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We evaluated the accuracy limit for estimating gravitational potential using optical lattice clocks by utilizing
the quantum Cramér-Rao bound. We then compared the results for single-layer and multilayer optical lattice
clocks. The results indicate that the lower bound of variance of the estimator of gravitational potential using
finite-size optical lattice clocks diverges and recovers repeatedly as a function of time. Namely, the accuracy
of the gravitational potential estimation is not a monotonic function of time owing to the effect of gravitational
dephasing in finite-size optical lattice clocks. Further, this effect creates an estimation accuracy limit when
attempting to avoid the divergence of the lower bound. When the number of layers in the optical lattice clock
is sufficiently large, the limit is independent of the optical lattice clock details. The time required to reach this
limit is calculated to be approximately 33 h for a three-dimensional optical lattice clock consisting of one million
cadmium atoms due to Earth’s gravity, and approximately the same for other atoms. This time is much longer
than the current coherence time of 26 s.
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I. INTRODUCTION

Recently, the accuracy of time measurements using optical
lattice clocks has significantly improved. A pertinent example
is the optical lattice clock used in the experiment at the Tokyo
Skytree. This optical lattice clock is portable and accurate
on the order of 10−18 [1]. This is on the order of 10−2 m in
terms of the height difference near the earth’s surface, and
the clock can detect height differences of several centimeters.
This renders the use of optical lattice clocks as high-accuracy
gravitational potential meters in geodetic applications feasi-
ble. In addition to pure geodetic applications, applications
in seismology and volcanology for monitoring crustal de-
formations have also been considered [2]. The accuracy of
optical lattice clocks will be further improved in the future.
For example, optical lattice clocks accurate on the orders of
10−19 and 10−20 were demonstrated by Zheng et al. [3] and
Bothwell et al. [4], respectively. Pedrozo-Pẽnafiel et al. [5]
reported that an accuracy beyond the standard quantum limit
(SQL) can be achieved upon using spin-squeezed states.

By contrast, gravitational dephasing has been shown to
reduce the accuracy of optical lattice clocks [6]. In a vertically
layered optical lattice clock, the gravitational potentials of
the atomic clocks in each layer are different, resulting in a
phase difference due to the gravitational redshift and loss of
coherence in the system as a whole. This is referred to as

*fumiya.nishimura.562@s.kyushu-u.ac.jp
†kuramochi.yui@phys.kyushu-u.ac.jp
‡yamamoto@phys.kyushu-u.ac.jp

gravitational dephasing, as described by Kawasaki [6]. This
should be discriminated from the gravitational decoherence
[7] or the loss of coherence due to the gravitational interaction
between atomic clocks [8]. When measuring the gravitational
potential using an optical lattice clock, the accuracy of the
measurement is expected to deteriorate because of gravita-
tional dephasing.

The aforedescribed prior findings indicate that the effect of
gravitational dephasing may not be negligible when the accu-
racy of optical lattice clocks is further improved or when new
application methods are devised and require further accuracy.
This suggests that evaluating the gravitational effect on the
accuracy would be worthwhile. In this study, we evaluated
the quantum Fisher information of the statistical model of
an optical lattice clock in a gravitational field. According to
the quantum Cramér-Rao bound, the inverse of the quantum
Fisher information gives a lower bound of the accuracy of any
unbiased estimator of the gravitational potential. The effect
of gravitational dephasing can be evaluated by specifically
determining the quantum Cramér-Rao bound for estimating
the gravitational potential using optical lattice clocks.

The remainder of this paper is organized as follows.
In Sec. II, we present the formulation of the Hamiltonian
of atomic clocks. In Sec. III, we detail the calculation of
the quantum Fisher information for the statistical model of
gravitational potential estimation using a single-layer opti-
cal lattice clock. Section IV describes the evaluation of the
Fisher information of gravitational potential estimation using
an Nlayer-layer optical lattice clock. In Sec. V, we discuss the
results obtained and compare them with the actual values.
Section VI summarizes this study and the conclusions drawn.
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In Appendix A, the classical and quantum estimation theories
are briefly reviewed. In Appendix B, an example of a positive
operator-valued measure (POVM) that achieves the equality in
Eq. (13) is presented. In Appendix C, we estimate the Allan
deviation of the lattice clocks considered in Secs. III and IV.

II. TIME EVOLUTION OF AN ATOMIC CLOCK UNDER
GRAVITATIONAL FIELD

This section details the derivation of the Hamiltonian of
an atomic clock in a weak gravitational field. Our starting
point is the following Hamiltonian of a composite system
(a two-level atom in this study) with an internal degree of
freedom moving with nonrelativistic velocity and sufficiently
small acceleration in a weak gravitational field [9]:

H = mc2 + p2

2m
+ mVN (x) + Eint

(
1 + VN (x)

c2
− p2

2m2c2

)
.

(1)

Here, m is the rest mass of the system without considering its
internal energy, x is the distance between the center of mass
of the system and the gravitational source, p is the momentum
of the center of mass of the system, VN (x) is the Newtonian
potential, and Eint is the internal energy of the system. We
quantize the internal energy Eint to the internal Hamiltonian
operator Ĥint and assume that Ĥint can be written in the form
of the following two-level system:

Ĥint = E0|0〉〈0| + E1|1〉〈1| (E0 < E1). (2)

The first three terms on the right-hand side in Eq. (1) are
the rest energy, kinetic energy of the center of mass, and
Newtonian potential, respectively; this part of the Hamiltonian
describes the center-of-mass system of an atom. The fourth
term is the Hamiltonian of the atomic internal degrees of
freedom.

