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Interference from interband harmonics generated by different crystal momentum channels
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We theoretically investigate the high-order harmonic generation (HHG) of zinc oxide (ZnO) induced by
linearly polarized laser pulses. It is found that the harmonic spectrum exhibits fine subpeak structures, which
is related to the interband polarization arising from electron-hole interactions. Further numerical analyses show
that the subpeak structures originate from the interference between the interband harmonics, which are generated
by different crystal momentum channels around the top of the valence band. Additionally, we extend our
inquiry to solid HHG driven by a two-color laser field. Intriguingly, our findings indicate a notable suppression
of harmonic subpeak structures in this context. To gain insight into the governing physical mechanisms, we
illustrate the time-dependent population in the conduction band. Our analysis underscores a phenomenon of
electron preacceleration before ionization. Consequently, the crystal momentum channels around the top of the
valence band exhibit diminished contributions to HHG, leading to the effective suppression of harmonic subpeak
structures. Our results may provide insights into the underlying mechanisms of solid HHG.
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I. INTRODUCTION

Over the preceding decades, extensive research efforts have
been dedicated to the exploration of high-order harmonic
generation (HHG) in atomic and molecular systems [1–6], a
phenomenon often elucidated through the semiclassical three-
step model [7]. Compared with the gas phase, the solids have
distinct characteristics, including natural crystal orientation,
high electron density, and periodic structure, which make the
harmonic emission process of solid materials attract much
attention [8–14]. The solid HHG originates from two main
mechanisms, intra- and interband currents [15], i.e., the elec-
trons are initially excited from the valence band (V-B) to the
conduction band (C-B) driven by the intense laser field, and
then the electrons or holes are accelerated under the laser
field. Finally, the recombination of electrons with holes leads
to the emission of harmonic photons. For solid systems, it
has been proved that the HHG is sensitive to the waveform
of the two-color laser field [16–19]. The two-color laser field
contains many more control parameters than a monochromatic
laser field, which can help to achieve the spectral modulations
by controlling the laser parameters.

HHG in solids holds substantial implications across a
diverse array of applications, such as reconstructing band
structures [20–22], measuring the Berry curvature [23,24],
and controlling ultrafast electron dynamics [16,25,26]. Lang
et al . [27] theoretically revealed that the previously gener-
ated high harmonics can participate in the latter nonlinear
dynamics, which led to the nonlinear gain and cutoff extension
of harmonics. Recently, by resolving the oscillation phase of
harmonics as a function of crystal, the HHG of MgO has been
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successfully used to probe the light-induced modification of
the band structure in experiments [28].

Interferences during the HHG processes have been in-
vestigated theoretically and experimentally [29–37]. The
interference effect between intra- and interband currents in
HHG of ZnO crystal has been demonstrated. It is found
that the constructive and destructive interferences between
intra- and interband currents cause the harmonic spectra to
split into some fine subpeak structures [33]. Furthermore,
quantum interference, manifested as an outcome of short and
long electron trajectories, has been elucidated as a cause
of spectral splitting in solid-state HHG under the influence
of intense laser fields [34]. The interference between har-
monics generated by different crystal momentum channels
can also modulate the harmonic spectrum. For instance, the
suppression of even-order harmonics has been attributed to
destructive interference arising from a set of symmetrical
crystal momentum channels [35,36].

Recent investigations have underscored the significance
of comprehending crystal-momentum-resolved contributions
in solid HHG [35–39]. Given the direct correlation between
crystal momentum channels and the underlying crystal struc-
ture, it is expected that the solid HHG can be used to detect
the physical properties of materials. This is accomplished
by independently considering contributions from various ini-
tial crystal momenta [38]. Lü et al. [37] investigated the
crystal-momentum-resolved intraband harmonics by using the
preexcitation pulse. They found an abnormal dependence of
intraband HHG yield on the laser intensity, which is due to
the coherence of harmonics emitted from different electrons.
Additionally, the electrons ionized far from the top of V-B
have been demonstrated to be responsible for the multiple
plateaus of HHG [39].

