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Self-bound vortex lattice in a rapidly rotating quantum droplet
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A rapidly rotating Bose gas in the quantum Hall limit is usually associated with a melted vortex lattice. In
this work, we report a self-bound and visible triangular vortex lattice without melting for a two-dimensional
Bose-Bose droplet rotating in the quantum Hall limit, i.e., with rotation frequency � approaching the trapping
frequency ω. Increasing � with respect to interaction strength U , we find a smooth crossover of the vortex
lattice droplet from a needling regime, as featured by small vortex cores and an equilibrium flat-top surface,
to the lowest-Landau-level regime with Gaussian-extended cores spreading over the whole surface. The surface
density of such a rotating droplet is higher than that of a static one, and their ratio is found to be a universal
function of �/U . We have demonstrated these results by both numerical and variational methods. The results
pave the way for future experimental exploration of rapidly rotating ultracold droplets into the quantum Hall
limit.
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I. INTRODUCTION

Ultracold Bose gases in rotating harmonic traps have at-
tracted much attention in recent years [1,2]. An important
motivation is the emergence of quantum Hall physics when
the rotating frequency (�) approaches the trapping frequency
(ω) [3,4]. This situation is analogous to charged particles
in a magnetic field, and a triangular vortex lattice emerges
therein similar to those in type-II superconductors [5] and
rotating superfluid heliums [6]. In such a rotating dilute gas,
the competition between inertial force, trapping potential,
and mean-field interaction results in a rich profile of vortex
lattice, such as distinct core and global envelopes between
mean-field quantum Hall and Thomas-Fermi regimes [7,8]
and structural transitions to other lattice configurations in
two-species bosons [9–11], dipolar systems [12–14], Bose-
Fermi double superfluids [15], etc. Despite these interesting
phenomena, in practice it is quite challenging to explore the
vortex lattice in the rapidly rotating quantum Hall regime.
A key obstacle is the exceedingly expanded cloud due to
the cancellation between centrifugal and confinement forces
(� = ω). The resulted low density of the cloud leads to
the melting of vortex lattice, which shows an invisible pat-
tern [16,17] and finally gives way to other correlated states
[4,18,19]. Alternatively, the boson density could be enhanced
in the Landau-gauged quantum Hall regime by squeezing
the system with anisotropic traps [20,21], which displays a
crystalline vortex street [22] instead of a triangular lattice as
in the symmetric case.

Here, we show that the above obstacle can be overcome in
the quantum droplet of ultracold bosons. Such an ultracold
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droplet, as balanced by the mean-field attraction and Lee-
Huang-Yang (LHY) repulsion from quantum fluctuations
[23], has been successfully realized in both dipolar gases
[24–29] and alkali Bose-Bose mixtures [30–34]. Importantly,
these droplets are self-bound and can be stabilized without any
trap. They are thus expected to be immune from expansion
as in previous cases of rotating Bose gases [16,17]. Although
there have been several studies on a few vortices in dipolar
droplets [35–40] and binary boson droplets [41–46], the prop-
erty of a rapidly rotating droplet in the quantum Hall limit is
still unknown at the moment. In particular, how the self-bound
nature and beyond-mean-field effect will influence the vortex
lattice is an important question to address.

In this work, we study the vortex lattice in a harmoni-
cally trapped two-dimensional (2D) Bose-Bose droplet with
extreme rotation � = ω. Our calculations confirm that the
self-bound nature of the quantum droplet indeed protects the
vortex lattice from melting, thus enabling a clear visualization
of the triangular lattice in this limit. As shown in Fig. 1, the
exact vortex structure in a unit cell closely depends on the
relative strength between � (or ω) and interaction strength
U . Namely, at � � U [Fig. 1(a)], each vortex holds a rather
small core with a large flat-top area around, such that the
entire system resembles a needled surface. Increasing �/U
will finally drive the system to the lowest-Landau-level (LLL),
where the vortex core displays an extended Gaussian profile
across the whole cell and the surface area becomes isolated
and small [Fig. 1(b)]. We emphasize that the flat-top surface
here inherits from the static droplet in vacuum and reflects
the crucial role played by LHY corrections. Interestingly, the
surface density here is always higher than that of a static
droplet, and their ratio universally relies on a single parameter
�/U . These results have been demonstrated both numerically
and from a variational approach. They will hopefully serve
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FIG. 1. Two limiting cases of vortex lattice for a 2D quantum
droplet at different �/U . Here, � is the rotation frequency (= trap-
ping frequency ω) and U measures the interaction strength. For small
�/U = 0.008 (a), each unit cell exhibits a rather small vortex core
surrounded by a large flat-top area, resembling a needled surface.
Increasing �/U = 3.085 (b), the system is frozen at the lowest
Landau level, where the vortex core displays an extended Gaussian
profile and the surface area becomes isolated and small. The dashed
hexagon in each n(x, y) plot marks a unit cell with characteristic
length l� = 1/

√
m�.

as a guideline for future experimental exploration of rapidly
rotating ultracold droplets in the quantum Hall limit.