We have the relativistic correction terms VN (x)/c2 −
p2/(2m2c2) in the fourth term. The first term VN (x)/c2

describes the time delay due to the gravitational redshift,
whereas the second term −p2/(2m2c2) originates from the
time delay due to a special relativistic effect. The reason for
this correction is that Eq. (2) is only an internal Hamiltonian
as observed by an observer who is stationary with respect
to the atom. Under general circumstances, the atom is not
necessarily stationary from the observer’s coordinate system;
therefore, the time delay due to special and general relativistic
effects is not necessarily zero.

We now set p = 0. This is justified because the center of
mass of an atom in the optical lattice clock is confined to an
extremely narrow region by, for example, an outer potential.
Then, by using Eq. (2), we obtain

Ĥ = mc2 + mVN (x) +
(

Ē Î + �E

2
σ̂ z

)(
1 + VN (x)

c2

)
, (3)

where

Ē = E0 + E1

2
,

�E = E0 − E1, (4)

σ̂ z = |0〉〈0| − |1〉〈1|, (5)

and Î = |0〉〈0| + |1〉〈1| denote an identity operator. By dis-
carding the constant terms that do not contribute to the time
evolution of the system, we obtain

Ĥ = �E

2
σ̂ z

(
1 + VN (x)

c2

)
= �E

2
θ0σ̂

z, (6)

where we define

θ0 ≡ 1 + VN (x)

c2
. (7)

It must be noted that the aim is to estimate the classical
gravitational potential VN (x).

III. ACCURACY OF GRAVITATIONAL POTENTIAL
ESTIMATION FOR SINGLE-LAYER OPTICAL

LATTICE CLOCK

In this section, we describe the evaluation of the symmetric
logarithmic derivative (SLD) Fisher information of the single-
layer optical lattice clock shown in Fig. 1. The formulation
of the quantum Fisher information and quantum Cramér-Rao
bounds are detailed in Appendix A. If the initial state of the
atomic clock is |ψ0〉 ≡ (|0〉 + |1〉)/

√
2, the density operator

ρ̂θ0 of the atomic clock after time τ is

ρ̂θ0 = e−iĤτ/h̄|ψ0〉〈ψ0|eiĤτ/h̄

= 1

2

{
I + exp

(
−i

�Eθ0

h̄
τ

)
|0〉〈1|

+ exp

(
i
�Eθ0

h̄
τ

)
|1〉〈0|

}
. (8)

The SLD L̂θ0 is defined as follows:

∂ρ̂θ0

∂θ0
= 1

2
(ρ̂θ0 L̂θ0 + L̂θ0 ρ̂θ0 ). (9)

The solution of Eq. (9) is expressed as

L̂θ0 = −i
�E

h̄
τ

{
exp

(
−i

�Eθ0

h̄
τ

)
|0〉〈1|

− exp

(
i
�Eθ0

h̄
τ

)
|1〉〈0|

}
. (10)

Thus, the SLD Fisher information is

S = tr
[
ρ̂θ0 L̂2

θ0

] =
(

�Eτ

h̄

)2

. (11)

Therefore, if the variance of the estimator θ est
0 of θ0 is Var[θ est

0 ]
and Nsite is the number of atomic clocks in the same layer, the
quantum Cramér-Rao bound gives

Var
[
θ est

0

]
� 1

NsiteS
= 1

Nsite

(
h̄

�Eτ

)2

. (12)

From the definition of θ0 in Eq. (7), we obtain

Var
[
V est

N

]
c4

� 1

Nsite

(
h̄

�Eτ

)2

, (13)

where V est
N denotes the estimator of gravitational potential

VN . This bound indicates that, in the absence of gravitational
dephasing, the accuracy of the estimation increases in time.
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FIG. 1. Diagram of the system considered in Sec. III. Nsite atomic clocks are captured on the plane of gravitational potential VN (blue plane).

The lower bound of Var[V est
N ]Nsite/c4 in Eq. (13) is plotted as

a function of �Eτ/h̄ in Fig. 2. This value has the same time
dependence as the square of the standard quantum limit

σ (τ, τavg) = 1

ω0τ

√
TC

τavg

√
ξ 2

W

Nsite
, ξ 2

W = 1 (14)

in the study by Pedrozo-Pẽnafiel et al. [5]; here, τ is the inter-
rogation time, TC is the clock cycle time, τavg is the averaging
time, Nsite is the number of independent samples, ω0 = �E/h̄
is the angular frequency of the clock transition, and ξ 2

W is the
Wineland parameter.

IV. ACCURACY OF GRAVITATIONAL POTENTIAL
ESTIMATION FOR Nlayer-LAYERED OPTICAL

LATTICE CLOCK

This section presents the calculation of the estimation
accuracy of the gravitational potential when an Nlayer-layer
optical lattice clock is used to estimate the gravitational poten-
tial. Specifically, after calculating the SLD Fisher information
of the atomic clock, which is indistinguishable from each
of the Nlayer-layers vertically aligned, we apply the quan-
tum Cramér-Rao bound, assuming that there are Nsite sets, to
evaluate the variance of the estimated gravitational potential
(see Fig. 3). This setup is based on the assumption that the
observer can only perform measurements on single atoms and
cannot distinguish the atoms being measured. The effective
density operator of the entire system can then be written as
the ensemble average of the density operators of the atomic
clocks. Upon further assuming that each layer has the same

FIG. 2. Lower bound of Var[V est
N ]Nsite/c4 in Eq. (13) plotted as a

function of �Eτ/h̄ in the single-layer scenario.

population of atoms, the single-atom density operator can be
obtained as

ρ̂θ0 = 1

2� + 1

�∑
j=−�

ρ̂ j, (15)

where ρ j is the density operator of an atom in the jth layer,
j is the label of a layer running from −� to �, and θ0 ≡
1 + V0/c2. Here, Nlayer = 2� + 1 denotes the total number of
layers. The density operator in Eq. (15) can be derived as
follows. Suppose that the observer performs the measurement
corresponding to the single-atom POVM (Ê (x)) but does not
distinguish which atom is measured. The probability of ob-
taining outcome x when the state is ρ̂ j is

P(x| j) = tr[ρ̂ j Ê (x)]. (16)

Because each ρ̂ j is measured with an equal probability
1/Nlayer, the probability of obtaining x is given by

P(x) =
�∑

j=−�

P(x| j) × 1

Nlayer
= tr[ρ̂θ0 Ê (x)]. (17)

Noting that the POVM Ê is arbitrary, we conclude that the
system state is effectively described by ρ̂θ0 .

