . In previous discussions, we already
show that such a band exhibits the P2 symmetry when the
elements of A are a = −bw ± 1 and c = −bw2 ± 2w. It is
easy to verify that δx,wt does remain invariant as (t, x)T trans-
forms under A. Using the QQFT protocol, we perfectly repeat
the evolution of wave function on a lattice of length L = 2l .
Figure 3(b) displays the DR as w = 2, and Fig. 3(c) displays
the corresponding wave function in the QQFT simulation.

The probability distribution of particles, i.e., |�(t, x)|2,
obviously meets the same symmetry as shown in Eq. (8).
In experiments, instead of a single particle, one can use the
Bose-Einstein condensate (BEC) for observation, and then
|�(t, x)|2 represents the density of atoms. The density dis-
tribution forms a symmetric pattern which remains invariant
under A, which will be a smoking gun signal of mixing sym-
metry.

VIII. UNITARY OPERATOR OF THE MIXING
TRANSFORMATION

The invariance of wave function is a signature of the space-
time symmetry in the model. In this section, we present a strict
proof that the Hamiltonian (7) has a mixing symmetry. We
adopt a strategy developed in the previous work [38].

First of all, proving the existence of symmetry P in a
quantum model is, by definition, equivalent to constructing a
unitary operator Û ( j, m, n) for each symmetry transformation
P( j, m, n) ∈ P so that Û ( j, m, n) obeys the same multiplica-
tion rule as P( j, m, n).

In previous sections, we show that Ĥ (t ) in Eq. (7) is
a realization of the Floquet Hamiltonian (6). Therefore,
the evolution operator over one period is e−iĤF , in which
Eα (k) satisfies the condition (4). Correspondingly, the uni-
tary operator for the time translation t −→ t ′ = t + 1 is
eiĤF = (e−iĤF )−1. At the same time, because k represents
the quasimomentum, the space translation operator must be
e−iP̂F where P̂F = ∑

k,α kĉ†
kα

ĉkα . It is easy to see [ĤF , P̂F ] =
0, and then Û (0, m, 0)Û (0, 0, n) = Û (0, 0, n)Û (0, m, 0) =
eimĤF −inP̂F . These relations coincide with the multiplication
rule of translations.

The key is to construct an operator, namely, Û (1, 0, 0),
for the mixing transformation A. We notice that the quasimo-
mentum of a particle changes from k to k′ under the mixing
transformation, where k′ and k are connected to each other
by Eq. (4). In Secs. IV and V, we confirm that the map
from k ∈ [−π, π ) to k′ ∈ [−π, π ) is a one-to-one map, which
also changes the band index α into α′, and α ↔ α′ is one
to one. For convenience, we use σ to denote the map, say,
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(k′α′) = σ (kα) or σ−1(k′α′) = (kα). Notice that (kα) and
(k′α′) have exactly the same range. Then, kα

σ−→ k′α′ is
indeed a permutation. For example, on a lattice of size L, the
possible values of k are nk2π/L with nk = −L/2, . . . , L/2 −
1, and we assume there are totally NB bands. Then the pair
(kα) can take LNB possible values, while σ is a permu-
tation among them. We define a LNB × LNB matrix S so
that Sk′α′,kα = 1 for k′α′ = σ (kα), but Sk′α′,kα = 0 otherwise.
Since an arbitrary permutation matrix is unitary, we can reex-
press S as S = e−iK , with K being a Hermitian matrix. Now
the unitary operator for mixing transformation is defined to be

Û (1, 0, 0) = e−i
∑

kα,k′α′ ĉ†
k′α′ Kk′α′ ,kα ĉkα . (9)

The operator of arbitrary symmetry transformation can be
written as Û ( j, m, n) = eimĤF −inP̂F Û j (1, 0, 0). By using the
algebra of operators with quadratic exponents [38,39], one
can easily check the multiplication rule. In particular, it is
straightforward to verify Eq. (3). Û ( j, m, n) meets the re-
quired multiplication rule.

