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Precision Rydberg state spectroscopy with slow electrons and the proton-radius puzzle
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The so-called proton-radius puzzle (the current discrepancy of proton radii determined from spectroscopic
measurements in ordinary versus muonic hydrogen) could be addressed via an accurate measurement of the
Rydberg constant because the proton radius and the Rydberg constant values are linked through high-precision
optical spectroscopy. We argue that, with manageable additional experimental effort, it might be possible to
improve circular Rydberg state spectroscopy, potentially leading to an important contribution to the clarification
of the puzzle. Our proposal involves circular and near-circular Rydberg states of hydrogen with a principal
quantum number around n = 18, whose classical velocity on a Bohr orbit is slower than that of the fastest
macroscopic man-made object, the Parker Solar Probe. We obtain improved estimates for the quality factor
of pertinent transitions and illustrate a few recent improvements in instrumentation which facilitate pertinent
experiments.
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I. INTRODUCTION

The Rydberg constant is of consummate importance for our
understanding of fundamental physics. Notably, this constant
is an important input datum for the calculation of transi-
tion frequencies in hydrogen and deuterium (see Table II of
Ref. [1] and Refs. [2,3]). In addition to the Rydberg con-
stant, accurate values of the proton and deuteron radii are
also required in order to calculate transition frequencies in
hydrogen and deuterium. Conversely, one can infer proton and
deuteron radii from precise values of hydrogen and deuterium
frequencies (see Refs. [1,3] and Table 45 of Ref. [2]).

With the advent of muonic hydrogen spectroscopic mea-
surements [4,5], the Committee on Data of the International
Science Council (CODATA) value of the proton radius has
shifted from a 2006 value of about Rp ≈ 0.88 fm to a 2018
value of about Rp ≈ 0.84 fm, entailing a concomitant change
in the Rydberg constant [2,3]. From the 2006 to the 2018
CODATA adjustments [2,3], the Rydberg constant has shifted
by much more than the uncertainty associated with the 2006
value (see Fig. 1).

One of the most attractive experimental pathways to the
determination of the Rydberg constant involves transitions
between two highly excited Rydberg states in atomic hydro-
gen, as described in Ref. [6] by a research group working at
the Massachusetts Institute of Technology (MIT). Within the
same group, a value for the Rydberg constant was obtained in
an unpublished thesis by deVries [7] (labeled “Rydberg state”
in Fig. 1),

cR∞|deVries = 3 289 841 960 306(69) kHz. (1)

As is evident from Fig. 1, this value is marginally consistent
with both the CODATA 2006 value [2] and the 2018 CODATA
value from Ref. [3]:

cR∞|CODATA,2018 = 3 289 841 960 250(7) kHz. (2)

The 2006 CODATA value is

cR∞|CODATA,2006 = 3 289 841 960 360(21) kHz. (3)

A comparison of the three values of the Rydberg constant is
made in Fig. 1, where we use as the reference value

R0 = R∞|CODATA,2018. (4)

The situation is interesting because, before the advent of
muonic hydrogen spectroscopy, values of the Rydberg con-
stant and of the proton radius inferred from hydrogen and
deuterium spectroscopy alone (without any additional input
from scattering experiments) were consistent with the 2006
CODATA values for both the 2006 CODATA value of the
Rydberg constant and the 2006 CODATA values of the proton
and deuteron radii. This is discussed in detail in the discussion
surrounding Table 45 of Ref. [2], where it is pointed out that
the proton radius Rp, the deuteron radius Rd , and the Rydberg
constant can all be deduced using input data exclusively from
hydrogen and deuterium spectroscopy.