In this paper, we investigate the HHG of ZnO by solv-
ing the semiconductor Bloch equations (SBEs). By analyzing
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the crystal-momentum-resolved interband harmonics, we find
that the interference between harmonics of different crystal
momentum channels induces the harmonic subpeak struc-
tures. When we use an appropriate two-color laser field, the
harmonic subpeak structures are suppressed. Further analyses
demonstrate that the preacceleration processes occur before
the electrons are ionized by illustrating the time-dependent
population in the C-B. This paper is organized as follows.
In Sec. II, we mainly introduce the theoretical approach. In
Sec. III, we present the numerical simulation results and dis-
cussions in detail. Conclusions are given in Sec. IV.

II. THEORETICAL METHODS

In this paper, we investigate the interaction of intense
lasers with the two-band ZnO crystal by the solution of
the one-dimensional semiconductor Bloch equations (SBEs)
[12,15,35,40], which can be expressed by (unless specified,
we use atomic units throughout)

ṅm = i
∑
m �=m′

�mm′πmm′eiSmm′ + c.c., (1)

π̇mm′ = − πmm′

T2
+ i�∗

mm′ (nm − nm′ )e−iSmm′

+ i
∑

m′′ /∈{m,m′}
(�m′m′′πmm′′eiSm′m′′ − �∗

mm′′π
∗
m′m′′e−iSmm′′ ),

(2)

where nm(K, t ) is the population of band m. m = v stands for
the V-B and m = c stands for the C-B. Initially all electrons
are in the V-B. According to the Bloch acceleration theorem
[41], the initial crystal momentum k can be transformed to
a moving momentum frame by K = k − A(t ), where A(t )
is the vector potential of the electric field. As a result, the
first Brillouin zone (BZ) is also shifted to BZ = BZ − A(t ).
πmm′ (K, t ) is the polarization strength between the V-B and C-
B. �mm′ (K, t ) = E(t ) · dmm′ [K + A(t )] is the Rabi frequency.
dmm′ [K + A(t )] is the crystal-momentum-dependent transi-
tion dipole moment. Smm′ (K, t ) = ∫ t

−∞ εmm′ [K + A(t ′)]dt ′ is
the classical action with band energy difference εmm′ = Em −
Em′ . We set T2 = 2.75 fs to depict the dephasing process
between two bands in the solid HHG.

The intraband current jra(t ) and interband current jer (t ) can
be written as [18,38,39]

jra(t ) =
∑

m

∫
BZ

vm[K + A(t )]nm(K, t )dK, (3)

jer (t ) = d

dt

∑
m �=m′

∫
BZ

[
dmm′πmm′ (K, t )eiSmm′ + c.c.

]
dK, (4)

where vm(k) = ∇kEm(k) and Em(k) are the band velocity and
band dispersion, respectively.

The total harmonic spectrum is proportional to the abso-
lute square of the Fourier transform of laser-induced current
[15,35,40]

Stotal(ω) = ω2

∣∣∣∣
∫

[jra(t ) + jer (t )]e−iωt dt

∣∣∣∣
2

. (5)

The intraband and interband contributions to the harmonic
spectrum can be written as

Sra(ω) = ω2

∣∣∣∣
∫

jra(t )e−iωt dt

∣∣∣∣
2

, (6)

Ser (ω) = ω2

∣∣∣∣
∫

jer (t )e−iωt dt

∣∣∣∣
2

. (7)

In our simulation, the laser field can be written as

E (t ) = f (t )[E0 cos (ω0t ) + E1 cos (3ω0t + φ)], (8)

where f (t ) = exp[−2 ln(2)t2/τ 2] is a Gaussian-type enve-
lope with the full width at half maximum (FWHM) τ = 6
o.c. (optical cycle). E0 = 0.0046 a.u. is the amplitude of the
fundamental field, and ω0 = 0.021 a.u. is the corresponding
frequency of the laser field. In the following, E1 = 0 for the
one-color laser field. For the two-color laser field, the field
ratio E1/E0 = 0.4 and the relative phase φ = π .