IX. DISCUSSION

This paper presents an innovative discovery of Floquet-
Bloch band theories that exhibit a mixing symmetry that
intertwines the space and time coordinates. We provide a
comprehensive classification of Floquet-Bloch bands based
on the cyclic mixing transformations of finite order. Notably,
only the groups P2 and P4 possess continuous representa-
tions, where the mixing symmetry imposes constraints on the
dispersion relation of each band. Furthermore, we reveal that
the winding number of the dispersion relation on the Floquet-
Bloch-Brillouin torus must adhere to a symmetry condition.
To achieve a nonzero winding number, it is essential for the
time-dependent Hamiltonian of the theory to break the instan-
taneous translation symmetry, a feat attainable through the
implementation of QQFT on an optical lattice. Remarkably,
the mixing symmetry manifests in the atom density, which
becomes experimentally measurable, demonstrating its im-
pact on the spacetime distribution. This discovery unveils a
broader symmetry family that has been previously ignored,
as the mixing symmetry transcends pure spatial or temporal
characteristics and instead establishes correlations between
space and time. Its exploration enhances our comprehension
of symmetry in crystals. Looking ahead, intriguing open ques-
tions include the investigation of noncyclic mixing symmetry
and the exploration of mixing-symmetry-protected topologi-
cal states of matter.
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APPENDIX A: MIXING GROUPS

According to definition, the mixing symmetry group has
two important subgroups. One is the cyclic group that contains

the mixing transformations, i.e., A = {1, A, A2, . . . , AM−1},
with M being the order. The other consists of the translations,
reading T = {(m, n)|m, n ∈ Z}. Usually, the group that has
A and T as subgroups is not unique. In this paper, we only
consider the symmorphic group, which is the direct product of
A and T . The group element is written as P( j, m, n), which
represents the mixing transformation Aj followed by the trans-
lation of vector (m, n). It is easy to see that P = {P( j, m, n)}
is a group if and only if the spacetime lattice T remains
invariant under A. Because A is invertible (A−1 = AM−1), T
remains invariant under A if and only if m′ and n′, defined
by (m′, n′)T = A(m, n)T , are integers for arbitrary m, n ∈ Z.
Furthermore, this condition can be simplified into A(1, 0)T

and A(0, 1)T being integer pairs.
We generally express the matrix A and its inverse as

A =
(

a11 a12

a21 a22

)
and A−1 = 1

det(A)

(
a22 −a12

−a21 a11

)
,

(A1)

respectively. Then, the condition that A(1, 0)T and A(0, 1)T

are integer pairs translates into a11, a12, a21, a22 being all
integers. But Aj (1, 0)T and Aj (1, 0)T must also be integer
pairs for j = 2, 3, . . . , M − 1. The case of j = M − 1 or,
equivalently, j = −1 is especially important, from which we
derive that a11/det(A), a12/det(A), a21/det(A), a22/det(A) are
integers. For ai j and ai j/det(A) to both be integers, there must
be det(A) = ±1. To see it, one can use proof by contradiction
[the assumption det(A) = ±2,±3, . . . leads to contradiction].

To find all the cyclic A’s, we study the eigenvalues
of A, i.e., a pair of complex numbers expressed as λ± =
a11+a22

2 ±
√

( a11+a22
2 )2 − det(A). The cyclic condition (AM =

1) indicates |λ±| ≡ 1, which is possible only if a11 + a22 =
0,±1,±2. As a11 + a22 = 0 and det(A) = −1, a straightfor-
ward calculation shows A2 = 1. Such A’s can be written in a
more compact form as

A =
(

a b
c −a

)
, (A2)

where a, b, c are arbitrary integers satisfying bc = −a2 + 1.
As a11 + a22 = 0 and det(A) = +1, we find A4 = 1, and A has
the same expression as Eq. (A2), but with bc = −a2 − 1. As
a11 + a22 = ±1, only det(A) = 1 is consistent with |λ±| ≡ 1
but det(A) = −1 is not, and we find A6 = 1 or A3 = 1, respec-
tively. As a11 + a22 = ±2, the calculation shows that there
does not exist a finite M so that AM = 1, except for A = ±1,
which is trivial and then ignored.

