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We report on the existence of exceptional points (EPs) in single-resonance autoionization and provide
analytical expressions for their positions in parameter space, in terms of the Fano asymmetry parameter. We
additionally propose a reliable method for the experimental determination of EPs, based solely on information
about their ionization probability as a function of the system parameters. The links between EPs, the maxima
of the asymmetric profile, and the effective decay rate of the ground state are investigated in detail. Quantitative
numerical examples pertaining to the doubly excited 2s2p(!P) state of helium confirm the validity of our
formulation and results. In addition to unveiling hidden aspects of autoionization, our treatment and results
provide a benchmark for the exploration of EPs and their properties in a variety of materials exhibiting Fano

profiles with a broad perspective of possible applications.
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I. INTRODUCTION

Autoionization (AI) belongs to a broad class of quantum
phenomena involving discrete states (resonances) embedded
in continua into which they decay. Examples, among others,
are the Breit-Wigner resonance in nuclear physics [1], in parti-
cle physics [2,3], in photonics [4], and of course in atoms and
molecules [5,6], where the continuum is ionization or even
dissociation; hence the term autoionization. The literature on
autoionization spans a vast range of topics, including the time-
dependent formation of the autoionization profile [7-10],
strong driving of autoionizing resonances (ARs) [11-17], the
dynamics of doubly resonant autoionization [18,19], and the
effects of phase [20,21] and statistical fluctuations [22-25] of
the laser field on the process.

ARs can be excited by radiation absorption or collisions
and are infinite in number, with the spacing between them
decreasing with increasing excitation energy. Yet, there are
cases in which one or more resonances are separated in energy
by significantly more than their width, qualifying as isolated
resonances, with the doubly excited 2s2p(' P) state of helium
being the prototype of an isolated AR, which continues re-
vealing novel aspects, as attested by the ongoing streams of
papers to this day [13—17]. It is in addition a perfect example
of an open quantum system, with its dynamics governed by
a non-Hermitian effective Hamiltonian. As such it can serve
as a benchmark for a broad class of non-Hermitian systems
in a variety of materials, exhibiting the same profile with
possibilities of significant technological impact [4,26-29].

Non-Hermitian physics and its connection to parity-time
(PT) symmetry was introduced as an axiomatic theory in
the seminal papers of Bender et al. [30-34]. Soon there-
after, it was pointed out that effective Hamiltonians describing
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the dynamics of open quantum systems inevitably are non-
Hermitian [35]. The boundary between the unbroken and
broken P77 symmetry of such Hamiltonians [36,37] is marked
by the presence of exceptional points (EPs) [38—41], i.e.,
points in the parameter space where two or more eigenvalues
coalesce, while their corresponding eigenvectors become par-
allel. Tracking the positions of these points in the parameter
space of an open quantum system is crucial, as they provide
insight into the range of parameters where the system under-
goes abrupt phase transitions [42] and enhanced sensitivity
[43—47]. Several approaches for understanding phenomena
related to quasibound states embedded in continua using a
complex spectral analysis have been presented in the past,
applied to various systems such as two-channel quantum wires
[26,48], semi-infinite superlattices with embedded impurities
[27], discrete states coupled to continua containing Van Hove
singularities at their threshold [28], as well as systems involv-
ing laser-induced population trapping via strong coupling of
ARs in atoms [49].

In this paper, we employ the powerful analysis of EPs in
order to unveil hidden aspects of ARs. Focusing on the condi-
tions for encountering EPs in single-resonance autoionization,
we derive analytical expressions revealing their positions in
parameter space. Moreover, we show how the amount of ion-
ization of the atom, which can be determined experimentally,
contains information about the positions of EPs, documented
by numerical examples for the 2s2p(' P) state of helium. Fi-
nally, we demonstrate the connection between the presence
of EPs, the maxima of the typical asymmetric profile of au-
toionization, and the effective decay rate of the atomic ground
state.

II. THEORETICAL BACKGROUND

Our system consists of a ground state |g) coupled to
an isolated quasibound resonance |a) through a linearly

©2023 American Physical Society
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polarized field with frequency w, as well as a continuum of
states denoted by |E), coupled both to |g) and |a). The field
that drives the |g) <— |a) and |g) <— |E) transitions is of
the form E(t) = $[Ee™" + E*e'].