We assume that the gravitational field is uniform, gravi-
tational acceleration is g, distance between layers is h, and
gravitational potential in the zeroth layer is V0. Then, on the
basis of Eq. (6), the gravitational potential and the Hamilto-
nian of the atomic clock in the jth layer can be written as

Vj = V0 + gjh (18)

and

Ĥj = �E

2

(
1 + V0

c2
+ gjh

c2

)
σ̂ z = �E

2
(θ0 + jα)σ̂ z, (19)

where α ≡ gh
c2 . If the initial state of each atomic clock is se-

lected to be the superposition state 1√
2
(|0〉 + |1〉), the density

operator ρ̂ j after time τ is given by

ρ̂ j = 1

2

[
I + exp

(
− i�Eτ

h̄
(θ0 + jα)

)
|0〉〈1|

+ exp

(
i�Eτ

h̄
(θ0 + jα)

)
|1〉〈0|

]
. (20)
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FIG. 3. Diagram of the system considered in Sec. IV. The Nsite atoms are captured on each layer and the layers are equally spaced in the
vertical direction from the −�th to �th layer. We assume a uniform gravitational field, and the gravitational acceleration is g and the layer
spacing is h. To consider the situation wherein the layers are indistinguishable, the density operator ρ̂θ0 for the entire system is the ensemble
average of the density operators for each atomic clock.

Therefore, on the basis of Eq. (15), we have

ρ̂θ0 = 1

2

⎡
⎣I + 1

2� + 1

l∑
j=−l

e−iA(θ0+ jα)|0〉〈1| + 1

2� + 1

l∑
j=−l

eiA(θ0+ jα)|1〉〈0|
⎤
⎦

= 1

2
I + 1

2� + 1

e−iAθ0

2

sin
[

Aα
2 (2� + 1)

]
sin
[

Aα
2

] |0〉〈1| + 1

2� + 1

eiAθ0

2

sin
[

Aα
2 (2� + 1)

]
sin
[

Aα
2

] |1〉〈0|, (21)

where A ≡ �Eτ
h̄ . Then, Eq. (21) can be diagonalized as

ρ̂θ0 = 1

2

[(
1 + 1

2� + 1

sin
[

Aα
2 (2� + 1)

]
sin
[

Aα
2

]
)

|ψ+〉〈ψ+| +
(

1 − 1

2� + 1

sin
[

Aα
2 (2� + 1)

]
sin
[

Aα
2

]
)

|ψ−〉〈ψ−|
]
, (22)

|ψ±〉 ≡ 1√
2

(|0〉 ± eiAθ0 |1〉). (23)

Next, we evaluate the SLD Fisher information with respect
to the parameter θ0. The SLD in this case is given by

L̂θ0 = iA

(
1

2�+1

sin
[
Aα
2 (2�+1)

]
sin
[

Aα
2

]
)

(|ψ+〉〈ψ−| − |ψ−〉〈ψ+|).
(24)

Therefore, the SLD Fisher information is as follows:

S = tr
[
ρ̂θ0 L̂2

θ0

] =
(

A

2� + 1

sin
[

Aα
2 (2� + 1)

]
sin
[

Aα
2

]
)2

. (25)

Thus, if the variance of an estimator θ est of θ0 is expressed as
Var[θ est

0 ] and the number of atomic clocks in the same layer is
Nsite, the quantum Cramér-Rao bound gives

Var
[
θ est

0

]
� 1

NsiteS
= 1

Nsite

(
2� + 1

A

sin
[

Aα
2

]
sin
[

Aα
2 (2� + 1)

]
)2

.

(26)

By putting A ≡ �Eτ/h̄, θ0 ≡ 1 + VN (x)/c2, and α ≡ gh/c2,
we obtain

Var
[
V est

0

]
c4

� 1

Nsite

(
h̄

�Eτ

)2
(

(2� + 1)
sin
[

�Egh
2h̄c2 τ

]
sin
[
�Egh
2h̄c2 (2� + 1)τ

]
)2

.

(27)

The lower bound of Var[V est
0 ]Nsite/c4 in Eq. (27) is plotted

as a function of �Eτ/h̄ in Fig. 4. Note that in the general
case where the distribution of the number of atoms pj is not
uniform, the density operator of the entire system ρ̂θ0 can be
written as

ρ̂θ0 =
�∑

j=−�

p j ρ̂ j,

�∑
j=−�

p j = 1. (28)

Therefore, in the general case, the lower bound of
Var[V est

0 ]Nsite/c4 is evaluated as

Var
[
V est

0

]
c4

� 1

Nsite

(
h̄

�Eτ

)2
(

1∑�
j=−� p j exp

(−i �Egjh
h̄c2 τ

)
)2

.