Traditionally, the Rydberg constant has been determined
on the basis of Rydberg state spectroscopy of atomic hydrogen
[8–14]. An improved measurement of the Rydberg constant
would thus constitute an important contribution to a resolution
of the proton-radius puzzle [15]. In a remarkable investigation
dating about 20 years back, circular Rydberg states around
quantum numbers n ≈ 30 were investigated with the ultimate
aim of an improved measurement of the Rydberg constant [7].
Inspired by the importance of Rydberg states, it was pointed
out in Refs. [16–18] that Rydberg state measurements in hy-
drogenlike ions of medium charge numbers could potentially
offer an alternative route to the determination of the Rydberg
constant.

The purpose of this paper is threefold. First, we update the
calculation of the quality factors for transitions among circular
Rydberg states in comparison to the estimate provided in
Eq. (6) of Ref. [16]. Second, we discuss the status of quantum
electrodynamic theory of Rydberg states, demonstrate that the
theory is very well under control on the level of accuracy
required for the determination of the Rydberg constant on the
level of precision required for a resolution of the proton-radius
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puzzle, and discuss the relative suppression of a number of no-
toriously problematic quantum electrodynamic corrections for
circular and near-circular Rydberg states. Calculated values
for relativistic Bethe logarithms for circular and near-circular
Rydberg states with principal quantum numbers 16 � n � 20
are also provided. Third, we provide an overview of recent
advances in laser technology and other experimental tech-
niques which facilitate an improvement of measurements of
the Rydberg constant on the basis of Rydberg state measure-
ments. Système International (SI) mksA units are employed
throughout this paper.

II. QUALITY FACTORS

Of crucial importance for the feasibility of high-precision
spectroscopy experiments are so-called quality factors of tran-
sitions. The quality factor is the dimensionless ratio of the
transition energy to the natural linewidth of the transition
(measured in radians per second), where the latter is converted
to an energy via multiplication by the reduced Planck constant
h̄. Here, we present the general formula for the one-photon
decay rate of a circular Rydberg state, with principal quantum
number n and maximum orbital angular momentum quantum
number � = n − 1. This reference state can decay via dipole
transitions to states with principal quantum number n − 1
and angular momentum quantum number � = n − 2. Due to
the large orbital angular momentum, neither the upper state
nor the lower state of such transitions is influenced by nu-
clear structure effects (compare with other recently proposed
schemes [19] in which the lower state is the metastable 2S
state, which has a nonvanishing probability density at the
nucleus). The calculation of radiative (dipole) decay rates of
hydrogenic states is described in detail in Chap. 4 of Ref. [20]
(see Gordon’s formula given in Eq. (63.2) of Ref. [20]) and in
Chap. 3 of Ref. [21]. For the decay rate γn = �n/h̄ of the state
with principal quantum number n and maximum orbital angu-
lar momentum � = n − 1, as parameterized by the imaginary
part �n of the self-energy [22,23], E = Re E − i�n/2, we find
the result

��=n−1
n = 42n(n − 1)2n−1 n2n−4

(2n − 1)4n−1(2n − 3)

α(Zα)4m c2

3n5

(
μ

m

)3

, (5)

which can be expanded for large n as follows:

��=n−1
n = α

(Zα)4mc2

3n5

(
μ

m

)3[
1 + 3

2n
+ 17

8n2
+ O

(
1

n3

)]
,

(6)

where m is the electron mass, μ is the reduced mass of the
two-body system, α is the fine-structure constant, Z is the
nuclear charge number, and the expansion for large n illus-
trates that the lifetimes of circular Rydberg states scale as n5.
While we have Z = 1 for hydrogen, we keep Z in all formulas
to cover hydrogenlike ions. Also, the presence of Z in the
formulas helps to distinguish the binding effects (due to the
Coulomb field, with expansion parameter Zα) from the ra-
diative loop corrections (expansion parameter α). The energy
difference for transitions among circular Rydberg states is

En − En−1 = (Zα)2μc2

2

(
1

(n − 1)2
− 1

n2

)
, (7)

