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Detecting the phase transition in a strongly interacting Fermi gas by unsupervised machine learning
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We study the critical temperature of the superfluid phase transition of strongly interacting fermions in the
crossover regime between a Bardeen-Cooper-Schrieffer superconductor and a Bose-Einstein condensate of
dimers. To this end, we employ the technique of unsupervised machine learning using an autoencoder neural
network, which we directly apply to time-of-flight images of the fermions. We extract the critical temperature of
the phase transition from trend changes in the data distribution revealed in the latent space of the autoencoder
bottleneck.
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An ensemble of attractively interacting fermions exhibits a
phase transition to a superfluid state below a critical tempera-
ture TC. The exact temperature at which the phase transition
occurs depends on the microscopic details, such as inter-
particle interactions and correlations. For weak attractive
interactions, in the Bardeen-Cooper-Schrieffer (BCS) regime,
the phase transition is governed by the opening of a gap due
to Cooper instability near the Fermi level. The critical tem-
perature in this regime decays exponentially with decreasing
interaction strength. If the system supports a dimer bound
state between two fermions, the ensemble can form a molecu-
lar Bose-Einstein condensate (BEC). The critical temperature
of this state converges towards the value of a weakly repulsive
BEC for decreasing interaction strength. These two regimes
are known as the limits of the BEC-BCS crossover, connected
by the unitarity regime around the point of diverging scatter-
ing length. In the regime of strong interaction strength around
unitarity, the determination of the critical temperature is a field
of ongoing research [1–9].

Detecting the phase transition over a wide range of in-
teractions has been difficult. Only on the BEC side of the
crossover does the conventional technique of detecting the
bimodal momentum distribution of the dimers directly reveal
the condensate [10–12]. In contrast, at unitarity a measure-
ment of the equation of state and thermodynamic quantities
unveiled the critical temperature [13]. On the BCS side of
the crossover, the Cooper pairs break upon release from the
trap and, therefore, the so-called rapid-ramp technique has
been developed to convert these pairs to tightly bound dimers
[14–17]. Whether or not the rapid-ramp technique closely re-
flects the situation of the trapped gas depends crucially on the
adiabaticity of the ramp, and an accurate verification of this is
very difficult. A direct detection of the superfluid signature in
the momentum distribution of the fermions, on the other hand,
is obscured by finite temperature, collisions during ballistic
expansion, and the shape of the trapping potential. Recently,
we have demonstrated that using supervised learning of deep
neural networks, the condensate fraction and hence the critical
temperature over a wide range of interactions can be detected
directly from the momentum distribution of the fermions [18].

However, this method still relies on the rapid-ramp technique
for labeling the training data.

In this work, we measure the critical temperature of the su-
perfluid phase transition by employing unsupervised machine
learning directly on time-of-flight images. Unsupervised ma-
chine learning is a technique that does not require labeling
the data during training of the network and hence is unbiased.
This is a significant advantage because the generation of la-
bels is a potential source of error. To this end, we employ
a deep neural network as an autoencoder, as illustrated in
Fig. 1. The autoencoder comprises an encoder and decoder
network as well as a bottleneck layer in the middle, with
the input of the encoder being of the same dimension and
shape as the output of the decoder. The bottleneck layer con-
nects the input and output layers and, preferably, has much
lower dimensionality than both input and output. Further, the
encoder neural network is trained to compress the features
of the input data (e.g., a picture) to the few neurons of the
bottleneck, while the decoder neural network uses the bot-
tleneck as an input to replicate the original input signal as
accurately as possible. In this approach, a low-dimensional
bottleneck will enforce an efficient representation of the data
into a few meaningful parameters. If the autoencoder is suc-
cessful, the latent space of the neuron outputs in the bottleneck
contains relevant information, which can be interpreted to
classify the input data. This is especially noteworthy be-
cause, by construction, the autoencoder does not take any
additional information other than the raw data into account.
So far, unsupervised machine learning has been used on
theoretical data with learning by “confusion” [19], princi-
pal component analysis [19–21], autoencoders [21,22], and
for the classification of topological phases in experimental
data [23].

Experimentally, we prepare a quantum gas of ∼3 × 105

atoms per spin state in the two lowest hyperfine states |1〉
and |2〉 of 6Li in a crossed-beam optical dipole trap [24]. We
adjust the interaction strength of the sample by utilizing a
magnetically controlled Feshbach resonance, and the temper-
ature by controlled heating from a time-dependent variation
of the trapping potential [18].

2469-9926/2023/108(6)/063303(5) 063303-1 ©2023 American Physical Society

https://orcid.org/0009-0001-7977-9795
https://orcid.org/0000-0001-6996-6258
https://orcid.org/0000-0001-7489-907X
https://orcid.org/0000-0003-0139-3240
https://orcid.org/0000-0001-5885-1498
https://orcid.org/0000-0003-4055-713X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.063303&domain=pdf&date_stamp=2023-12-04
https://doi.org/10.1103/PhysRevA.108.063303


D. EBERZ et al. PHYSICAL REVIEW A 108, 063303 (2023)

FIG. 1. Architecture and training of an autoencoder network. By
keeping the number of neurons in the bottleneck low and training the
network to reproduce its input, a low-dimensional representation of
the input data can be generated. The output of the bottleneck can then
be accessed to search for features in the data structure.