To summarize, the values of M are 2,3,4, or 6, and the
corresponding symmetry groups are denoted by P2,P3,P4,
or P6, respectively. For a given M, PM is a class of groups,
with different groups having different A. In P2, A is the matrix
(A2) with bc = −a2 + 1. In P4, A is the matrix (A2) with
bc = −a2 − 1. In P3, A is the matrix (A1) with the compo-
nents being arbitrary integers that satisfy a11 + a22 = −1 and
a11a22 − a12a21 = 1. InP6, A is the matrix (A1) with the com-
ponents being arbitrary integers that satisfy a11 + a22 = +1
and a11a22 − a12a21 = 1.
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APPENDIX B: UNITARY AND ANTI-UNITARY
REPRESENTATIONS

We use |k, α〉 to denote the single-particle eigenstate
of the translation operators Û (0, m, n) with m, n ∈ Z. Ac-
cording to the Floquet-Bloch band theory, without loss of
generality, the corresponding eigenvalue can be expressed as
eimEα (k)−ikn, where k and Eα (k) are the quasimomentum and
quasienergy, respectively, and α is the band index. Let us
calculate Û (1, 0, 0) |k, α〉. From the definition of P( j, m, n),
it is easy to see P(0, m′, n′)P(1, 0, 0) = P(1, 0, 0)P(0, m, n)
with (m′, n′)T = A(m, n)T . Û ( j, m, n) is the representation of
P( j, m, n); then they satisfy the same multiplication rule. We
obtain

Û (0, m′, n′)Û (1, 0, 0) |k, α〉 = Û (1, 0, 0)Û (0, m, n) |k, α〉
= eimEα (k)−iknÛ (1, 0, 0) |k, α〉 .

(B1)

Equation (B1) tells us that Û (1, 0, 0) |k, α〉 is the eigenstate of
Û (0, m′, n′), with the eigenvalue being eimEα (k)−ikn. But m′ and
n′ can be arbitrary integers because (m′, n′)T = A(m, n)T and
A is invertible. Û (1, 0, 0) |k, α〉 is then the common eigenstate
of the translation operators, denoted by |k′, α′〉 without loss
of generality. Using the notations k′ and α′, we calculate the
left-hand side of Eq. (B1) and then obtain

eim′Eα′ (k′ )−ik′n′ = eimEα (k)−ikn. (B2)

Using the fact that det(A) = ±1 and the expression of A−1 in
Eq. (A1), we quickly find(

k′
Eα′ (k′)

)
= Ā

(
k

Eα (k)

)
(mod 2π ), (B3)

with Ā = det(A) · A = ±A.
In the above derivation, we assume that Û (1, 0, 0),

i.e., the representation of A, is a unitary operator. To
make our discussion complete, we also need to consider
the possibility of Û (1, 0, 0) being an anti-unitary opera-
tor. In this case, the multiplication rule remains the same,
but Eq. (B1) changes into Û (0, m′, n′)Û (1, 0, 0) |k, α〉 =
e−imEα (k)+iknÛ (1, 0, 0) |k, α〉. Again, Û (1, 0, 0) |k, α〉 is the
common eigenstate of translations, and then we can still
assume Û (1, 0, 0) |k, α〉 = |k′, α′〉. Now Eq. (B2) becomes
eim′Eα′ (k′ )−ik′n′ = e−imEα (k)+ikn. Equation (B3) remains the
same, but with Ā = −det(A) · A. Comparing the anti-unitary
representation with the unitary representation, we find that the
dispersion relation satisfies the same equation, with only the
sign of Ā changing. On the other hand, if we do the change
A → −A in the unitary representation, the sign of Ā also
changes, since det(A) = det(−A). Moreover, if A is a cyclic
matrix, so is −A. Therefore, for each anti-unitary represen-
tation, there exists a unitary representation that has exactly
the same Ā, and then the dispersion relation [the solution of
Eq. (B3)] is also the same. The consideration of anti-unitary
representation leads to nothing new in the dispersion relation.

APPENDIX C: TOPOLOGY OF DISPERSION RELATION

We assume that the Floquet-Bloch band is continuous or, in
other words, Eα (k) is a continuous function of k everywhere

in the Floquet-Bloch-Brillouin zone (FBBZ). The dispersion
relation (DR) of each band is then a loop on the FBBZ
torus. The transformation Ā (mod 2π ) defined by Eq. (B3)
maps a point in the FBBZ to another point in the FBBZ.
More important, it is a one-to-one map. Otherwise, suppose
(k1, E1) �= (k2, E2) are mapped into the same (k′, E ′); then
we have Ā(k1 − k2, E1 − E2)T = 2π (m, n)T with m, n being
some integers. But the matrix Ā = ±A or its inverse always
map an integer pair into another integer pair, and then we have
(k1 − k2, E1 − E2) = 2π (m′, n′) with m′, n′ being integers.
This is impossible except for k1 = k2 and E1 = E2 because
(k1, E1) and (k2, E2) are both in the FBBZ.