FIG. 1. We examine the values for the Rydberg constant, con-
verted to frequency units, from CODATA adjustments and from the
(unpublished, gray) result communicated in Ref. [7]. The CODATA
(2006) value was reported in Ref. [2], and the CODATA (2018) value
is from Ref. [3]. The reference value R0 is from the 2018 adjustment.

which scales as 1/n3 for large n. Due to the 1/n5 asymptotics
of the decay rate and the 1/n3 asymptotics of the transition
energy, the quality factor increases for large n with the square
of the principal quantum number n,

Q = En − En−1

��=n−1
n + ��=n−2

n−1

= 3n2

2α (Zα)2

(
m

μ

)2 [
1 − 5

2n
− 17

8n2
+ O

(
1

n3

)]
. (8)

This formula constitutes an update of the estimate given in
Eq. (6) of Ref. [16] (the quality factor obtained here is larger
by a factor of 2 compared to Ref. [16]). The estimate in Eq. (8)
illustrates the enormous advantages of Rydberg states for the
measurement of the Rydberg constant. The dramatic increase
of the quality factor with the square of the principal quantum
number makes Rydberg state transitions very attractive. Also,
we observe that the quality factor is inversely proportional to
the second power of the nuclear charge number Z . This means
that Z = 1 (atomic hydrogen) offers the best quality factor for
given principal quantum number n.

Let us also evaluate the quality factor for the transition
among near-circular Rydberg states, where the upper level has
orbital angular momentum � = n − 2 and the lower level has
orbital angular � = n − 3 (see also Fig. 2). The calculation of
the quality factor proceeds in a similar way, but one needs
to consider two available dipole decay channels, namely,
from the reference state with principal quantum number n
and orbital angular momentum quantum number � = n − 2
to lower states with n′ = n − 1 and � = n − 3 and n′ = n − 2
and � = n − 3. The decay width evaluates to

��=n−2
n = α

(Zα)4mc2

3n5

(
μ

m

)3[
1 − 1

2n
− 1

8n2
+ O

(
1

n3

)]

+ α
4(Zα)4mc2

3n6

(
μ

m

)3[
1+ 5

2n
+ 25

4n2
+ O

(
1

n3

)]
,

(9)

where the two terms on the right-hand side correspond to the
lower states with n′ = n − 1 and n′ = n − 2, respectively. The
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FIG. 2. The level diagram for Rydberg states illustrates the
dipole-allowed transitions among (a) circular and (b) near-circular
states. Circular Rydberg levels with � = n − 1 are marked in green,
while near-circular Rydberg levels with � = n − 2 are marked in red.
Transitions driven for high-precision spectroscopy are indicated with
two-headed arrows. Transitions relevant for the calculation of decay
rates (quality factors) are indicated by dashed lines.

quality factor evaluates to

Q′ = En − En−1

��=n−2
n + ��=n−3

n−1

= 3n2

2α (Zα)2

(
m

μ

)2 [
1 − 9

2n
+ 9

8n2
+ O

(
1

n3

)]
, (10)

which is commensurate with Q given in Eq. (8) and illustrates
that no significant accuracy loss occurs if one measures near-
circular as opposed to circular Rydberg states.

A quick look at Eqs. (1), (2), and (3) and Fig. 1 illustrates
that one needs to resolve the Rydberg constant to roughly
one part in 1011 or better in order to meaningfully distinguish
between the 2006 and 2018 CODATA values of the Rydberg
constant. One can define a splitting factor S , which measures
the fraction to which one needs to split the resonance line in
order to achieve a resolution of one part in 1011. The splitting
factor S is given by the formula

S = 1011/Q. (11)

Again, we emphasize that it is experimentally challenging
to determine the line center of a resonance line to better
than ∼0.1% of its width. Therefore, an attractive option to
meaningfully contribute to the proton-radius puzzle is through
transitions with high quality factors, which lead to low values
of the required splitting factor S . For Z = 1, one obtains for S
the perfectly reasonable figure S = 93 for n = 18; expressed
differently, one only needs to split the resonance lines near
n = 18 to one part in 93 in order to achieve a resolution which
meaningfully contributes to a resolution of the proton-radius
puzzle.