(29)
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FIG. 4. Blue curve is lower bound of Var[V est
0 ]Nsite/c4 in Eq. (27)

plotted as a function of �Eτ/h̄ in the Nlayer-layer scenario, where we
fixed 2� + 1 = 5. Orange curve is lower bound of Var[V est

N ]Nsite/c4 in
Eq. (13) plotted as a function of �Eτ/h̄ in the single-layer scenario,
i.e., standard quantum limit.

If p j is known, we can calculate the behavior of the lower
bound. However, if p j is indefinite, the estimation accuracy is
expected to deteriorate unless the distribution is very extreme
(e.g., almost all atoms are concentrated in one layer).

V. DISCUSSION

The implications of the lower bounds calculated as de-
scribed in Secs. III and IV are discussed in this section.
First, upon comparing Eqs. (13) and (27), the effect of
gravitational dephasing is indicated by the factor {(2� +
1)sin[�Egh

2h̄c2 τ ]/sin[�Egh
2h̄c2 (2� + 1)τ ]}2. Because of this factor,

the lower bound of Var[V est
0 ], and hence Var[V est

0 ] itself,
diverges at time

τdiv = k

2� + 1

2h̄c2

�Egh
π (30)

for integer k unless k/(2� + 1) is an integer. This divergence
is due to the progression of dephasing in the entire system,
which is caused by an increase in the phase difference between
the atomic clocks in each layer. The density operator of the
system at time τdiv is

ρ̂θ (τdiv) = 1
2 (|ψ+〉〈ψ+| + |ψ−〉〈ψ−|)

= 1
2 (|0〉〈0| + |1〉〈1|) (31)

and is in a completely mixed state. The recovery is due to fur-
ther time evolution after divergence, which produces a layer
wherein the phase difference is one lap behind. This resulted
in a timing in which the phase coincides with the other layers.

Let us next consider which is more advantageous in prac-
tical terms, the single-layer or the multilayer type. First of
all, theoretically, the single-layer type, which is not subject
to any effect of gravitational dephasing, is clearly more ad-
vantageous. However, it would be extremely difficult to make
a true single-layer optical lattice clock in the sense that all
the atoms could be placed on an equipotential surface. This is
because it is difficult to know the exact equipotential surface,
in addition to the fact that it may not be possible to trap

in the exact position due to optical lattice clock systematic
effects. In summary, single-layer optical lattice clocks are
free from gravitational dephasing effect and therefore theo-
retically advantageous, however they are very hard to realize
experimentally.

As indicated by Fig. 4, the lower bound of Var[V est
0 ] has

local minimum points owing to the balance between gravi-
tational dephasing and accuracy improvement over time; the
latter improvement is shown in the single-layer scenario in
Sec. III. The point at which τ is the smallest among these local
minimum points provides the principal limit of estimation
accuracy when attempting to avoid divergence within a short
period. To find the local minimum in an analytic manner, the
following approximation is applied: When 2� + 1 � 1 and τ

are within the range 0 < τ < 1
2�+1

2h̄c2

�Eghπ , we may approxi-

mate as sin[�Eghτ/(2h̄c2)] � �Eghτ/(2h̄c2); hence,

Var
[
V est

0

]
c4

� 1

Nsite

(
h̄

�Eτ

)2
(

(2� + 1)
sin
[

�Egh
2h̄c2 τ

]
sin
[

�Egh
2h̄c2 (2� + 1)τ

]
)2

� 1

Nsite

(
gh

2c2

)2
(

2� + 1

sin
[

�Egh
2h̄c2 (2� + 1)τ

]
)2

. (32)

Equation (32) yields a local minimum value in the range
τ > 0 at

τmin = 1

2� + 1

h̄c2

�Egh
π, (33)

and the lower bound of Var[V est
0 ]/c4 at τmin is

Var
[
V est

0

]
c4

� 1

Nsite

[
g(2� + 1)h

2c2

]2

. (34)

Therefore, when the number of layers in the optical lattice
clock is sufficiently large, the lower bound of standard de-
viation in principle, while seeking to avoid divergence, is

1√
Nsite

g(2�+1)h
2c2 . This can be interpreted from two perspectives.

First, it must be noted that (2� + 1)h is the height of the op-
tical lattice clock. In this case, g(2� + 1)h is the gravitational
potential difference �V between the top and bottom of the
optical lattice clock. Equation (34) implies that

σ
(
V est

0

)
c2

� 1√
Nsite

�V

2c2
, (35)

where σ (·) denotes standard deviation. The right-hand side of
Eq. (35) does not depend on the optical lattice clock details.
Second, it must be noted that 2� + 1 is the number of layers
of the optical lattice clock, Nlayer. In this case, the standard
deviation is

σ
(
V est

0

)
c2

� Nlayer√
Nsite

gh

2c2
. (36)

If the atoms are equally spaced horizontally and vertically,
Nlayer/

√
Nsite can be regarded as the aspect ratio of the optical

lattice clock. In particular, if the optical lattice clock has a
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TABLE I. Clock wavelength and magic wavelength of Sr [11],
Yb [12], Cd [10], Hg [13], and Mg [14] atoms. We calculated τmim

for each atom on the basis of these values.