The one-to-one map Ā is, by definition, continuous, and so
is its inverse. Ā is then a homeomorphism. As a consequence,
an arbitrary loop on the FBBZ torus must be mapped by Ā into
another loop. In the main text, we show that the spacetime
crystal has the mixing symmetry if and only if the single-
particle DRs are Ā invariant. And if the DRs are Ā invariant,
then the DR of a band α, i.e., a loop, must be mapped into the
DR of another band α′ (it is possible that α = α′). Note that
from the pure mathematical point of view, it is also possible
that the image of a DR loop is a non-DR loop (e.g., a loop
on which k keeps a constant, but E travels around the torus
once). But in that case, the DRs are not Ā invariant and then
the corresponding spacetime crystal has no mixing symmetry,
which is uninteresting to us.

Next, we study the topologies of the DR loops of α and
α′. Using the knowledge of the fundamental group of torus,
we describe the topology of a loop by two integers, which
are the numbers of times the loop winds around the torus
in the positive k and E directions, respectively. A DR loop
winds around the torus once and only once in the k direction;
otherwise, there would exist some k ∈ [−π, π ) at which E (k)
has no definition or has multiple values, which contradicts the
fact that E (k) is a function of k defined in the domain [−π, π ).
Therefore, the topology of the α-band DR is given by the pair
(1,wα ), in which wα is the number of times the loop winds
in the positive-E direction as it winds once in the positive-k
direction.

An easy way of calculating wα is by depicting Eα (k) in
the extended quasienergy zone, in which the range of E is
extended to (−∞,∞) instead of being limited in [−π, π ).
In the extended-zone scheme, we can force Eα (k) to be con-
tinuous in the absence of the modulo operation; Eα (k) then
becomes a curve in the k-E plane, with k ∈ [−π, π ) and
E ∈ (−∞,∞). The continuity of Eα (k) (mod 2π ) requires
[Eα (π ) − Eα (−π )] to be an integer times of 2π , and this
integer is exactly wα:

Eα (π ) − Eα (−π ) = 2πwα. (C1)

Now, we study the image of {[k, Eα (k)]} under the matrix
Ā, in the extended-zone scheme. Without the modulo oper-
ation, Ā is an invertible one-to-one map in the k-E plane;
moreover, it is a linear map. Therefore, when [k, Eα (k)] starts
from the left end [−π, Eα (−π )] and goes towards the right
end [π, Eα (π )], its image [k′, Eα′ (k′)] draws a curve in the
plane. The end points of the image curve are [k′

0, Eα′ (k′
0)]T =

Ā[−π, Eα (−π )]T and [k′
1, Eα′ (k′

1)]T = Ā[π, Eα (π )]T , respec-
tively. Then, the winding number of α′ evaluates wα′ =
[Eα′ (k′

1) − Eα′ (k′
0)]/(k′

1 − k′
0). An important property of the
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image curve is that |k′
1 − k′

0| must be 2π . The proof is as
follows. First, the range of k′ must be integer times of 2π

because the image is a complete DR loop (of band α′) after
the modulo operation. Second, the range of k′ cannot be 2πn
with n > 1. Otherwise, as [k, Eα (k)] travels around the α-DR
loop once, [k′, Eα′ (k′)] already travels around the α′-DR loop
n times, which contradicts the fact that Ā (mod 2π ) is a
one-to-one map on the torus. Based on the above arguments,
we derive

±
(

1
wα′

)
= Ā

(
1

wα

)
, (C2)

where ± corresponds to k′
1 − k′

0 = ±2π , respectively.

APPENDIX D: MIXING SYMMETRIES OF LINEAR E(k)

We determine the mixing symmetries of a linear DR, given
by E (k) = wk with w = ±1,±2, . . . , by making the fol-
lowing observation. If the topology condition ±(1,w′)T =
Ā(1,w)T is satisfied, we can multiply both sides by k to
obtain (k′, E ′)T = Ā(k, E )T , where k′ = ±k and E ′ = w′k′.
Therefore, the topology condition is sufficient for one linear
band to be mapped by Ā into another linear band.