III. RESULTS AND DISCUSSION

A. Harmonic subpeak structures caused by interference effect

Figure 1(a) depicts the HHG spectra induced by the one-
color linearly polarized laser field, where the peak of the
electric field is E0 = 0.0046 a.u., and the laser frequency
is ω0 = 0.021 a.u.. The FWHM is τ = 6 o.c., and the total
duration of the laser pulse is 25 o.c. in our simulations. From
Fig. 1(a), one can see that the spectrum integrated over the
first BZ (represented by the red solid line) exclusively exhibits
odd-order harmonics due to the inversion symmetry about the
� point [35]. We also find that the harmonic spectrum appears
in some subpeak structures around the plateau region. These
subpeak structures, akin to those observed in high harmonic
generation from bulk sapphire in experimental studies [34],
are interpreted as a manifestation of interference effects. Con-
sequently, it is plausible to attribute the subpeak structures
observed in Fig. 1(a) to interference effects. In particular, the
electron has the highest excitation probability for the C-B
at the � point (k0 channel), due to the minimum band gap.
As a result, we further analyze the harmonic spectrum while
considering only the k0 channel as indicated by the blue
dotted-dashed line in Fig. 1(a), which exclusively exhibits
odd-order harmonics without subpeak structure.

To elucidate the nature of these subpeak structures,
Fig. 1(b) presents harmonic spectra in the vicinity of the
13th order. We can see that the intraband harmonic spectrum
displays an ordinary structure, while the interband and total
harmonic spectra display fine peaks. The interband harmonic
yield (yellow dotted line) coincides exactly with the total har-
monic yield (red solid line), which justifies that the subpeaks
in Fig. 1(a) come from the interband harmonic contribution.
Our results differ from the case that the intra- and interband
interferences make the harmonic split into several subpeaks,
as demonstrated in Ref. [33]. In Ref. [33], the intra- and
interband harmonic intensities are comparable. Thus, their in-
terferences will noticeably affect the total harmonic spectrum
and create the subpeak structures. In Fig. 1(b), however, we
can see that the interband harmonic intensity surpasses that of
the intraband harmonic by two to three orders of magnitude,
rendering the interference effect between intra- and interband

063106-2



INTERFERENCE FROM INTERBAND HARMONICS … PHYSICAL REVIEW A 108, 063106 (2023)

FIG. 1. (a) The total HHG spectra integrated over the first BZ (red solid line) and generated by the k0 channel (blue dotted-dashed line). The
vertical gray dashed line represents the harmonic order corresponding to the minimum energy band gap (εg = 3.3 eV). (b) Harmonic spectra
from intraband (black dashed line), interband (yellow dotted line), and total (red solid line) currents. (c) and (d) Time-frequency analysis of
intraband and interband HHG, respectively. The white dashed lines in (d) represent the positions of the 7th and 13th order.

currents negligible. It is expected that a different mechanism
of harmonic radiation may be responsible for these subpeak
structures.

Figures 1(c) and 1(d) illustrate the time-frequency spec-
tra corresponding to intra- and interband HHG, respectively.
From Fig. 1(c), the time-frequency distribution of the intra-
band harmonic spectrum displays an ordinary structure. From
Fig. 1(d), we can see that some unusual minima peaks show up
from the 7th to the 13th order harmonic, which demonstrates
that the interband harmonic contributes to the harmonic sub-
peak structures [see Fig. 1(a)]. Similar structures have been
shown in the wavelet time-frequency spectrum of hydrogen
molecular ions [32]. They found that these fine structures are
due to the interference in cycles of the multiphoton radiation.
Thus, the underlying mechanisms for these subpeak structures
are still desired.

The SBEs in the Houston representation are uncoupled for
different initial crystal momentum k and can be independently
solved for each k [35]. Thus, we used 401 equally spaced k
points to sample the first BZ [−π

a , π
a ] for SBE simulations,

where a = 5.32 is the lattice constant. In the following, we set
ki (i = −200,−199, . . . , 200) as a specific crystal momen-
tum channel of each k point for the first BZ. The intra- and
interband currents for each initial crystal momentum k can be
written as [18,38]

jk
ra(t ) =

∑
m

vm[K + A(t )]nm(K, t ), (9)

jk
er (t ) = d

dt

∑
m �=m′

dmm′πmm′ (K, t )eiSmm′ + c.c. (10)

According to the semiclassical acceleration theorem, the in-
stantaneous crystal momentum K of an electron is k − A(t ),
with the initial crystal momentum k and the vector potential
A(t ). Consequently, the initial crystal momentum has been
transformed into a frame moving with the vector potential
[12,15,35,40], i.e., K = k − A(t ). This transformation also
causes a shift of the first BZ to BZ = BZ − A(t ). The integra-
tion over the first BZ results in the total intra- and interband
currents as illustrated in Eqs. (3) and (4), respectively.