Cross-damping terms (nonresonant corrections) can be
generated by virtual levels displaced by a fine-structure
interval [24]. A rough estimate of the corresponding en-
ergy (frequency) shift δECD (we set h̄ = 1) is given by the
expression [24]

δECD ∼ �2
n

δE
. (12)

Here, δE is the displacement of the virtual state responsi-
ble for the cross-damping energy shift. As pointed out in
Ref. [24], the nearest virtual states which can contribute to
differential cross sections are states displaced from the upper
state of the Rydberg transition by a fine-structure interval. The
maximum angular momentum is �max = n − 1. The total an-
gular momenta for the circular Rydberg states are �max ± 1/2.
The two possible values for the total angular momentum
quantum numbers of the upper level are thus j+ = n − 1/2
and j− = n − 3/2, with one of these being the reference level
and the other being the virtual level which contributes to the
cross damping. So we have potential nonresonant contribu-
tions from virtual levels with an energy displacement

δE = En, j+ − En, j− = (Zα)4m

2n4(n − 1)
≈ (Zα)4m

2n5
. (13)

The ratio of the cross-damping energy shifts relative to transi-
tion frequency is thus estimated by the expression

χ ≡ δECD

En − En−1
∼ 2

9

α2(Zα)2

n2
. (14)

For Z = 1 and n = 18, this evaluates to 1.9 × 10−12, which
is less than the accuracy required to distinguish between the
2006 and 2018 CODATA values of the Rydberg constant. This
estimate suggests that cross-damping effects are suppressed
for Rydberg states and do not represent an obstacle for the
determination of the Rydberg constant from highly excited,
circular Rydberg states.

The above estimates given in Eqs. (12)–(14) are valid for
the differential cross section [24]. For the total cross section,
these estimates improve even further, consistent with pertinent
considerations reported in Refs. [24–26].
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III. QUANTUM ELECTRODYNAMIC EFFECTS

One might ask whether the theory of Rydberg state
transitions is well enough under control to facilitate the in-
terpretation of a measurement of transitions among Rydberg
states. As outlined in Ref. [2], the theoretical contributions to
the Lamb shift of Rydberg states on the level necessary for
a determination of the Rydberg constant can be summarized
into just four terms: (i) the Dirac energy (in the nonrecoil
limit), which is summarized in Eq. (1) of Ref. [16], (ii) the
recoil corrections from the Breit Hamiltonian, which are sum-
marized in Eq. (2) of Ref. [16], (iii) the relativistic-recoil
corrections summarized in Eq. (3) of Ref. [16], and (iv) the
self-energy effect summarized in Eq. (4) of Ref. [16]. Calcu-
lated values of nonrelativistic Bethe logarithms, which enter
the expression for the relativistic recoil correction, were tab-
ulated for all states with principal quantum numbers n � 200
in Ref. [27]. This favorable situation illustrates the tremen-
dous simplifications possible for Rydberg states. Notably,
vacuum-polarization, nuclear-size, and nuclear-structure cor-
rections can be completely ignored for circular Rydberg states
whose probability density at the nucleus vanishes. For vacuum
polarization, the energy shift due to the Uehling potential
(Eq. (10.245) of Ref. [21]) is of order α(Zα)2(n+1)μc2 for cir-
cular Rydberg states with � = n − 1 and of order α(Zα)2nμc2

for near-circular Rydberg states with � = n − 2. Here, we are
concerned with n � 13; effects that scale with α(Zα)26μc2