Let us first consider the P2 symmetry class. Since w = w′
under the map Ā (see Table I of the main text), a linear E (k)
is always mapped into itself and remains a singlet band in the
P2 class. Using the equation ±(1,w)T = Ā(1,w)T and the
expression of Ā, we immediately find a = −bw ± 1 and c =
−bw2 ± 2w. For a given w, there exist an infinite number of
mixing matrices (with different b) in the P2 class,

A =
( −bw ± 1 b

−bw2 ± 2w bw ∓ 1

)
. (D1)

The linear band E (k) = wk always exhibits P2 symmetries.
Next, we consider the P4 symmetry class. Since E (k) =

wk is an odd function of k, the linear band must be one
branch of a doublet (Table I of the main text). Suppose the
DR of its paired band is E ′(k′) = w′k′. Using ±(1,w′)T =
Ā(1,w)T and the expression of Ā, we find a = −bw ± 1,
c = −bw2 ± 2w − 2/b, and w′ = w ∓ 2/b. Here, c and w′
must be integers; therefore, b can only take the values ±1,±2.
For a given w, there exist eight mixing matrices in the P4

symmetry class,

A =
( −w ± 1 1

−w2 ± 2w − 2 w ∓ 1

)
,

(
w ± 1 −1

w2 ± 2w + 2 −w ∓ 1

)
,

( −2w ± 1 2
−2w2 ± 2w − 1 2w ∓ 1

)
,

(
2w ± 1 −2

2w2 ± 2w + 1 −2w ∓ 1

)
. (D2)

The corresponding w′ is given by w′ = w ∓ 2,w ± 2,w ∓
1,w ± 1, respectively.

The above analysis exhausts all the mixing symmetries of
a linear band.

APPENDIX E: CONSTRUCTION OF Ĥ (t )

Our target is to simulate ĤF = ∑
k E (k) ĉ†

k ĉk by a periodic
Hamiltonian Ĥ (t ) with locality. Here, we consider a single-
band Hamiltonian for simplicity. The simulation protocol can
be generalized into the multiband models in a straightforward
way.

First, we will prove that if Ĥ (t ) has both locality and space
translation symmetry at each t , then the winding number of
E (k) is zero. For simplicity, we consider a lattice model in
which a set of sites is spatially located at the coordinates j =
0,±1,±2, . . . , respectively. In the condensed matter commu-
nity, the lattice models are widely employed in the study of
particles moving in a periodic potential because it is more
difficult to directly deal with the differential operators in the
continuous space. Without loss of generality, we define

Ĥ (t ) =
∑

j

R∑
	 j=−R

f (	 j, t )ψ̂†
j ψ̂ j+	 j, (E1)

where f (	 j, t ) = f ∗(−	 j, t ) is the hopping strength, and
ψ̂† and ψ̂ are the on-site creation and annihilation op-
erators, respectively. The assumption that Ĥ (t ) has space

translation symmetry at each moment is hidden in the
fact that f (t ) is independent of j. The locality of Ĥ (t )
manifests itself as the existence of a distance cutoff for
hopping. The largest distance over which there are nonzero
hopping terms is set to be R. After a Fourier trans-
form, Eq. (E1) changes into Ĥ (t ) = ∑

k E (k, t )ψ̂†
k ψ̂k , where

E (k, t ) = ∑R
	 j=−R f (	 j, t )eik	 j . E (k, t ) is a sum of a finite

number of terms, with each term being a trigonometric func-
tion of k. If we depict these trigonometric functions on the
FBBZ torus, they all have zero winding number, and then their
sum, i.e., E (k, t ), must also have zero winding number. The
Floquet Hamiltonian ĤF can be obtained by integrating Ĥ (t )
over one period because Ĥ (t ) at different t commute with each
other. Then we obtain E (k) = ∫ T

0 dt E (k, t )/T , where T = 1
is the period. Since E (k, t ) at each t has zero winding, E (k)
must also have zero winding.

The DRs of a spacetime crystal with mixing symmetry usu-
ally have nonzero winding. And due to the above arguments,
if we ask Ĥ (t ) to be local and we want to simulate a ĤF with
nonzero-winding DRs, we need to break the instantaneous
translation symmetry in Ĥ (t ). The recently developed digital-
micromirror device and subwavelength techniques have
realized programmable instantaneous-translation-symmetry-
breaking potentials in the cold atomic gases. This provides
the foundation for experimentally realizing Ĥ (t ).