The Hamiltonian of the system 7 = Ho + V + D consists
of three parts, namely, the free-atom Hamiltonian o with
Holj) = wjlj), j =& a, E, the configuration interaction Y
that couples the discrete autoionizing resonance to the con-
tinuum, as well as the dipole interaction D that couples both
|g) and |a) to the continuum, given by the relation D= SE(1),
where g = - é is the projection of the electric dipole moment
operator on the polarization direction of the electric field am-
plitude, denoted by é. Note that throughout our calculations
we set i = 1.

The wave function of the system at times ¢ > 0 is given by

[V (1)) = cg(1)1g) + cal(r)]a) +deCE(t)IE)- (D

The time-dependent Schrodinger equation (TDSE) in view of
Eq. (1) reduces to the following set of equations,

i0,4(t) = weCy(t) + Dygacalt) + / dEDycp(t), (2a)

10;¢,(t) = wacy(t) + D* LCo(t) + / dEV,gce(t), (2b)

iB,CE(t)za)ECE(t)+D cg(t)-l- e Ca(t), (2¢)

where we adopted the notation 9, = a . Introducing the slowly
varying amplitudes according to the transformations ¢,(t) =
cg(t)e !, E,(t) = c (1)t and Ep(t) = cp(t)e’ @),
the above set of equations become

10,Co(t) = Dgqe™ ”‘”~a(t)+/dEDgEe 0l Zp (1), (3a)

i8,Ca(t) = (04 — Wy — 0)E(1) + Dy (1)

+ / dEV,ps(t), (3b)

18,25 (1) = (wp — wg — W)Ze(1) + Dype (1) + Vipa(1).

(30

We now eliminate the continuum adiabatically by setting
0;¢p(t) =0, treating it as a sink. Under this assumption
Eq. (3¢c) leads to

D*Eeiwt P
Cp(t) = £ Colt aE (1), (4
() = o D+ S a4
Substitution of Eq. (4) back into Egs. (3a) and (3b) yields
- ot Deel*
8,8,(t) = Doge &, (t dE g t
i8,C(t) = Dyae ()+f p———
V* D —iwt
+ / dEEZEEC & @), (5a)
Wg + ® — W
VaED;Eei“”
10;Co(t) = (wg — wg — w)Cq(t) —I—/dE Co(2)
Wg + ® — W
Ve

LD (1) + / 24(). (5b)
E

wg+ o —

By substituting the matrix elements Dy, = g, £ (f) and
Dyr = gy E(t) of the dipole interaction operator in the above
set of equations and adopting the rotating-wave approxima-
tion (RWA) which implies the neglect of the fast-oscillating
antiresonant time-dependent exponentials, we obtain

i9,¢ (t):/dE el (1)
g Wy + w — 4
Vi Q
+(szga+ f dE —E28E >Ea<t>, (6a)
wg +® — WE
i~ VGEQZE -
latca(t) = <Qg +/dEm)Cg([)

|VaE|

2
+|:(a)a—a)g—a))+/dE—
Wy +w — wg

where we have introduced the definitions Q,, = 1,£* and
Qe = %@ES *. The above set of equations is simplified con-
siderably by using the identity
. 1
lim -
=0t wg +w — wg + 1
1

=P— —iné — ,
PEp—— iné(wy + w — wg)

(6b)

)

where P denotes the principal value part and §(x) is the Dirac
delta function. In view of Eq. (7), Eqgs. (6) can ultimately be
written as

19,64(1) = (s - ly)cg,(z)+ szga(l - é)éa(t), (8a)
i8,8,(t) = Qag<1 - é)fg(t) - (A + ig)éa(t), (8b)

where S, =P [ dE 5 — ‘ 35‘ o-and y = 27| Qg * lop—w0pto are,
respectively, the llght 1nduced shift and the ionization rate
of the ground state, whereas F, =P [ dE 22— Vil apd T =

Wetw—wE
27|V l? lop=w,+w are, respectively, the self-energy shift and

the autoionization rate of the state |a). Moreover, an =
Qe + P [dE 2 el

prys— is the generalized Rabi frequency of

the |g) «<— |a) transition, g = ”9?;{’*5
metry parameter [50], and A = w — %wa — F, — wy) is the
detuning between the frequency of the driving field and the
frequency of the |g) <— |a) transition, including the self-
energy shift of state |a).