Atom Sr Yb Cd Hg Mg

Clock wavelength (nm) 698 578 332 266 458
Magic wavelength (nm) 813 759 420 363 468
τmin(s) 1.3 × 105 1.2 × 105 1.2 × 105 1.1 × 105 1.5 × 105

shape with vertical and horizontal symmetry, such as a cube,
we have Nlayer/

√
Nsite = 1; therefore, the standard deviation

depends only on the interlayer distance h.
The estimation accuracy begins to deteriorate when the

interrogation time exceeds the time τmin = 1
2�+1

h̄c2

�Eghπ . We
now evaluate the specific value of τmin assuming a three-
dimensional optical lattice clock. First, we calculate for Cd
atoms. Because the wavelength is used as a clock for the
Cd atoms, λCd

clock = 332 nm [10], �E = 6.0 × 10−19 J. In the
optical lattice clock, atoms are captured in the antinode of the
standing wave created by the electromagnetic wave of the cor-
responding magic wavelength; therefore, the spacing between
each layer is approximately the magic wavelength of cadmium
λCd

magic = 420 nm [10] and h = 4.2 × 10−7 m. Assuming that
the number of atoms that can be captured in a cubic optical
lattice is 1 million, the number of atoms per side is 100, and
2� + 1 = 100. In this case, τmin is calculated as

τmin = 1.2 × 105 s

(
1.0 × 102

2� + 1

)(
6.0 × 10−19 J

�E

)

×
(

4.2 × 10−7 m

h

)
. (37)

This duration is approximately 33 h. Similarly, we calculated
τmin for other atoms (see Table I). The values are roughly the
same for all atoms, including Cd. It is extremely challenging
to observe the behavior of the limit with current technology
because τmin is much larger than the current coherence time
(26 s) as previously reported [3]. However, if an optical lat-
tice clock with a sufficiently large height (2� + 1)h can be
built, observations may be possible. Specifically, a height that
makes τmin about 26 s, i.e., about 20 cm, is needed.

VI. SUMMARY AND CONCLUSION

We evaluated the lower bounds of the variance of the
estimators of the gravitational potential using optical lattice
clocks based on the quantum Cramér-Rao bound. We then
compared the results for the single-layer and multilayer op-
tical lattice clocks. The results indicate that the lower bound
of variance of the estimator using finite-size optical lattice
clocks approaches zero with time in the single-layer scenario,
whereas it diverges and recovers repeatedly owing to the effect
of gravitational dephasing in the multilayer scenario. This
effect also produces a local minimum point, indicating that
there is a limit to the estimation accuracy because of the
effect of gravitational dephasing when attempting to avoid the
divergence of the lower bound. When the number of layers
in the optical lattice clock is sufficiently large, the standard

deviation of the estimate cannot be less than Nlayer√
Nsite

gh
2 . The in-

terrogation time τmin required to reach this limit is determined
to be 1

2�+1
h̄c2

�Eghπ . This standard deviation is independent of

the optical lattice clock details. When Nlayer and
√

Nsite are
comparable, the standard deviation is approximately equal to
the distance between the layers of the optical lattice clock. The
time τmin is calculated to be approximately 33 h for a three-
dimensional optical lattice clock consisting of one million Cd
atoms on the earth; the values are similar for other atoms.

In conclusion, there is certainly a limit to the lower bound
of the variance of the estimators of the gravitational poten-
tial (i.e., the accuracy of gravitational potential estimation)
using finite-size optical lattice clocks owing to gravitational
dephasing. The lower bound is Nlayer√

Nsite

gh
2 in standard deviation.

Although this is applicable to general optical lattice clocks,
it is extremely challenging to observe this limit, at least with
current technology. This is because τmin is much larger than
the current coherence time (26 s) as previously reported [3].
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APPENDIX A: CLASSICAL AND QUANTUM
ESTIMATION THEORY

In this Appendix, we briefly review the classical and quan-
tum estimation theories used in this study. For details, see
Refs. [15–19].

A (classical) statistical model herein refers to a
parametrized family (Pθ )θ∈� of probability distributions
(probability measures) on a fixed sample space � (equipped
with a σ - algebra �). For simplicity, we assume that the
parameter set � is a one-dimensional open or closed interval.
We also assume that Pθ can be written as dPθ = fθdμ for
some σ -finite measure μ and nonnegative density function
fθ . Our objective is to estimate the unknown parameter
θ ∈ � from the sample data ω ∈ � generated according
to the unknown probability distribution Pθ . The estimation
is described by a (measurable) map θ̂ : ω 	→ θ̂ (ω) ∈ �

called an estimator. Occasionally, an estimator θ̂ is required
to be unbiased, which implies that the expected value
Eθ [θ̂] := ∫

�
θ̂dPθ of the estimator coincides with the true

value θ for all θ ∈ �. A common quantitative measure of
the goodness of an estimator θ̂ is the mean square error
(MSE) Eθ [(θ̂ − θ )2], which coincides with the variance
Var[θ̂ ] = Eθ [(θ̂ − Eθ [θ̂])2] when θ̂ is unbiased.

Under some smoothness condition on the density function
fθ , we have the following (classical) Cramér-Rao bound (e.g.,
[15], Theorem 3.3):

Var[θ̂] � 1

I (θ )
, (A1)

where

I (θ ) := Eθ [(∂θ ln fθ )2] (A2)
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is called the (classical) Fisher information. The classical
CramérRao bound in Eq. (A1) indicates that the inverse of
the Fisher information provides a fundamental lower bound
for the mean square error irrespective of the choice of the
unbiased estimator. An estimator θ̂ that attains the equality of
the Cramér-Rao bound is said to be efficient. If the statistical
model is the product form (P×N

θ )θ∈�, which corresponds to
the independently and identically distributed (i.i.d.) N sam-
ples, the Fisher information becomes IN (θ ) = NI (θ ) and the
Cramér-Rao bound gives

Var[θ̂] � 1

NI (θ )
. (A3)

Here, P×N
θ denotes the product measure defined on the product

σ -algebra of the Cartesian product �N .
The assumption of unbiasedness or efficiency of the esti-

mator is sometimes too stringent. Occasionally, a statistical
model has no unbiased or efficient estimator. We will see in
Appendix B that the statistical model presented in Sec. III
contains no unbiased estimators. Nevertheless, we obtain a
general result ([15], Sec. 4.5.2) that an asymptotically efficient
estimator exists under certain regularity conditions.