II. MODEL

We start from the energy functional of two-species bosons
in a 2D rotating trap (h̄ = 1):

E (ρ) = −
∑
i=1,2

φ∗
i (ρ)

(
−∇2

2m
+ mω2ρ2

2
− �Lz

)
φi(ρ)

+
∑

i j

gi j

2
ni(ρ)n j (ρ) + ELHY[n1(ρ), n2(ρ)]; (1)

here, ρ = (x, y) is the 2D coordinate; φi is the wave func-
tion of the ith species and ni = |φi|2 is its density; gi j =
4πai j/(mlz ) is the mean-field coupling between i- and j
species (ai j is the scattering length and lz is the confinement
length along z to generate 2D geometry); and Lz= − i(ρ×∇ )z

is the angular momentum’s z component. In this work we
shall consider bosons near the mean-field collapse, i.e., with
δg ≡ g12 + √

g11g22 ∼ 0. In this case, the two-species den-
sities are locked as n1/n2 = √

g22/g11 in order to minimize
the mean-field energy [23]. As a result, one can employ the
single-mode wave function

�(ρ) =
(√

g11 + √
g22√

g22

)1/2

φ1 =
(√

g11 + √
g22√

g11

)1/2

φ2,

(2)

and simplify (1) as

E (ρ) = �∗
(

−∇2

2m
+ mω2ρ2

2
− �Lz

)
� + g

2
n2 + ELHY(n).

(3)

Here, n = |�|2 is the total density, the reduced mean-field
coupling is g = 2δg

√
g11g22/(

√
g11 + √

g22)2, and the LHY
energy reads ELHY = an2 ln(bn), with a = 2πa11a22/(ml2

z )
and b = 4π lz

√
ea11a22 [47,48], with e the Napier’s constant.

The ground state can then be obtained by imaginary-time evo-
lution of the Gross-Pitaevskii (GP) equation i∂t� = ∂E/∂�∗
based on (3).

For a concrete example we shall take the two hyper-
fine states of 39K atoms, |1〉 = |F = 1, m = −1〉 and |2〉 =
|F = 1, m = 0〉, as have been well studied in droplet experi-
ments [30–32]. Then, we have a11 = 35aB and a12 = −53aB

(aB is the Bohr radius) and a22 is highly tunable through
Feshbach resonance. Moreover, we assume a tunable �(= ω)
as well, while we fix lz as 0.05 μm. In our numerics, a large
boson number N > 104 is considered, such that the droplet
stays in thermodynamic limit with little finite-size effect. The
boson filling factor ν = N/Nv , with Nv the vortex number, is
>150, well above the critical value for the instability of vortex
lattice [4,18,49]. Such large ν in turn validates the matter wave
treatment in the GP equation. To facilitate later discussions,
we introduce a length scale l� = 1/

√
m� to characterize the

size of a unit cell, and an energy scale

U = an0 (4)

to characterize typical interaction strength, where n0 =
b−1e−1−g/(2a) is the equilibrium density of a static droplet in
vacuum.

We have numerically obtained the ground state of rapidly
rotating 39K droplets at � = ω (see details presented in the
Appendix). For all values of �/U , we find a stable and reg-
ularly distributed triangular vortex lattice without melting, in
contrast to those in repulsive Bose gases in the same quan-
tum Hall limit [16,17]. The vortex lattice is thus intrinsically
self-bound, which will greatly facilitate its detection in exper-
iments. Its internal structure, as summarized in Fig. 1, falls
into two limiting regimes depending on the ratio �/U :

(1) Needling regime: When � � U , the vortex core is very
small as compared to the size of the unit cell, and the rest of
the large area is filled with bosons with flat-top (equilibrium)
density. This structure, as shown in Fig. 1(a), resembles a
needled surface and thus it is called the needling regime.

(2) LLL regime: When � � U , the vortex spreads to the
whole cell and the surface becomes isolated and individually
small, see Fig. 1(b). As shown later, the vortex profile in this
case saturates at an extended Gaussian (Fig. 4), a characteris-
tic feature of the LLL regime.