To investigate the contributions to HHG from electrons
with different initial crystal momenta, we depict the intra- and
interband harmonic spectra as a function of the initial crystal
momentum in Fig. 2, which are obtained from the Fourier
transform of Eqs. (9) and (10). It is observed that the harmonic
spectra of the � (k0) channel and the boundary of the first BZ

FIG. 2. (a) k-resolved intraband harmonic spectrum. (b) k-
resolved interband harmonic spectrum. The vertical white dashed
lines represent the momenta corresponding to the values of the max-
imum vector potential ±Amax(t ) = ±0.22 a.u..
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FIG. 3. (a1) Interband harmonic spectra corresponding to k−5 (red solid line) and k5 (cyan dashed line) channels. (a2) Total interband
harmonic spectrum of two symmetric channels k±5. (a3) Interband harmonic spectrum generated by the sum of all channels in the extended
region i ∈ (−5, 5). (b1)–(b3) The same as (a1)–(a3) but for k−30, k30, k±30, and i ∈ (−30, 30). (c1)–(c3) The same as (a1)–(a3) but for k−75,
k75, k±75, and i ∈ (−75, 75).

(k±200) exclusively consist of odd-order harmonics. Besides,
both even- and odd-order harmonics will be exhibited for
each ki channel [35,38]. In Fig. 2(b), the interband harmonic
radiation is limited by the maximum laser vector potential
±Amax(t ) [indicated by the two vertical white dashed lines].
The V-shaped cutoff position of interband HHG for each ki

channel is limited by the band gap [38].
By comparing Figs. 2(a) and 2(b), one can see that

the intraband harmonics dominate the HHG at harmonic
photon energies below the band gap (εg ≈ 6ω0). This obser-
vation demonstrates that the harmonic subpeak structures in
Fig. 1(a), ranging from the 7th to the 13th order, are primar-
ily from the interband harmonics. In Fig. 2(b), it is notable
that the crystal momenta around the k0 channel significantly
contribute to the 7th–13th order harmonics. However, for har-
monics above the 13th order, the crystal momenta around the
k0 channels have little contribution to the interband HHG. The
corresponding spectrum of harmonics above the 13th order in
Fig. 1(a) only exhibits odd-order harmonics without subpeak
structure. Thus, the subpeak structures may originate from the
interband harmonics generated by the crystal momenta around
the k0 channel.

Figure 3(a1) shows the harmonic spectrum generated by
the individual channel k−5(k5). We can see that the har-
monic spectrum exhibits both even- and odd-order harmonics.
Figure 3(a2) shows the harmonic spectrum generated by
two symmetric channels k±5. The harmonic spectrum is
dominated by odd-order harmonics. Thus, the interferences
between harmonics generated by different k channels play
a key role in spectral structures, as previously demonstrated
in Ref. [35]. In Fig. 3(a3), we show the harmonic generated

by the sum of all crystal momentum channels ki in the ex-
tended region i ∈ (−5, 5), i.e., replacing the integral in Eq. (4)∫