The classical statistical model is generalized to a quan-
tum statistical model [17,18], which is a parametrized family
(ρθ )θ∈� of quantum states (density operators) in a fixed quan-
tum system described by a Hilbert space H. For simplicity,
we consider the case in which � is an interval and assume
the finite dimensionality of H and smoothness of θ 	→ ρθ .
As in the classical case, our objective in quantum estimation
theory is to infer the parameter θ ∈ � from measurement
data. Here appears a new problem that does not exist in the
classical setting: Because quantum theory prohibits us from
directly perceiving unknown quantum states, we must choose
an appropriate measurement to infer the parameter, which
is formally described by a positive operator-valued measure
(POVM).

By a POVM, we refer to a map M : � → L(H) defined
on a σ -algebra � on a set (sample space) � and taking
values in the set L(H) of bounded operators on H satisfy-
ing (i) M(A) � 0 (∀A ∈ �), (ii) M(∅) = 0, M(�) = I (the
identity operator on H), and (iii) M(

⋃
n An) = ∑

n M(An) for
any disjoint sequence (An) in �. For a POVM M and quan-
tum state ρ, the outcome probability measure PM

ρ : � → R is
defined as

PM
ρ (A) := tr[ρM(A)] (A ∈ �). (A4)

The probability measure PM
ρ describes the outcome distribu-

tion of the measurement corresponding to M when the state is
prepared in ρ.

For a quantum statistical model (ρθ )θ∈�, the POVM M :
� → L(H) induces a classical statistical model (PM

ρθ
)θ∈� and

the classical Cramér-Rao bound in this statistical model gives

Var[θ̂ ] � 1

IM(θ )
, (A5)

where θ̂ is an unbiased estimator of θ and IM(θ ) denotes
the classical Fisher information of (PM

ρθ
)θ∈� which explicitly

depends on the measurement M.

The quantum Cramér-Rao bound [17,18] states that an M-
independent quantum version of the Fisher information IQ, or
a quantum Fisher information, gives an upper bound of the
M-dependent classical Fisher information:

IM(θ ) � IQ(θ ). (A6)

From Eqs. (A5) and (A6), we obtain an M-independent bound
of the MSE of the estimator,

Var[θ̂ ] � 1

IQ(θ )
. (A7)

There is an infinite amount of quantum Fisher information
that generalizes the classical Fisher information [20], which
originates from the noncommutativity of quantum theory.
One common choice is the symmetric logarithmic derivative
(SLD) Fisher information defined as

S = tr
[
ρθL2

θ

]
, (A8)

where Lθ is an Hermitian operator called the SLD and is
defined as the solution of the following equation:

∂θρθ = 1
2 (ρθLθ + Lθρθ ). (A9)

If ρθ has the spectral decomposition

ρθ =
∑

j

p j | j〉 〈 j| , (A10)

then SLD Lθ has an explicit expression

Lθ =
∑

j,k:p j+pk>0

2 〈 j| ∂θρθ |k〉
p j + pk

| j〉 〈k| . (A11)

[The matrix element 〈 j| Lθ |k〉 with p j = pk = 0 cannot be
determined uniquely from Eq. (A9); however, it can be shown
that such arbitrariness does not affect the value of the SLD
Fisher information.] It is known that the SLD Fisher infor-
mation is the minimal quantum Fisher information and hence
gives the tightest upper bound in the quantum Cramér-Rao
bound in Eq. (A6); therefore, we consider this quantity in the
main section.

APPENDIX B: AN EXAMPLE OF POVM THAT ENABLES
EFFICIENT ESTIMATION OF GRAVITATIONAL

POTENTIAL IN SEC. III

In this Appendix, we provide an explicit example of a
POVM that achieves the equality in Eq. (13): We define a
POVM M on the Borel σ -algebra B([0, 2π )) of the interval
[0, 2π ) as

dM(φ) := |ψφ〉〈ψφ|dφ

π
, (B1)

|ψφ〉 = 1√
2

(|0〉 + eiφ |1〉), (B2)

where dφ denotes the Lebesgue measure. The measure-
ment corresponding to M is realized as follows. First, we
randomly generate φ′ ∈ [0, π ) according to the uniform dis-
tribution 1

π
dφ′. We then perform the projective measurement

(|ψφ′ 〉〈ψφ′ |, |ψφ′+π 〉〈ψφ′+π |), and record φ = φ′ (respectively,
φ = φ′ + π ) when the outcome of the projective measurement
is |ψφ′ 〉 (respectively, |ψφ′+π 〉).
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The probability density function fθ0 (φ) when the state is
prepared in ρ̂θ0 , described in Sec. III, is expressed as

fθ0 (φ)dφ = tr[ρ̂θ0 dM(φ)]

= dφ

2π

[
1 + cos

(
�Eτ

h̄
θ0 − φ

)]
(B3)

or

fθ0 (φ) = 1

2π

[
1 + cos

(
�Eτ

h̄
θ0 − φ

)]
. (B4)

Thus, the classical Fisher information is evaluated as

I (θ0) =
∫ 2π

0
[∂θ0 ln fθ0 (φ)]2 fθ0 (φ)dφ

=
(

�Eτ

h̄

)2

. (B5)

This is equal to the lower bounds in Eq. (12); therefore,
there are some efficient estimators when the POVM is used
in Eq. (B1).