(or higher powers of Zα) are numerically completely neg-
ligible. The Wichmann-Kroll potential takes into account
Feynman diagrams with three and more Coulomb vertices
in the fermion loop [28,29], in contrast to the Uehling po-
tential with only one Coulomb vertex [21]. An asymptotic
expression of the Wichmann-Kroll (WK) potential, valid for
r ∼ a0 and thus applicable to circular Rydberg states (a0

is the Bohr radius), was recently evaluated in Eq. (18.103)
of Ref. [21] based on effective-field-theory methods. Its ex-
pression is given as VWK(r) ≈ 2

225
α
π

(Zα)8μc2a5
0/r5. It gives

rise to energy shifts that scale as α(Zα)8μc2 and are thus
parametrically suppressed by four powers of the fine-structure
constant in comparison to the leading self-energy effects and
by two powers of the fine-structure constant in compari-
son to the relativistic corrections to the self-energy effects,
which will be discussed below. Thus, we can neglect vacuum-
polarization effects here altogether.

The most interesting radiative effect concerns the bound-
state self-energy ESE, which is described by the formula (see
Ref. [29] and Chap. 15 of Ref. [21])

ESE = α

π

(Zα)4 m

n3

(
A40 + (Zα)2

×
{

A61 ln

[
m

μ
(Zα)−2

]
+ A60

})
. (15)

The first subscript of the A coefficients counts the number
of Zα, while the second counts the number of logarithms
ln[ m

μ
(Zα)−2].

The general result for the A40 coefficient for circular
Rydberg states with orbital angular momentum � �= 0 and

principal quantum number n � 2 is well known,

A40 = −
(

μ

m

)2 1

2κ (2� + 1)
− 4

3

(
μ

m

)3

ln k0(n, �), (16)

where κ = (−1) j+�+1/2 is the Dirac angular quantum num-
ber and ln k0(n, �) is the Bethe logarithm. (For values of
ln k0(n, �), one should consult Ref. [27].) The functional
dependence on the reduced mass is a consequence of the
proton’s convection current; an explanation is given in Chap.
12 of Ref. [21]. Here, we will place special emphasis on
circular and near-circular Rydberg states with � = n − 1 and
� = n − 2, with n � 13, and refer to them as the following
series of states:

(i) Series A has � = n − 1, j=� + 1/2, κ = −( j + 1/2).
(ii) Series B has � = n − 1, j = � − 1/2, κ = ( j + 1/2).
(iii) Series C has � = n − 2, j = � + 1/2, κ = −( j + 1/2).
(iv) Series D has � = n − 2, j = � − 1/2, κ = ( j + 1/2).
Series A has the highest � and j for given n. The A40

coefficients evaluate to the following expressions for the four
series of states:

A40(A, n)

(μ/m)2
= 1

2n(2n − 1)
− 4

3

μ

m
ln k0(n, n − 1), (17)

A40(B, n)

(μ/m)2
= − 1

2(n − 1)(2n − 1)
− 4

3

μ

m
ln k0(n, n − 1),

(18)
A40(C, n)

(μ/m)2
= 1

2(n − 1)(2n − 3)
− 4

3

μ

m
ln k0(n, n − 2),

(19)
A40(D, n)

(μ/m)2
= − 1

2(n − 2)(2n − 3)
− 4

3

μ

m
ln k0(n, n − 2).

(20)

As a function of the principal quantum number, the Bethe
logarithms ln k0(n, n − 1) and ln k0(n, n − 2) decrease with n
for large n as n−3. In the nonrecoil limit μ → m and the limit
of large n, one has

A40(A, n) ≈ −A40(B, n) ≈ A40(C, n)

≈ −A40(D, n) ≈ 1

4n2
, n → ∞. (21)

The leading quantum electrodynamic corrections for circular
and near-circular Rydberg states are parameterized by the A40

coefficient. The quantum electrodynamic effects are seen to
be suppressed, for large n, by a factor of n−2 which appears in
addition to the overall scaling factor n−3 in Eq. (15).