BZ dK → ∫
(k−5,k5 ) dK [39]. We can see only odd-order har-

monics without subpeak structure in the harmonic spectrum.
Figures 3(b1) and 3(c1) show the harmonic spectra

generated by individual channels k−30(k30) and k−75(k75),
respectively. The harmonic spectra exhibit both even- and
odd-order harmonics, which is similar to the case as show
in Fig. 3(a1). Figures 3(b2) and 3(c2) display the harmonic
spectra generated by two symmetric channels k±30 and k±75,
respectively. The harmonic spectra only exhibit odd-order har-
monics, which is similar to the case as shown in Fig. 3(a2).
Figures 3(b3) and 3(c3) present the harmonic spectra gener-
ated by the sum of all crystal momentum channels ki in the
extended regions i ∈ (−30, 30) and i ∈ (−75, 75). We can see
that as the number of selected channels increases, the sub-
peak structures of the 7th to 13th harmonic appear. Referring
back to Fig. 2(b), it is established that harmonic radiation is
bounded by the maximum vector potential ±Amax(t ), which
corresponds to the region i ∈ (−75, 75). Thus, the harmonic
spectrum presented in Fig. 3(c3) coincides with the harmonic
spectrum generated by all ki channels in the first BZ, as
demonstrated in Fig. 1(a).

The qth harmonic intensity is determined by the coherent
superposition of two harmonic fields Sk1

q and Sk2
q , generated by

crystal momentum channels k1 and k2. Thus, the qth harmonic
intensity can be written as [35]

Sq = ∣∣Sk1
q + Sk2

q

∣∣2

= ∣∣Sk1
q

∣∣2 + ∣∣Sk2
q

∣∣2 + 2
√∣∣Sk1

q

∣∣2∣∣Sk2
q

∣∣2
cos	ϕq, (11)
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FIG. 4. (a1)–(a3) The interband harmonic spectra of 10th–16th order generated by the sum of all channels ki in the extended regions
i ∈ (−5, 5), i ∈ (−30, 30) and i ∈ (−75, 75), respectively. (b1)–(b3) The corresponding harmonic phase difference of symmetric crystal
momentum channels.

where 	ϕq = ϕk1
q − ϕk2

q is the phase difference of harmonic
fields Sk1

q and Sk2
q . For the case of harmonic spectrum gener-

ated by the sum of all crystal momentum channels ki in the
extended region i ∈ (−m, m), we can rewrite Eq. (11) in the
form

S′
q = ∣∣Sk(−m,0)

q + Sk(0,m)
q

∣∣2

= ∣∣Sk(−m,0)
q

∣∣2 + ∣∣Sk(0,m)
q

∣∣2 + 2
√∣∣Sk(−m,0)

q

∣∣2∣∣Sk(0,m)
q

∣∣2
cos	ϕ′

q,

(12)

where |Sk(−m,0)
q |2 represents the harmonic calculated by the

sum of the currents from the k−m−1 channel to the k−1 chan-
nel and |Sk(0,m)

q |2 represents the harmonic calculated by the
sum of the currents from the k1 channel to the km−1 chan-

nel. 2
√

|Sk(−m,0)
q |2|Sk(0,m)

q |2cos(	ϕ′
q) represents the interference

term of harmonics generated by a set of symmetric crystal
momentum channels. 	ϕ′

q = ϕk(−m,0) − ϕk(0,m) is the phase

difference of the harmonic fields Sk(−m,0)
q and Sk(0,m)

q .
To illustrate the original subpeak structures of the har-

monics, Figs. 4(a1)–4(a3) show the partial enlargement of
Figs. 3(a3)–3(c3), i.e., the harmonic spectra from 10th to 16th
order. Figures 4(b1)–4(b3) show the corresponding harmonic
phase differences. For the harmonic spectrum generated by
the sum of all crystal momentum channels ki in the extended
region i ∈ (−5, 5) [see Figs. 4(a1) and 4(b1)], we can see
that the harmonic phase difference 	ϕ′ = ϕk(−5,0) − ϕk(0,5) = 0
for the odd-order harmonics, and then the cos	ϕ′ = 1. Thus,
the odd-order harmonics generated by the sum of all crystal
momentum channels ki in the extended region i ∈ (−5, 5)
are constructive interferences (magenta dashed lines), while
the harmonic phase difference 	ϕ′ = ±π for the even-order
harmonics, and then the cos	ϕ′ = −1. Consequently, the

even-order harmonics generated by the sum of all crystal
momentum channels ki in the extended region i ∈ (−5, 5) are
destructive interferences [35]. This explains the prevalence of
odd-order harmonics in the harmonic spectrum, as demon-
strated in Figure 4(a1). The harmonic spectra dominated by
the odd-order harmonics can also be observed in the crystal
momentum channels ki with i ∈ (−30, 30) and i ∈ (−75, 75),
as shown in Figs. 4(a2) and 4(a3), respectively.