The classical statistical model associated with the POVM
M has no unbiased estimator of θ0 and, hence, of the potential
VN (x). More generally, we can prove that an unbiased estima-
tor does not exist for any choice of measurement POVM, as
in the following proposition:

Proposition 1. Let (σθ )θ∈� be a quantum statistical model
defined by

� = (α, β ) (−∞ < α < β < ∞), (B6)

σθ := |ψθ 〉〈ψθ |, (B7)

where |ψθ 〉 is given by Eq. (B2). Then, for any POVM N, the
associated classical statistical model (PN

σθ
)θ∈� has no unbiased

estimator for θ ∈ �.
The proof is provided in the final part of the Appendix.
As we may write ρ̂θ0 = σ�Eτθ0

h̄
, Proposition 1 implies that

there is no unbiased estimator for θ0.

The classical statistical model (PM
ρ̂θ0

) contains an unbiased

estimator T̂ : φ 	→ 2eiφ of ei �Eτ
h̄ θ0 . In fact, the expectation

value of T̂ is

Eθ0 [T̂ ] =
∫ 2π

0
2eiφ fθ0 (φ)dφ

=
∫ 2π

0
2eiφ

[
1 + cos

(
�Eτ

h̄
θ0 − φ

)]
dφ

2π

= ei �Eτ
h̄ θ0 , (B8)

which shows the unbiasedness of T̂ .
Proof of Proposition 1. Let (�,�) be the outcome sample

space (measurable space) of the POVM N and assume the ex-
istence of an unbiased estimator θ̂ : � → R for the classical
statistical model (PN

σθ
)θ∈�. Then, the unbiasedness implies that∫

�

θ̂dPN
σθ

= θ [∀θ ∈ (α, β )]. (B9)

We consider three fixed elements θ1, θ2, θ3 ∈ (α, β ) with
eiθ1 �= eiθ2 �= eiθ3 �= eiθ1 . As σθ is written as

σθ = 1
2 [I + eiθ |1〉〈0| + e−iθ |0〉〈1|], (B10)

we obtain the following linear equation:

⎛
⎝eiθ1σθ1

eiθ2σθ2

eiθ3σθ3

⎞
⎠ =

⎛
⎝1 eiθ1 e2iθ1

1 eiθ2 e2iθ2

1 eiθ3 e2iθ3

⎞
⎠
⎛
⎜⎝

1
2 |0〉〈1|

1
2I

1
2 |1〉〈0|

⎞
⎟⎠. (B11)

As the 3 × 3 matrix on the right-hand side of Eq. (B11) is
invertible (Vandermonde matrix), we may write

1
2I = a1σθ1 + a2σθ2 + a3σθ3 , (B12)

1
2 |1〉〈0| = b1σθ1 + b2σθ2 + b3σθ3 , (B13)

1
2 |0〉〈1| = c1σθ1 + c2σθ2 + c3σθ3 (B14)

for some scalars a1, a2, a3, b1, b2, b3, c1, c2, and c3 that de-
pend only on θ1, θ2, and θ3. Then, using the linearity of
L(H) � ρ 	→ PN

ρ , where PN
ρ for a general operator ρ is a com-

plex measure, Eqs. (B9) and (B12)–(B14) imply that complex
measures PN

1
2 I

, PN
1
2 |1〉〈0|, PN

1
2 |0〉〈1| are written as linear combina-

tions of the measures PN
σθ1

, PN
σθ2

, and PN
σθ3

. As the estimator

θ̂ is integrable with respect to PN
σθ1

, PN
σθ2

, and PN
σθ3

, so it is

with respect to the complex measures PN
1
2 I

, PN
1
2 |1〉〈0|, and PN

1
2 |0〉〈1|.

Thus, ∫
�

θ̂dPN
1
2 I

= a1θ1 + a2θ2 + a3θ3 =: A, (B15)

∫
�

θ̂dPN
1
2 |1〉〈0| = b1θ1 + b2θ2 + b3θ3 =: B, (B16)

∫
�

θ̂dPN
1
2 |0〉〈1| = c1θ1 + c2θ2 + c3θ3 =: C. (B17)

are well defined. Therefore, based on Eqs. (B9) and (B10), we
obtain

θ =
∫

�

θ̂dPN
1
2 I+ eiθ

2 |1〉〈0|+ e−iθ
2 |0〉〈1|

= A + Beiθ + Ce−iθ (B18)

for all θ ∈ (α, β ). The right-hand side of Eq. (B18) is an entire
function of θ and has the following Taylor expansion:

A + B + C + iθ (B − C) + (iθ )2

2!
(B + C)

+ (iθ )3

3!
(B − C) + · · · . (B19)
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By comparing the first- and third-order terms of θ we obtain

1 = i(B − C), 0 = B − C, (B20)

which is a contradiction. Therefore, (PN
σθ

)θ∈� has no unbiased
estimator for θ .

APPENDIX C: ALLAN DEVIATION

In this Appendix, we estimate the Allan deviation of the
lattice clocks considered in Secs. III and IV. The Allan devi-
ation is used as an indicator of the frequency stability. For an
atomic clock operated at the quantum projection noise (QPN)
limit, the Allan deviation is given by [21–23]

σy ≈ 1

Q

√
TC

τavg

√
1

Nat
, (C1)

where Q = ω/�ω is the quality factor, ω is the clock tran-
sition frequency, �ω is the full width at half-maximum
(FWHM) of the resonance, TC is a clock cycle time, τavg is the
averaging time, and Nat is the number of atoms measured in a
clock cycle time. τavgNat/TC represents the sample size. Given
that �ω ≈ √

Var[ωest], the Allan deviation can be estimated
by evaluating the lower bound of

√
Var[ωest] with the quantum

Cramér-Rao bound.