The set of Egs. (8) can be written as

is the Fano asym-

Co(t) ~ | Co(t)
[ i(z)} ”ﬁff[f(r)} ©
with
N S¢— i% (1 - L)
Heff = |:Q(1 _ L) A — lqg (10)

where in order to simplify notation we have introduced
the definition Q = & o Heff is the effective Hamiltonian
governing the dynamics of our system under the adiabatic
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FIG. 1. Schematic representation of the system at study. The
ground state |g) of an atom that is ionized with a rate y is coupled
to an AR |a) via a linearly polarized field that drives the |g) <— |a)
transition with a generalized Rabi frequency €2. The frequency of the
driving field is detuned by A from the energy separation of the two
states and the AR decays into the continuum with an autoionization
rate I'.

elimination of the continuum and RWA approximations. Com-
bining the definitions of y, I, and 2 given above, we obtain

J

g% = 4Q?%/(yT') which is independent of intensity and pro-
vides a very useful relation between the parameters of the
effective Hamiltonian. A schematic representation of our sys-
tem in terms of these parameters is depicted in Fig. 1.

The effective Hamiltonian of Eq. (10) is obviously non-
Hermitian, not only due to the presence of the diagonal decay
terms in the energies of the ground state and |a), but also due
to the presence of nonzero imaginary parts in the off-diagonal
terms reflecting the driving of the |g) <— |a) transition. Di-
agonalization of Heir leads to the following set of eigenvalues:

1 (y+T)
AMo=——|A+iXt 2
1,2 2[ +1 > i|

1 i\’ -
+ - [16(1——) Q2 —(y — T +2iA)%
4 q

At first sight, owing to the presence of imaginary parts in
the radicands, the spectra of #.g appear not to exhibit EPs.
However, if the detuning is set to A = A* =2qyT'/(T" — y),
y # T and we eliminate y via the relation y = 4Q2/(¢’T),
we obtain

Y

42 4 ¢’T2

Py A (2 bra) e —

= — — 1| — —
2T 4% — e ¢°T 4qlqIT

~ g’

G -

Observe now that choosing A = A® results in a set of
eigenvalues with real radicands. Note that Eq. (12) holds for
Q # |g|T"/2 which is equivalent to y # I'. For Q = |¢|T"/2,
i.e., ¥y =T, the radicand is complex for every value of A. The
details of the physical significance of A® for our system will
become clear later. We should also note that the value of A*
resulting in real radicands depends on the intensity of the driv-
ing field, which in turn determines the value of . The relation
between A° and 2 is 2 — % & # |¢IT'/2, which

9 —=r
results upon substitution of y = 4Q?/(¢*I") in the expression
A =2qyT /(T —y),y #T. B

We are interested in the values of the coupling €2 that
nullify the radicands of Eq. (12). The radicands become zero
when

1604 — 8Q T2 ¢%(1 4+ 2¢*) + ¢*T* = 0, (13)
and the positive roots of the above equation are
G 1 L
T = 5lavi+aEq). (14)

It is easy to verify that for both Q = @, and Q@ = Q_, given
that A = A®, the eigenvectors of ﬁeff coalesce, respectively,
to the states [y;) = (—ilg) +|a))/v/2 and [y_) = (ilg) +
la))/~/2. Therefore the points (2, A%) in parameter space,
where A%, = A*(Q.), are EPs of 7:Leff.

2
15 q2F2> [16Q4 — 8Q2T22(1 + 2¢%) + ¢*T4],

12)

III. RESULTS AND DISCUSSION

Interestingly, the EPs of the system measured in units of
the autoionization width I" depend solely on the asymmetry
parameter ¢, and there are two for any given value of the
latter (Fig. 2). The interchange between A% and A’ around
g = 0 is attributed to the presence of the absolute value of ¢
in the expressions of €. and, subsequently, the appearance of
|g| in the expressions of A%. It is important to note that the
value of g for a given AR is fixed, as it depends solely upon
the corresponding matrix elements of the transitions involved

2.0p-
Lsp e
=10 : <
a 0. =
0.5 ¢
0.0

-3 -2-10 1 2 3
q
FIG. 2. Dependence of the exceptional points (Q, A% ) on the
asymmetry parameter g. Solid teal line: ., ; dashed teal line: AL

solid orange line: $2_; and dashed orange line: A* . For each value of
q there exist two exceptional points.
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FIG. 3. (a) Real and (b) imaginary parts of the eigenvalues A;

(red surface) and X, (black surface) as a function of the parameters

Qand A, for g = —2.79. The yellow arrows mark the positions of the

exceptional points at (€2, A) = (_, A*) = (0.2424I", —0.1738I")

and (€, A) = (2, A% ) = (8.02651", 5.7538I"), where the real and
imaginary parts of the eigenvalues coalesce.

in the process. In particular, for the process involving the
driving of the 1s>('S) «— 2s2p(! P) transition in helium and
the associated autoionization of the 2s2p(' P) AR, it is well
established that g ~ —2.79 [23,51].