Higher-loop contributions to the anomalous magnetic mo-
ment can be taken into account by the replacement

−
(

μ

m

)2 1

2κ (2� + 1)
→ −

(
μ

m

)2 1

2κ (2� + 1)

ae

α/(2π )
, (22)

where ae contains the higher-loop contributions to the electron
anomalous magnetic moment, which determines the g factor
of the electron according to g = 2(1 + ae). The term α/(2π )
is the one-loop Schwinger value [30]. The quantity ae can
be taken either as the most recent experimental value of the
electron anomalous magnetic moment [31], which results in
ae = 1.159 652 180 59(13) × 10−3, or as a purely theoretical
prediction including higher-order effects [32].
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The suppression of the quantum electrodynamic effects
for circular and near-circular Rydberg states has a physical
reason which is connected to the slow velocity of electrons on
highly excited near-circular Bohr orbits. Namely, the velocity
of a classical electron orbiting the nucleus in a Bohr orbit
corresponding to the principal quantum number n is

vcl = Zαc

n
. (23)

The ratio vcl/c = Zα/n is thus additionally suppressed with
respect to the usual expansion parameter Zα of bound-state
quantum electrodynamics by an additional inverse power
of n. The effective expansion parameter for Rydberg states
is thus, strictly speaking, not Zα, but, more precisely,
Zα/n. The persistence of the principal quantum number
n in the denominator of the expansion parameter is evi-
dent not only in the nonrelativistic Schrödinger-Coulomb
spectrum but also in the Dirac-Coulomb binding energy,
that is, the solution of the relativistic Dirac equation cou-
pled to the Coulomb field. For reference (see Eq. (8.49e)
of Ref. [21]), the bound-state Dirac-Coulomb energy E
fulfills E/m = f (n, j), where f (n, j) = [1 + (Zα/n̄)2]−1/2.
Here, n̄ = n − | j + 1/2| +

√
( j + 1/2)2 − (Zα)2 fulfills n̄ =

n − (Zα)2/(2| j + 1/2|) + O(Zα)4 and thus n̄ ≈ n for large n
and j. The approximate formula f (n, j) ≈ [1 + (Zα/n)2]−1/2

exhibits the effective expansion parameter Zα/n.
The classical velocity vcl evaluates, for Z = 1 and n = 18

(this choice of n is explained in Sec. IV), to a velocity of
1.21 × 105 m/s. This is slower than the velocity of the fastest
macroscopic man-made object, namely, the Parker Solar
Probe, which recently reached a velocity of 1.48 × 105 m/s
on its orbit around the Sun [33,34]. Effects originating from
relativity and quantum electrodynamics are thus highly sup-
pressed for circular Rydberg states. Furthermore, the slow
speed of the bound electrons in comparison to macroscopic,
gravitationally bound systems is interesting in view of the
weakness of gravitational interactions in general; the compar-
ison illustratively demonstrates the weak binding of Rydberg
electrons, which makes them suitable for high-precision de-
terminations of the Rydberg constant.

The general result for the A61 coefficient, valid for Rydberg
states with n � 13 and � = n − 1 and � = n − 2, was given in
Eq. (6) of Ref. [35] and Eq. (4) of Ref. [16] and reads

A61 =
(

μ

m

)3 3n2 − �(� + 1)

3n2(� + 3/2)(� + 1)(� + 1/2)�(� − 1/2)
,

(24)

a result which is independent of the spin orientation. This
expression evaluates to

A61(A, n)

(μ/m)3
= A61(B, n)

(μ/m)3
= 8

3n2(n − 1)(2n − 1)(2n − 3)
,

(25)

A61(C, n)

(μ/m)3
= A61(D, n)

(μ/m)3
= 32(n + 2)

3n2
∏5

i=2(2n − i)
. (26)

In the large-n limit, one has
A61(A, n) ≈ A61(B, n)

≈ A61(C, n) ≈ A61(D, n) ≈ 2

3n5
, n → ∞.

(27)

TABLE I. Calculated values for the A60 coefficients for highly
excited Rydberg states for the A, B, C, and D series of states for
principal quantum numbers 16 � n � 20.