1. Allan deviation of single-layer optical lattice clock

From Eq. (8), the density operator of the system is

ρ̂ω = e−iĤτ/h̄|ψ0〉〈ψ0|eiĤτ/h̄

= 1
2 {I + exp (−iωθ0τ )|0〉〈1| + exp (iωθ0τ )|1〉〈0|},

(C2)

where ω = �E/h̄. The parameter we want to estimate is ω.
Since ω and θ0 are symmetric, the SLD Fisher information
can be obtained by the same calculation as Sec. III:

S = (θ0τ )2. (C3)

Thus, the quantum Cramér-Rao bound gives

Var[ωest] � 1

S
=
(

1

θ0τ

)2

. (C4)

Here, the quantum Cramér-Rao bound is simply Var[ωest] �
1/S, as the sample size is already included in Eq. (C1). There-
fore, the Allan deviation is

σy ≈ 1

ωθ0τ

√
TC

τavg

√
1

Nat
= 1

ω
(
1 + VN

c2

)
τ

√
TC

τavg

√
1

Nsite
. (C5)

The factor 1 + VN/c2 reflects that the Q value varies as the
clock transition frequency ω is shifted by gravitational red-
shift. This is consistent with Eq. (14) if VN = 0.

2. Allan deviation of multilayer optical lattice clock

We now consider the multilayer case in Sec. IV. From Eq. (22), the density operator of the system is

ρ̂ω = 1

2

[(
1 + 1

2� + 1

sin
[

αωτ
2 (2� + 1)

]
sin
[

αωτ
2

]
)

|ψ+〉〈ψ+| +
(

1 − 1

2� + 1

sin
[

αωτ
2 (2� + 1)

]
sin
[

αωτ
2

]
)

|ψ−〉〈ψ−|
]
, (C6)

|ψ±〉 ≡ 1√
2

(|0〉 ± eiωτθ0 |1〉). (C7)

The SLD L̂ω satisfying ∂ωρ̂ω = (ρ̂ωL̂ω + L̂ωρ̂ω )/2 is given by

L̂ω = 1

2� + 1

(
1

c+
�[B]|ψ+〉〈ψ+| + i�[B]|ψ+〉〈ψ−| − i�[B]|ψ−〉〈ψ+| − 1

c−
�[B]|ψ−〉〈ψ−|

)
, (C8)

where

c± ≡ 1 ± 1

2� + 1

sin
[

αωτ
2 (2� + 1)

]
sin
[

αωτ
2

] , (C9)

B ≡ ατ

2 sin2[ αωτ
2 ]

[� sin{αωτ (� + 1)} + (� + 1) sin(αωτ�)] + iτθ0
sin
[

αωτ
2 (2� + 1)

]
sin
[

αωτ
2

] . (C10)

Thus, we have

S = tr
[
ρ̂ωL̂2

ω

]
= 1

2(2� + 1)2

[(
1

c+
+ 1

c−

)
�2[B] + 2�2[B]

]

= τ 2

⎡
⎢⎣α2[� sin{αωτ (� + 1)} + (� + 1) sin(αωτ�)]2

4(2� + 1)2 sin4[ αωτ
2 ]
{

1 − sin2 [ αωτ
2 (2�+1)]

(2�+1)2 sin2 [ αωτ
2 ]

} + θ2
0

sin2
[

αωτ
2 (2� + 1)

]
(2� + 1)2 sin2

[
αωτ

2

]
⎤
⎥⎦, (C11)
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and the quantum Cramér-Rao bound gives

Var[ωest] � 1

S
= 1

τ 2

⎡
⎢⎣α2[� sin{αωτ (� + 1)} + (� + 1) sin(αωτ�)]2

4(2� + 1)2 sin4
[

αωτ
2

]{
1 − sin2 [ αωτ

2 (2�+1)]
(2�+1)2 sin2 [ αωτ

2 ]

} + θ2
0

sin2
[

αωτ
2 (2� + 1)

]
(2� + 1)2 sin2

[
αωτ

2

]
⎤
⎥⎦

−1

. (C12)

Therefore, the Allan deviation is

σy ≈ 1

ωτ

√
TC

τavg

√
1

Nsite

⎡
⎢⎣α2[� sin{αωτ (� + 1)} + (� + 1) sin(αωτ�)]2

4(2� + 1)2 sin4
[

αωτ
2

]{
1 − sin2 [ αωτ

2 (2�+1)]
(2�+1)2 sin2 [ αωτ

2 ]

} + θ2
0

sin2
[

αωτ
2 (2� + 1)

]
(2� + 1)2 sin2

[
αωτ

2

]
⎤
⎥⎦

− 1
2

. (C13)

If αωτ = ghωτ/c2 � 1, θ0 = 1, we can approximate as

σy ≈ 1

ωτ

√
TC

τavg

√
1

Nsite

[
1 + 1

6

g2h2

c4
�(� + 1)(ω2τ 2 − 1)

]
. (C14)

This means that if ghωτ/c2 is sufficiently small, the effect of gravitational dephasing on frequency stability is for a factor
1/6(g2h2/c4)�(� + 1)(ω2τ 2 − 1). Setting τ = 26 s and other conditions the same as when we calculated Eq. (37), the magnitude
of this factor is

1

6

g2h2

c4
�(� + 1)(ω2τ 2 − 1) = 1.9 × 10−8. (C15)

From this result, if the Allan deviation reaches 10−18 without considering gravitational dephasing and the interrogation time is
26 s, then the effect of gravitational dephasing on the Allan deviation is estimated to be about 10−26. The effect of blackbody
radiation, which is considered to have a large contribution among the systematic effects, on frequency stability is about 10−19

[24], so observing the effect of gravitational dephasing without improving the interrogation time is extremely challenging.
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