To demonstrate the physical mechanism of the harmonic
subpeak structures, we take the vicinity of the 13th harmonic
as an example in Figs. 4(b2) and 4(b3). As the number
of crystal momentum channels ki increases, the harmonic
phase differences corresponding to the positions of subpeak
structures are closer to ±π (green dashed lines). Thus, the
destructive interference occurs gradually, which results in
the subpeak structures in the harmonic spectra. Our results
demonstrated that the subpeak structures originate from the
interferences between the interband harmonics, which are
generated by different crystal momenta channels around the
top of the V-B. The similar subpeak structures in Ref. [34]
have been interpreted as a result of the quantum path interfer-
ence. Clearly, the subpeak structures in Ref. [34] and our work
have different origins.

B. Suppression of harmonic subpeak structures
by the two-color laser field

Figure 5(a) displays the HHG spectra driven by the two-
color (ω0, 3ω0) laser pulse with field ratio E1/E0 = 0.4
and the relative phase φ = π . Additionally, we also inves-
tigated the harmonic spectra driven by the two-color laser
fields with different frequencies of the second component
[(ω0, 2ω0); (ω0, 4ω0); (ω0, 5ω0), etc.]. In the case of two-
color laser fields (ω0, 2ω0) and (ω0, 4ω0), the harmonic
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FIG. 5. (a) The interband harmonic spectra integrated over the first BZ (red solid line) and generated by the k0 channel (blue dotted-dashed
line) driven by the two-color laser field. (b) The corresponding k-resolved interband harmonic spectrum. The other laser parameters are the
same as those in Fig. 1(a).

spectra exhibit both odd- and even-order harmonics without
subpeak structure [14]. In this work, we primarily focus on
analyzing the fine structures of the harmonic spectra. To
maintain consistency with the harmonic spectrum display-
ing exclusively odd-order harmonics driven by the one-color
laser field, we did not select the second component to be the
two and four harmonic fields. For the two-color laser field
(ω0, 5ω0) case, the harmonic spectrum consists of odd-order
harmonics without subpeak structure, which is similar to the
two-color laser field (ω0, 3ω0) case. Therefore, we choose the
third harmonic as the second component. Furthermore, we
find that the subpeak structures are insensitive to the ampli-
tude of the second component but sensitive to the relative
phase. When the relative phase is chosen to be φ = π , the
subpeak structures are completely suppressed. We set the field
ratio E1/E0 = 0.4 such that the maximum amplitude of the
two-color laser field is about the same as that of the one-color
laser field.

Figure 5(a) clearly demonstrates the effective suppression
of subpeak structures in the harmonic spectrum when inte-
grated over the first BZ (red solid line). Comparing this result
with the one-color laser field case, we observe a significant
enhancement in the harmonic intensities, by approximately
one to two orders of magnitude. This enhancement aligns with
findings from previous studies [17–19], where it was shown
that the peak intensities of two-color laser fields can surpass
the maximum amplitudes of one-color laser pulses. Since the
HHG in solids depends crucially on the peak intensity of the
driving field, the harmonic yields were obviously enhanced.
However, it is important to note that in this study, we have
managed to make the two-color field have the same peak
electric field as the one-color laser field. It is expected that
a different mechanism of harmonic radiation is responsible
for the enhancement of harmonics. We also investigate the
harmonic spectrum considering only the k0 channel (blue
dotted-dashed line) driven by the two-color laser field, which
exhibits odd-order harmonics without subpeak structure.
Additionally, it is noticed that the harmonic intensity gener-
ated by the k0 channel is four to five orders of magnitude

lower than that of the harmonic spectrum integrated over the
first BZ.