III. VARIATIONAL APPROACH

To physically understand these different structures, we
write down the wave function of the rotating droplet:

�(ρ) = ei
(ρ) f (ρ)
√

n̄, (5)
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where 
(ρ) is the phase, f (ρ) is a real function rapidly vary-
ing on the scale of the vortex core, and n̄ is the equilibrium
density far from the core. Since f (ρ) has the same discrete
translational symmetry as the vortex lattice, we can divide
the lattice into Wigner-Seitz cells and treat f in each cell
separately. Then the vortex number is Nv = ∑

j ( j is the
cell index), and the total boson number is N = Nvν, with
ν = n̄

∫
j dρ f 2 the filling factor (here

∫
j is to integrate within

a unit cell).
Now we aim to express the total energy E = ∫

dρE (ρ) =
E0 + Eint in terms of f and n̄ in (5), where E0 is the non-
interacting energy and Eint is the interaction energy. Since
each vortex is singly quantized, we introduce the velocity field
as v(ρ) ≡ ∇
/m, which is contributed from an overall rigid
rotation and a periodic local velocity, i.e., v(ρ) = �ez × ρ +
vl (ρ) [6]. After straightforward algebra, we simplify E0 as

E0 = N�α;

with α =
∫

j dρ
[

1
2m

(
∂ f
∂ρ

)2 + m
2 f 2v2

l

]
�

∫
j dρ f 2

. (6)

To exactly integrate v2
l in α, we adopt a complex

function vl (z) = i[ζ ∗(z)/m − �z] in terms of z = x + iy,
where ζ (z) is the Weierstrass zeta function ζ (z) = 1/z +∑

j 	=0 [1/(z − z j ) + 1/z j + z/z2
j ], and {z j} are complex co-

ordinates of lattice sites [50]. Clearly α depends on the
symmetry of the vortex lattice, and its minimization leads to
the emergence of triangular lattice as shown later.

The interaction energy, as composed by mean-field and
LHY parts, is given by

Eint = Nβ[gn̄/2 + an̄ ln(bn̄)] + Nγ an̄;

with β =
∫

j dρ f 4∫
j dρ f 2

, γ =
∫

j dρ f 4 ln f 2∫
j dρ f 2

. (7)

The total energy per particle is then ε = E/N :

ε = α� + β[gn̄/2 + an̄ ln(bn̄)] + γ an̄. (8)

To this end, we have obtained ε as a function of n̄ and three di-
mensionless quantities α, β, γ that are uniquely determined
by f function. Here, we remark that the inclusion of LHY
energy in ε is essential to support a self-bound solution at
zero pressure, which is equivalent to requiring ∂ε/∂ n̄ = 0 and
gives

n̄ = e−γ /βn0, (9)

ε = α�−βe−γ /βU . (10)

Here, n0 and −U are, respectively, the equilibrium density and
energy per particle for a static droplet in vacuum.

To further parametrize α, β, and γ , we now introduce
a variational ansatz for f (ρ) (ρ = |ρ|) within a unit cell.
Considering its definition in (5) with boundary condition
f (ρ → 0) ∝ ρ, we write down the ansatz as

f (ρ) =
{

(ρ/lc) e1−ρ/lc , ρ � lc,

1, ρ > lc.
(11)

FIG. 2. Difference of energy per particle between the square
and triangular vortex lattices ε� − ε�. The contributions from the
noninteraction and interaction parts are shown as ε0,� − ε0,

� and
εint,� − εint,

�, respectively. The horizontal dashed line marks the
value obtained in incompressible limit [6]. The energy unit here is
the �.

Here, lc characterizes the core radius, and one can check that
both f and f ′ are continuous at ρ = lc. Define a dimensionless
quantity η = l2

c /l2
�, which evaluates the core area with respect

to the area of a unit cell; we can then parametrize α, β, γ

solely by η. The ground state is then given by ∂ε/∂η = 0,
which leads to

�

U

∂α

∂η
= ∂ (βe−γ /β )

∂η
. (12)

Importantly, Eq. (12) implies that the solution of η, and thus
other dimensionless quantities including {α, β, γ } and the
ratio n̄/n0, all rely on a single parameter �/U . This parameter,
according to Eq. (10), measures the relative strength between
noninteraction and interaction energy scales.