Focusing hereafter on that isolated AR, we note that for
q = —2.79, according to Eq. (14) and the relation between A*
and €, the theory indicates the existence of two EPs at the po-
sitions (Q_, A*) = (0.2424T", —0.1738") and (24, A%) =
(8.0265T", 5.7538T") in parameter space. In Fig. 3 we plot the
real and imaginary parts of the eigenvalues as a function of
and A for ¢ = —2.79 and indeed confirm the coalescence of
the eigenvalues at the above positions in parameter space.

As noted above, tuning A to A’ is essential in order to
ensure that the radicands appearing in the expressions of the
eigenvalues become real. We can get a glimpse of the phys-
ical significance of A' in the vicinity of an EP, by solving
the time-dependent Schrodinger equation using the effective
Hamiltonian #.g, and plotting the ionization probability of
the atom [P(t) = 1 — |cg(t)|2 — |ca()]?] as a function of the
detuning for Q@ = _ (Fig. 4). Note that the ionization prob-
ability is calculated on ¢t = T, where T is the interaction
time between the atom and the driving field. This calculation

1.0f=a
0.8
0.6
& 0.4
0.2} :
0.0k . ? . A

1 2 31020
I'T

AT

FIG. 4. Ionization probability as a function of A for various in-
teraction times 7, ¢ = —2.79, and = Q_ = 0.2424T". The vertical
dashed line marks the position of the detuning A* = —0.1738I".
Inset: Position of the peak of the asymmetric profile (A,) as a
function of the interaction time 7" (logarithmic scale) for g = —2.79
and Q = Q_. The horizontal dotted line marks the position of the
detuning A® .

implies what is referred to as a square pulse, in which case the
radiation is turned on at ¢t = 0 and off at the end of the pulse
of duration 7. In reality, however, the atom is exposed to a
pulse of a different shape, either because the source is pulsed
or because the atom enters and exits a beam of radiation.
It is, however, known that as long as the duration of the
pulse, which means its full width at half maximum, is much
longer (say by a factor of 5 or more) than the lifetime of the
resonance, the results obtained through a square pulse, in the
extreme case, would differ approximately by a factor of +/2
[23]. The lifetime of the 252p(' P) AR is about 17 fs, whereas
the development and observation of the EPs requires a pulse
of much longer duration. This places no stringent demand on
the source, since exposure times as long as 100 fs or more
are routinely achievable. This equivalence is due to the fact
that the transients, caused by the sudden turning on and off
of the square pulse, are overshadowed by the signal due to
the flat part of the pulse, provided that the pulse duration is
sufficiently long. It is needless to add that long implies about
100 field cycles, in addition to the relation to the lifetime of
the resonance, mentioned above.

As expected, the ionization profile in Fig. 4 is asymmetric,
transforming gradually to a “window” profile for sufficiently
large interaction times, a phenomenon labeled “time satura-
tion” in Ref. [11], reconfirmed most recently in Ref. [15].
Interestingly, the position of the maximum of the asymmetric
profile, denoted by A,,, which is initially increasing as T
increases, eventually stabilizes at A* , as shown in the inset of
Fig. 4. Therefore, for Q=0 A‘Y(Q_) = A’ is the detuning
which maximizes the ionization probability (to unity) for suf-
ficiently large interaction times, which for the field intensity
considered, translates to T ~ 20! or larger. It is important
to note that this occurs only by tuning the parameters of the
system to the exceptional point (Q_, A*). For example, if
we choose an intensity such that Q = 0.1€2_, the position of
the maximum of the asymmetric profile stabilizes to A,, ~
—0.195T, whereas A*(0.1Q2_) = —0.0016T".

Although in most cases the EPs of a system can be explored
theoretically through diagonalization of the relevant effective
Hamiltonian, the experimental determination of EPs most
often is quite a challenging task, since in general the eigenen-
ergies of a Hamiltonian are not amenable experimentally.
Therefore one needs to identify EPs indirectly by studying
their footprints on system observables. To that end, we em-
ploy a quantity widely used in the context of the quantum
Zeno effect in open quantum systems, namely, the effective
decay rate of a state [52], defined as F;ff(t) = —ll In[P;(t)],
Jj =& a, where P;j(t) = |c‘,~(t)|2 is the population of state |j),
Jj = &, a. The effective decay rate provides information about
how the couplings between a given state and a set of other
states or a continuum modify the time evolution of that state’s
population. It turns out that the effective decay rate of the
ground state, which can be readily determined experimentally,
is remarkably sensitive to the EPs of our system, pinpointing
their positions in parameter space.