This approach enables us to tune the interaction strength
and temperature independently of each other. In addition, we
measure the central density and temperature of the cloud by
performing an inverse Abel transform to the column density
of in situ images. After reconstructing the three-dimensional
(3D) density distribution in the trap, we use the central density
to calculate the homogeneous Fermi energy and fit a virial
expansion of the equation of state to the edge of the cloud to
determine the temperature. The thermalized cloud is detected
by absorption imaging after 5 ms of time-of-flight, which
serves as the raw data for the autoencoder analysis. In the
analysis, the calibration is used to assign time-of-flight images
of variable heating time with a corresponding Fermi energy
and temperature. Further details regarding the detection and
calibration of the data are given in our previous work, which
shares the same data set [18].

In total, we accumulate 5031 time-of-flight pictures at
different interaction strengths and temperatures (see Fig. 1),
which we split into 90% for training and 10% for validation
after random shuffling. The network is written within the
TensorFlow framework [25] and trained with stochastic gradi-
ent descent via the Adam optimizer [26]. The architecture of
the autoencoder resembles two mirrored convolutional neural
networks connected by a two-dimensional bottleneck layer.
Both networks have independent weights and are trained si-
multaneously in the form of the autoencoder to reconstruct
the time-of-flight images. Later, the outputs of the bottleneck
are extracted to classify the data. The details of the network
architecture are given in the Appendix.

After training, we use the encoder and bottleneck parts of
the network to achieve the two-dimensional latent space rep-
resentation shown in Fig. 2. The left panel of the figure shows
the latent space spanned by the two bottleneck neurons with a
color code corresponding to the magnetic field strength, which
determines the interaction strength. We observe that all data
belonging to the same magnetic field lie along a curve in the
latent space. The right panel shows the same representation
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FIG. 2. Latent space representation of time-of-flight data across
the crossover, in which every data point represents one compressed
image. Left: The color of the data indicates the external magnetic
field strength. In the latent space, the data are organized along curves
of sorted interaction values. Right: Same plot as the left, but the color
shows the relative temperature of data points. Since the temperatures
differ for each field, the scale is normalized. The network not only
learns to sort data points by interaction, but it also arranges them
by temperature along each curve, with the tendency of hot clouds to
converge towards a common region in the latent space.

of the latent space, however with the color map represent-
ing temperature. This depiction illustrates that the ordering
along the lines of different interaction strengths is according
to the temperature of the sample. It should be noted that the
autoencoder does not receive any information regarding the
interaction or temperature, but learns these quantities from the
time-of-flight pictures alone. Additionally, the autoencoder
groups thermal (hot) gases in a small concentrated area in
the upper-left corner, while the (cold) superfluid gas covers
a larger area at the bottom of the latent space. Hence, the
neural network detects a wider range of variation in the signa-
tures of superfluids for different interaction strengths, whereas
differently interacting thermal gases are more similar to each
other. For the work discussed in this paper, the reduction to
two neurons at the bottleneck has proven sufficient. We found
that the final loss during training, which measures the mean-
squared error of the network outputs with regard to the inputs,
shows no improvement for more than two neurons. Moreover,
for trained networks with three bottleneck neurons, the output
in the latent space is arranged on a common plane reducing
the latent space to a two-dimensional distribution.

Tracing the data points from hot to cold for a given inter-
action strength shows that the data are not well described by a
single straight line. Instead, we use piecewise linear segments
to model the data and to detect a change of trend at specific
temperatures. First, we average the latent space position of
the ∼13 recorded images for each temperature and interaction
strength setting. Next, we trim the considered temperatures
for each interaction strength to a range around the determined
critical temperature from our supervised analysis [18]. This
approach prevents the accidental detection of trend changes
at temperatures far above or below the critical temperature.
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FIG. 3. Extraction of the critical temperature from the latent
space representation. As an example, the extraction for data with
1/(kFa) ∼ −0.26 at the trend changing position is shown. Each point
represents the averaged position of 13 recorded images. The gray
lines display the fitted piecewise linear segments, and the red point
shows the determined position of the trend change.