IV. RESULTS AND DISCUSSION

The above variational approach can well explain the struc-
ture of vortex lattices as shown in Fig. 1. First, it gives the
triangular lattice as the ground state configuration for all val-
ues of �/U . To see this, in Fig. 2 we have shown the energy
difference between the square and triangular lattices based
on Eqs. (10) and (12). The energy per particle ε is divided
into the noninteracting part ε0 and interacting part εint. We
use subscripts � and

�
to distinguish square and triangle

configurations. One can see that for all �/U , the triangular
lattice is always more energetically favorable, and the energy
gain is mostly contributed from the noninteracting part, or
equivalently, the difference in α. In the incompressible limit
with �/U , η → 0, our calculation (the difference in α) repro-
duces Tkachenko’s result with m2

2π
(
∫
� v2

l − ∫
� v2

l ) ≈ 0.0105
[6].

Secondly, Eqs. (8)–(12) well explain the change of vortex
core structure as tuning �/U . Let us start from the needling
regime at � � U . In this case, since the interaction part
dominates in ε, the system is largely unperturbed with an
equilibrium density n̄, while just a small region in each cell
is significantly deformed by the vortex. In Fig. 3(a), we plot
out a typical density profile for this case and show that it can
be well fit using the variational ansatz in (11). In Fig. 3(b),
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FIG. 3. Vortex lattice in the needling regime with � � U .
(a) Density profile n(x, y = 0) across three vortex cores at �/U =
0.03. Dashed line shows the variational function fit according to
Eq. (11) with optimized core radius lc. (b) n̄/n0 as a function of �/U ,
with n̄ (or n0) the equilibrium surface density of a rotating droplet
(or a static droplet in vacuum). Here, �/U is changed by varying
different parameters (� or δg) and all data collapse into a single curve
(gray solid line), signifying a universal dependence of n̄/n0 on �/U .
Black dashed line shows results of the variational approach based on
Eq. (11), and the according lc/l� is shown in the inset plot.

we further extract n̄/n0 as a function of �/U . The data show
that n̄ for a rotating droplet is always higher than n0 for a
static one, and their ratio n̄/n0 gradually increases with �/U .
This can be attributed to the factor e−γ /β > 1 in (9), given
γ < 0 according to its definition. The variational approach
is found to provide a quantitatively good prediction to n̄/n0

for small �/U � 0.15, and it also predicts an increasing
core size in each unit cell, see lc/l� ∼ �/U in the inset of
Fig. 3(b). Remarkably, by choosing different variables (� or
δg) in changing �/U , we find that all data of n̄/n0 collapse
into a single curve in Fig. 3(b). This demonstrates a universal
dependence of n̄/n0 on �/U , as suggested previously in the
variational approach [see Eq. (12)].

For �/U � 0.15, the system no longer stays in the
needling regime, as indicated by a considerably large core
in a unit cell (lc/l� ∼ 1) and the breakdown of variational
ansatz in predicting n̄/n0, see Fig. 3(b). In this case, the system
gradually evolves to the LLL regime, and the energies in both
Eqs. (3) and (8) are dominated by the noninteracting parts,
i.e., with noninteracting ε0 approaching the LLL energy �

(thus α → 1). The associated f (ρ) then develops an extended
Gaussian distribution

f (ρ) =
{

(ρ/l�) e1/2−ρ2/(2l2
� ), ρ � l�,

1, ρ > l�.
. (13)

Figure 4(a) shows that the above function indeed determines
the actual density within a unit cell at a large �/U = 1.

The gradual crossover from the needling to LLL regimes
is shown in Figs. 4(b) and 4(c), where we have extracted

FIG. 4. Crossover of vortex lattice from the needling to the LLL
regime. (a) Same as Fig. 3(a) except for �/U = 1. Dashed line shows
the Gaussian function (13). (b) α = E0/(N�) as a function of �/U .
(c) y = ln(|�|/ρ ) as a function of x = ρ2/l2

� for different �/U =
0.02, 0.15, and 0.92, as marked by (1), (2), and (3) in (b). For case
(3), all points collapse into a straight line y = −x/2 + c (see dashed
fit), which justifies the LLL wave function in (13).

α = E0/(N�) and |�| from exact numerics and plotted them
as functions of �/U . We can see that as �/U increases, α

continuously decreases from a large value to ∼1, suggesting
the change of boson occupation from many higher Landau
levels to the lowest one. During this process the vortex core
function gradually develops the Gaussian form as in (13), i.e.,
ln(|�|/ρ) linearly depends on ρ2/l2

� with slope −1/2, see
Fig. 4(c).