In Fig. 5(a) we plot the effective decay rate of the ground
state as a function of Q for A = A*(Q), which implies set-
ting the detuning to a different value each time, depending
on the value of Q considered. Note that the effective decay
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FIG. 5. (a) Effective decay rate of the ground state as a function
of Q for g = 2.79 and A = A*. The dashed lines mark the positions
of the exceptional points at Q@ = Q_ =0.2424T and Q@ = Q, =
8.0265T. (b) Effective decay rate of the ground state as a function
of Q€ and A for ¢ = —2.79. The curved dashed line marks the
A = A*() curve, over which the effective decay rate is maximum.
An exceptional point lies at the position €, A) = Q_, A% =
(0.2424T, —0.1738I).

rate is calculated at an interaction time + = T', which should
be sufficiently large for the rate to be no longer modified
with a further increase of 7. For ¢ = —2.79, the effective
decay rate is stabilized for 7 =~ 20" ~! or larger, which is the
same timescale as the one discussed in the results of Fig. 4.
At such timescales it is easy to show that the population
of |a) is practically negligible. Therefore the effective decay
rate of the ground state is directly related to the measurable
ionization probability P(¢), because Ffff(t) = —% In[P,(1)] =
% In[1 — P(¢)]. Clearly, the effective decay rate of the ground
state provides direct evidence for the positions of the EPs
of the system [Fig. 5(a)], in agreement with our theoretical
predictions based on the diagonalization of 7:Leff.

A short note regarding the experimental detection of the
EPs related to the autoionization of the helium 2s2p(' P) AR
is in place at this point. The EP at (Q, A =(Q_,A*) =
(0.2424T", —0.1738I") lies in a parameter region that is well
within the current capabilities of synchrotron sources and
seeded free-electron lasers [53,54] of short-wavelength ra-
diation, sufficient intensity, and small bandwidth that can
excite the AR. However, the EP at (2, A) = (Q4, A%) =
(8.0265T", 5.7538T") would require a source of high inten-
sity, as it lies in the strong-field regime where Q > I' [11].
Although the required intensity, which is estimated to be
around 1.3 x 10'© W/cm?, is available with current free-
electron laser sources, issues such as intensity fluctuations
[55,56] known to affect the excitation of ARs [22-25] and
large bandwidth need to be addressed. Their interplay with
EPs pose interesting followup studies.

Finally, in Fig. 5(b) we plot the effective decay rate of
the ground state as a function of € and A at the vicinity
of the EP that lies in the weak-field regime. The effective
decay rate maxima lie on the A = A*(2) line (curved dashed
line) over which the eigenvalues have real radicands. At the
tip of this maxima curve we find the weak-field EP at the
position (2, A) = (2_, A*) = (0.2424T", —0.1738I") in pa-
rameter space.

IV. CONCLUDING REMARKS

Having unveiled the existence of EPs in single-resonance
autoionization and obtained analytical expressions for their
positions in terms of the Fano asymmetry parameter, we have
further demonstrated their connection with the maxima of the
asymmetric ionization profile. Through a quantitative numer-
ical study of the 2s2p(!P) resonance of helium, we were led
to a reliable method for the observation of EPs, as a function
of the parameters of the system, based solely on information
about the ionization probability, well within the capabilities of
current radiation sources. Our approach and results, based on
parameters known from first principles, provide a benchmark
for the exploration of EPs in a variety of materials exhibiting
a Fano profile, whose potential technological applications are
of intense current interest [4]. We have moreover prepared
the ground for further inquiry on the role of field fluctua-
tions in the observation of EPs in autoionization, as well as
questions related to the influence of neighboring ARs, beyond
the single-resonance autoionization, which are apt to appear
in all systems with a Fano profile. At the same time, the
investigation of potentially impactful effects related to phase
changes associated with the encircling of EPs in the parameter
space of autoionization, based on the complex topology of
the Riemann surfaces in the vicinity of the latter, is a fur-
ther challenging issue. Overall, our results offer insights into
the interplay between autoionization and non-Hermitian P7
physics, with connections to several other systems.
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