Around unitarity where the reduced temperature T/TF does
not change substantially at the expected critical temperature,
the trimming range is chosen such that we omit temperatures
at which the condensate fraction from our supervised analy-
sis is above ∼5 %. At fields where the reduced temperature
varies strongly with the determined critical heating time and
the maximally measured condensate fraction is below this
limit, the chosen range comprises temperatures in a window
of roughly ±25%T/TF of the previously determined critical
temperatures. This range covers approximately 80–100 % of
the span of measured temperatures at each field. Subsequently,
the latent space is shifted and linearly transformed, while
preserving angles, before we apply a piecewise linear fit in
order to determine the location of the trend change as shown
in the transformed latent space (Neurons I and II) in Fig. 3.
The fit is performed by defining a piecewise linear function
with four degrees of freedom, namely two slopes and the
coordinates of the trend change, which is fitted to the data via
the least-squares method. We average the heating time of the
three data points closest to the trend changing position, and we
use our calibration of the heating measurements to infer the
corresponding temperature. Since the trained network model
is subject to statistical variation caused by the finite size of the
shuffled data set, stochastic gradient descent during training,
and randomly initialized weights of the network, we train
multiple equivalent models. Next, we average the determined
heating times at the trend changing positions weighted by the
reciprocal variance of the previously calculated mean of the
three closest data points. In total, we train 173 models and
omit only one model with nonconverged loss after training. In
addition, we omit every fit in which the result is at the edge
of the trimmed latent space, which sums up to 33 discarded
fits from a total of 2408 for all of the 172 remaining models
with 14 different interactions each. These fits mainly belong to
interactions around 1/(kFa) ∼ 0.5, where the change of trend
is least pronounced.

In Fig. 4 we compare the extracted critical temperatures
to the phase boundary determined by our supervised neural
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FIG. 4. Extracted critical temperatures across the BEC-BCS
crossover shown as red dots. Error bars are calculated from the
SE of averaging multiple trained models with differently shuffled
training data sets and an estimation of the systematic error caused
by nonharmonicities of the trap [18]. Blue diamonds represent the
results of our supervised analysis [18]. Dashed line: BCS theory with
GMB corrections; solid line: extended GMB theory [8]; dash-dotted
line: theory from [2]; dotted line: interacting BEC; open triangles:
quantum Monte Carlo data [4], open circles: quantum Monte Carlo
data [3].

network [18] and several theories [2–4,8], finding overall very
good agreement. Our analysis reveals the critical temperature
in the region of −0.40 < 1/(kFa) < 0.98 and shows a strik-
ing resemblance to the extended Gor’kov-Melik-Barkhudarov
(GMB) theory [8]. On the BCS side, this approach agrees
well with the higher temperatures presented by Ref. [2], which
exceed the suggested temperatures by quantum Monte Carlo
(QMC) calculations [3]. From unitarity to the BEC side of the
crossover, the temperatures match with the QMC calculations
in [4]. Moreover, the determined superfluid transition tem-
peratures agree well with the values from our previous work
using supervised training of deep neural networks [18]. We
therefore conclude that the change of trend in the latent space
corresponds to the critical temperature, providing a new and
unbiased perspective on the phase boundary in the crossover
regime. Thus, this work presents another confirmation of our
previous work, which in contrast does not rely on the rapid-
ramp technique while retaining good accuracy.

In conclusion, we extracted the phase boundary of the
superfluid phase transition in the BEC-BCS crossover directly
from the momentum distribution of the fermions by applica-
tion of an unsupervised autoencoder network. The network is
able to identify physical quantities such as temperature and in-
teraction strength independently of any external information,
and it reveals the phase transition by a feature in the low-
dimensional latent space of the data set. Our work shows that
the direct detection of Fermi condensates from the momentum
distribution of fermions is possible even without projection
onto dimers. In this regard, this method presents an alternative
approach to unveil features in experimental time-of-flight data
where model-based analysis is impractical.
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APPENDIX: AUTOENCODER NETWORK

The neural network architecture used to create the low-
dimensional representation of the phase diagram is given
in Table I. For training, we provide the network with 5031
centered absorption images of 192 × 192 px at different tem-
peratures and interactions across the crossover with ∼13
repetitions each. To generate the latent space, the full net-
work is trained in a supervised way using the whole data
set as both input and labels at the same time. Later, only
the encoder half of the network is employed to extract the
latent space representation of the data set in the bottleneck
layer. This approach does not require the network to share a
symmetric encoder and decoder, nor to have shared weights of
mirrored layers. Every dense and convolutional layer uses the
ReLU activation, except for the dense layer in the bottleneck
utilizing a linear activation. The total number of parameters
is 17 400 963. We use a batch size of 20 and train for 15
epochs with an Adam optimizer [26] and a learning rate of
4 × 10−4 with mean-squared error as a loss function. From
the 5031 data points, we use 90% for training and 10% for

TABLE I. Neural network architecture used for the autoencoder.

Layer (type) Output shape Parameters

Input (192, 192, 1) 0
2D convolutional (192, 192, 32) 320
Max pooling (48, 48, 32) 0
2D convolutional (48, 48, 64) 8256
Max pooling (16, 16, 64) 0
Flatten (16384) 0
Dense (512) 8389120
Dense (512) 262656
Dense (bottleneck) (2) 1026
Dense (512) 1536
Dense (512) 262656
Dense (16384) 8404992
Reshape (16, 16, 64) 0
2D transpose convolutional (48, 48, 64) 36928
Batch normalization (48, 48, 64) 256
2D transpose convolutional (192, 192, 32) 32800
Batch normalization (192, 192, 32) 128
2D convolutional (192, 192, 1) 289

validation, which are randomly shuffled before being used
for training. The network was realized with the TensorFlow
library [25].
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