Before closing, we comment on the validity of local den-
sity approximation (LDA) used in the GP equation. In the
needling regime � � U , LDA is well justified since the in-
teraction energy (∼U ) is much larger than the noninteraction
part (E0/N = α�). This can be seen from Fig. 4(b), for in-
stance, at small �/U (� 0.5) we have α � 2 � U/�. As
�/U → 0, the density inhomogeneity should play the same
role as it does in an individual static droplet with size ∼l�
and atom number ∼ν = N/Nν . Given very large ν(> 104) in
the needling regime (see the Appendix), the density inho-
mogeneity can be neglected and the LDA can be validated.
However, in the opposite limit with �/U � 1, the kinetic
energy contributed from density inhomogeneity may not be
always less than U . Therefore, the treatment of LDA and
the LHY correction calculated from a homogeneous system
may not be very accurate in this regime and needs further
examination.

V. CONCLUSION

In summary, we have demonstrated a self-bound and
clearly visible triangular vortex lattice in a rapidly rotating
2D Bose-Bose droplet in the quantum Hall limit. The re-
vealed distinct structures of vortex lattice (see Fig. 1) and
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FIG. 5. Real space density distributions of vortex lattices in
Figs. 3(a) and 4(a) in the main text. The color scale labels the density
in units of (μm)−2.

the smooth crossover in between, as well as the flat-top sur-
face and its universal dependence on �/U [Fig. 3(b)] can
be readily detected in the current experiments of ultracold
droplets. Intriguingly, here the quantum fluctuations (or LHY
corrections), rather than melting the vortex lattice as in the
gaseous state of rotating bosons [2,18], help to stabilize it in
a rapidly rotating droplet. In this way, our results suggest the
quantum droplet as a fascinating platform for the realistic ex-
ploration of the quantum Hall regime with rotating bosons. In
the future, it will be interesting to investigate how the strongly
correlated quantum Hall states emerge in this platform when
the filling factor ν gets sufficiently low, as previously studied
for single-species bosons [4,18,19].
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APPENDIX: IMAGINARY TIME EVOLUTION
OF EXTENDED GP EQUATION.

We take a large square box with size 30×30(l2
�), which is

further divided into a mesh grid of 512×512 for the discretiza-
tion of wave function. The imaginary time step generally takes
the value �τ = 10−4 ∼ 10−5(1/ω).

We have used different methods for the iterations in imag-
inary time, such as split-step finite difference [51] and the
split-step Fourier method [51]. Throughout the iterations, the
atom number remains fixed. We have also tried various ini-
tial states, such as the single vortex state and the Gaussian
function with a random phase 
(x, y). We have confirmed
that the final steady state is always the self-bound triangular
vortex lattice. For accuracy and efficiency of the iteration,
we finally adopt the split-step Fourier method to obtain large

FIG. 6. Filling factor ν = N/Nv as a function of �/U .

vortex lattices (with 120 ∼ 130 vortices) as presented in this
work.

For the initial state �0, we take the two following steps
in order to achieve fast convergence. First, we turn off the
trapping potential and rotating terms, and input a Gaussian
state to evolve. This step generates a static droplet �droplet

in vacuum. Second, we perform phase “imprinting” on the
droplet [52] to prepare �0,

�0 = �droplet ·
∏

j

z − z j

|z − z j | ,

where the complex coordinate is z = x + iy, and {z j} are vor-
tices’ initial positions. Here, we make use of C6 symmetry
and the Feynman-Onsager relation to select {z j} as triangular
lattice sites,

z j/l0 = (2m1 + 2m2 × eiπ/3) × eim3π/3,

where l0 =
√

π/(2
√

3)l� is the theoretical value of half spac-
ing between the nearest vortices, m1 and m2 are integers, and
m3 ∈ {0, 1, 2, 3, 4, 5}. For example, m2 take values from 0 to
6, and m1 from 0 to 6 − m2. Using this initial state and time
step 10−5, we obtain the converged state after ∼106 iterations.
Typical distributions of vortex lattices are shown in Fig. 5.

The vortex lattices presented in this work exhibit high
filling factor ν ranging from ∼63 000 to ∼150, see Fig. 6.
Various physical parameters of two typical samples (at two
different �/U ) are shown in Table I.

TABLE I. Parameters of vortex lattices at two specific values of
�/U . Here, N is the particle number, ν is the filling factor, α is the
noninteracting energy per particle, μ is the chemical potential, and√

〈r2〉 is the root-mean-square radius. Here, the length and energy
units are, respectively, l� and �.

�/U N ν α μ E/N
√

〈r2〉 n̄/n0

0.03 734 000 5780 1.30 −30.7345 −30.7334 8.68 1.05
1.00 18 800 155 1.00 0.04546 0.04518 8.43 1.21
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