Because we already know the DRs of ĤF , the quadratic
quantum Fourier transform (QQFT) protocol is especially
useful for designing Ĥ (t ) [39]. Here we briefly review the

063304-8



MIXING-SPACETIME SYMMETRY IN THE … PHYSICAL REVIEW A 108, 063304 (2023)

idea of QQFT. The Floquet Hamiltonian is defined by the
fact that e−iĤF is the evolution operator of a quantum state
over one time period. The QQFT protocol gives a sequence
of local Hamiltonians, denoted by Ĥ1, Ĥ2, . . . , ĤD, which are
consecutively engineered so that the evolution operator can be
factorized as e−iĤF = e−iĤD/D · · · e−iĤ2/De−iĤ1/D, where D is
the depth of the Hamiltonian sequence and 1/D is the lifetime
of each Hamiltonian. To obtain the Ĥp’s, we utilize the fact
that ĤF = ∑

k E (k)ĉ†
k ĉk is quadratic. On a lattice of size L, we

perform the Fourier transform ĉ†
k = ∑

j
eik j√

L
ψ̂

†
j , with ψ̂

†
j being

the on-site creation operator, and then reexpress the Floquet
Hamiltonian as ĤF = �̂†H�̂, where �̂ is the array of ψ̂ j’s
andH is a Hermitian matrix with the elements being

H j, j′ =
∑

k

E (k)
eik( j− j′ )

L
. (E2)

To proceed, we exploit a formula of quadratic-exponent
operators, which can be easily derived from the Baker-
Campbell-Hausdorff formula. For arbitrary Hermitian matri-
ces H1,H1, . . . ,Hd and a single Hermitian matrix H that
satisfy

e−iHd · · · e−iH2 e−iH1 = e−iH , (E3)

we always have

e−i�̂†Hd �̂ · · · e−i�̂†H2�̂e−i�̂†H1�̂ = e−i�̂†H�̂ . (E4)

Equation (E4) simply says that the factorization of an evolu-
tion operator with quadratic Hamiltonian (such as e−iĤF ) is
equivalent to the factorization of the corresponding unitary
matrix e−iH . To make Ĥp = �̂†Hp�̂ a local Hamiltonian, we
need to ask the L × L matrix Hp to be local. In the QQFT
protocol, each Hp contains only the diagonal elements (on-
site potentials) and the off-diagonal elementsH j, j+1 (hopping
between nearest-neighbor sites). Observing Eq. (E2), we im-
mediately find the next factorization,

e−iH = e−ieiF Ee−iF = eiF e−iEe−iF , (E5)

where E is a diagonal matrix with the diagonal elements being
E (k), and F is defined by (eiF ) j, j′ = 1√

L
ei2π j j′/L. In Eq. (E5),

E is already diagonal and then satisfies the locality condition.
Furthermore, eiF is recognized to be the Fourier transforma-
tion, which can then be factorized into a sequence of local
unitary matrices by using the algorithm of quantum Fourier
transform (see Ref. [39] for details). The factorization of eiF

depends only upon the value of L. The analytical expressions
of theHp’s have been obtained, as L is an integer power of 2,
i.e., L = 2l . The sequence depth of eiF scales as L ln L.

As an example, we give the sequence of Hamiltonians
that generates the required dispersion relation on a one-
dimensional lattice of length L = 23 = 8. For simplicity, we
label the lattice sites as j = 0, 1, . . . , 7. In this case, the uni-
tary evolution over a single period can be factorized into

e−iH = R(2)A(2)R(2)†R(1)A(1)R(2)†A(0)R(2)†e−iE

× R(2)A(0)†R(2)A(1)†R(1)†R(2)A(2)†R(2)†. (E6)

Here, R(1) and R(2) are the permutation matrices, which
are realized by using a sequence of swaps, say R(1) =

S(1,2) S(5,6) and R(2) = S(3,4) S(4,5)S(5,6)S(2,3)S(3,4)S(1,2), re-
spectively. S( j, j+1) is the swap (the Pauli matrix σx) between
two neighbor sites j and j + 1. For the realization of S( j, j+1),
the corresponding Hamiltonian is hj, j+1 = h j+1, j = −h j, j =
−h j+1, j+1 = π/2 and hi,i′ = 0 for i, i′ �= j, j + 1 (it is easy to
verify S( j, j+1) = e−ih). The Hamiltonian h is definitely a local
one, involving only an operation on two neighbor sites. A(q)

with q = 0, 1, 2 is the local Fourier matrix, which couples
2 j with 2 j + 1 sites for j = 0, 1, 2, 3. Its nonzero matrix
elements are⎛