In Fig. 5(b), we illustrate the k-resolved interband har-
monic spectrum in the two-color laser field. When compared
to the case of a one-color laser field, the crystal momen-
tum channels which contribute to the harmonic radiation are
extended. Besides, one can see that the crystal momenta
around the k0 channel make little contribution to the interband
harmonics, which is similar to the case of the harmonics above
the 13th order in the one-color laser field [see Fig. 2(b)]. The
contribution decrease from the crystal momenta around the k0

channel results in the suppression of the harmonic subpeak
structures.

Figure 6(a1) illustrates the electric field and the corre-
sponding vector potential for the one-color laser pulse. When
the electric field reaches its maximum peak (magenta dashed
line), the corresponding vector potential is equal to zero.
In Figs. 6(a2) and 6(a3), we show the time-dependent C-B
population in the initial momentum frame and in the moving
crystal momentum frame, respectively. We can see that the
C-B population increases rapidly around the k0 channel when
the electric field reaches its maximum value (the correspond-
ing vector potential is equal to 0). The same situation that the
C-B population increases rapidly around K = 0 can be seen in
the moving frame as shown in Fig. 6(a3). Thus, the electrons
are excited to C-B around the k0 channel by the laser field,
which results in the crystal momenta around the k0 channel
having a significant contribution to the HHG for the one-color
laser field [see Fig. 2(b)].

Figure 6(b1) presents the electric field and the correspond-
ing vector potential for the two-color laser pulse. When the
electric field reaches its maximum peaks, the corresponding
vector potentials are equal to ±0.15 a.u.. Figure 6(b2) pro-
vides the corresponding time-dependent population of C-B in
the initial crystal momentum fame. It should be noticed that
the population has two excitation bursts around k = ±0.15
a.u. channels (see the two horizontal white dashed lines).
However, the C-B population increases also around K = 0 in
the moving crystal momentum frame as shown in Fig. 6(b3).
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FIG. 6. (a1 and b1) The electric field (blue solid line) and vector potential (green dashed line) for the one-color and the two-color laser
fields. (a2 and b2) The corresponding time-dependent C-B population in the initial crystal momentum frame k. (a3 and b3) The corresponding
time-dependent C-B population in the moving frame K. The vertical magenta dashed lines represent the temporal positions of the maximum
amplitudes of the electric fields.

This behavior aligns with the four-step model of solid HHG
[11,12], i.e., the electrons around k = ±0.15 a.u. channels are
preaccelerated to the top of the V-B before being excited to the
C-B, as previously demonstrated in Ref. [12]. The intraband
preacceleration of electrons could influence the interband
excitation and enhance the intensity of the HHG. Conse-
quently, the crystal momenta around the k0 channel make
little contribution to the HHG for the two-color laser field
[see Fig. 5(b)] due to the decrease of contribution from the
crystal momenta around the k0 channel, akin to the harmonics
above the 13th order in the one-color laser field, suppressing
the harmonic subpeak structures.

IV. CONCLUSIONS

In summary, our study delved into the phenomenon of
solid HHG driven by both one-color and two-color linearly
polarized laser pulses. We observed subpeak structures in
the harmonic spectrum when employing a one-color laser
field. To illustrate the underlying mechanism behind these fine
structures, we analyzed the crystal-momentum-resolved con-
tributions of the intra- and interband harmonics. The results
show that the harmonic subpeaks are due to the interferences
between the interband harmonics generated by the crystal mo-
menta around the k0 channel. By analyzing harmonic phase
differences, we provided a detailed demonstration of construc-
tive and destructive interferences within the HHG process.

Furthermore, we explored the harmonic spectrum generated
by a two-color laser field and observed the effective suppres-
sion of fine structures. Our analysis revealed that the crystal
momenta around the k0 channel make little contributions to
HHG, which is related to the preacceleration process of elec-
trons. In this work, we have focused on the two-band insulator
model based on ZnO. The inclusion of multibands will lead
to important contributions to solid HHG [39,42–44], such as
multiple plateaus [39] and even-order harmonic generation
[43]. Based on the multiband SBEs, a microscopic method
has been proposed to investigate high harmonic generation in
solids with band crossings [44]. Further investigations could
delve into the impact of the multiband scenario and band
crossings on the solid HHG. We expect our work to be helpful
in gaining insight into the ultrafast electron-hole dynamics in
solid HHG.
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