⎝ A(q)
2 j,2 j7 = 1√

2
A(q)

2 j,2 j+1 = 1√
2
ei2π ( j%2q )/2q+1

A(q)
2 j+1,2 j7 = 1√

2
A(q)

2 j+1,2 j+1 = − 1√
2
ei2π ( j%2q )/2q+1

⎞
⎠,

(E7)

where % denotes the remainder. The corresponding Hamil-
tonian, i.e., i ln[A(q)], has only the couplings between two
nearest-neighbor sites. Finally, the Hamiltonian E in Eq. (E6)
is made of the on-site potentials. For a linear dispersion
E (k) = wk, the elements of E can be written as Ei, j =
δi, j

2π
L jw. One can also use the modulo 2π operation to force

Ei, j to be in the interval [−π, π ). In the construction of the
Hamiltonian sequence, we notice that multiple swaps that
are commutative with each other can be combined into one
without breaking the locality of the Hamiltonian. For example,
S(1,2) and S(5,6) in R(1) can be realized by using a single
Hamiltonian that has the coupling between site 1 and site
2 and, at the same time, also the coupling between site 5
and site 6. Such a consideration reduces the depth of the
Hamiltonian sequence. In the case of L = 8, we find the depth
to be D = 39. The sequence consists of 32 swaps, six A(q), and
one e−iE.

APPENDIX F: MIXING SYMMETRY OF THE
SINGLE-PARTICLE PROPAGATOR

In the main text, we derived from the multiplication rule
that |k′, α′〉 = Û (1, 0, 0) |k, α〉, which illustrates the trans-
formation of a single-particle state under Û (1, 0, 0). In the
language of many-body physics, it is more convenient to
express Û (1, 0, 0) in terms of the creation or annihilation
operators. Equivalently, Û (1, 0, 0) gives a unitary transfor-
mation of field operators, which can be expressed as ĉ†

k′α′ =
Û (1, 0, 0)ĉ†

kα
Û †(1, 0, 0). The field operators in real space are

obtained through the Fourier transformation of ĉ†
kα

, given by

ψ̂†
xα = ∑

k
e−ikx√

L
ĉ†

kα
, where L is the system size. The time evo-

lution of field operators is defined as ψ̂†
xα (t ) = eiĤF t ψ̂†

xαe−iĤF t

for integer t (integer multiples of the period). Utilizing
Eq. (B2), we can derive the following expression:

Û (1, 0, 0)ψ̂†
xα (t )Û †(1, 0, 0) = ψ̂

†
x′α′ (t ′), (F1)

where (t ′, x′)T = A(t, x)T , and t, x, t ′, x′ are all integers. The
transformation Û (1, 0, 0) induces changes in both the spatial
and temporal coordinates of the field operators.

The propagator of particles in band α is defined as

Gα (t1x1, t2x2) = −iθ (t1 − t2)〈[ψ̂x1α (t1), ψ̂†
x2α

(t2)]±〉, (F2)

where the plus (minus) sign corresponds to fermions (bosons),
and θ represents the Heaviside function. The coordinates
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t1, x1, t2, x2 are all integers. The angle brackets 〈〉 denote the
expectation value with respect to the vacuum state. Due to
the discrete translational symmetry, Gα depends only on the
difference 	t = t1 − t2 and 	x = x1 − x2 for integer coordi-
nates. Using Eq. (F1), we immediately find

Gα (	t,	x) = Gα′ (	t ′,	x′), (F3)

where (	t ′,	x′)T = A(	t,	x)T . This equation explains
how the mixing symmetry manifests in the particle prop-
agator. For α′ = α (a singlet band in the P2 class), the
propagator must remain invariant after a linear operation A
on the spacetime coordinates, imposing a strong constraint on
the propagator. For α′ �= α, the propagator of band α after the
coordinate transformation becomes the propagator of band α′.

Thus, Eq. (F3) establishes a connection between propagators
of different bands.

In experiments, what can be measured is the wave function
or, more precisely, the absolute magnitude of the wave func-
tion. The wave function is directly linked to the propagator. If
we initially locate a particle at position x = 0 at time t = 0, its
wave function at a later time, according to Eq. (F2) and (F3),
satisfies

�α (t, x) = �α′ (t ′, x′), (F4)

where (t ′, x′)T = A(t, x)T and t, x are arbitrary integers. An
alternative way to prove this result is by using �α (t, x) =∑

k eikx−itEα (k)/L and Eq. (B2).
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