A series B series
n � j A60(n� j ) j A60(n� j )

16 15 31
2 1.059 675(5) × 10−5 29

2 0.121 748(5) × 10−5

17 16 33
2 0.805 212(5) × 10−5 31

2 0.078 287(5) × 10−5

18 17 35
2 0.621 952(5) × 10−5 33

2 0.049 885(5) × 10−5

19 18 37
2 0.487 434(5) × 10−5 35

2 0.031 113(5) × 10−5

20 19 39
2 0.387 025(5) × 10−5 37

2 0.018 584(5) × 10−5

C series D series
n � j A60(n� j ) j A60(n� j )

16 14 29
2 1.540 182(5) × 10−5 27

2 0.155 784(5) × 10−5

17 15 31
2 1.145 325(5) × 10−5 29

2 0.096 026(5) × 10−5

18 16 33
2 0.867 820(5) × 10−5 31

2 0.058 328(5) × 10−5

19 17 35
2 0.668 553(5) × 10−5 33

2 0.034 217(5) × 10−5

20 18 37
2 0.522 676(5) × 10−5 35

2 0.018 690(5) × 10−5

The suppression with n−5, in addition to the overall scaling
factor n−3 from Eq. (15), again illustrates the smallness of
relativistic and quantum electrodynamic effects for circular
Rydberg states.

The next higher coefficient is A60, which is called the
relativistic Bethe logarithm [36,37]. Its absolute magnitude
is highly suppressed for circular Rydberg states. Specifically,
according to Refs. [16–18] and Table 7.2 of Ref. [38], one
has

max{|A60(A, n)|, |A60(B, n)|,

× |A60(C, n)|, |A60(D, n)|} < 10−4, n > 13. (28)

Furthermore, according to the calculations reported in
Refs. [18,39], the approximation GSE ≈ A60 for the non-
perturbative self-energy remainder function remains valid to
excellent approximation for circular Rydberg states for low
and medium nuclear charge numbers (see Table 1 of Ref. [39]
and Tables 1 and 2 of Ref. [18]). Relation (28) implies that
the correction to the transition frequency among circular Ryd-
berg states induced by the relativistic Bethe logarithm A60 for
Z = 1 is smaller than one part in 10−15 for n � 13. Neverthe-
less, it is useful to calculate numerical values of relativistic
Bethe logarithms for the states under investigation here (see
Table I). We follow the calculational procedure outlined in
Ref. [35]. For calculated values of A60 for circular and near-
circular Rydberg states with 13 � n � 16, we refer to Table 1
of Ref. [16] and Table 1 Ref. [18].

IV. EXPERIMENTAL CONSIDERATIONS

Let us also include a few considerations relevant to the
experimental realization of a high-precision measurement of
the Rydberg constant based on circular Rydberg states. One
might assume that ultimate experimental success could be
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bolstered by choosing transitions with as high a quality factor
Q as possible. As discussed around Eq. (8), since Q ∝ n2, high
n is desirable.

However, it is also important to consider the sensitivity of
a given measurement to systematic effects. Many systematic
effects increase with powers of n. For instance, shifts and
distortions of resonances due to the Stark effect scale as n5

[7,40,41], which produces challenges to measuring transitions
between circular Rydberg states with very high n. However,
the previous measurement between circular Rydberg states of
hydrogen [7] between n = 27 and n = 28 and between n = 29
and n = 30 had negligible contributions from uncertainties in
the Stark shifts [7]. The experimental accuracy was instead
limited by dipole-dipole interactions. Since the dipole mo-
ment for an atom in a superposition of adjacent circular Ryd-
berg states scales as n2 and the systematic effect is related to
the interaction energy of two dipoles, this effect scales as n4.

Therefore, in order to mitigate the dipole-dipole interac-
tions, it may be interesting to consider transitions between
circular Rydberg states with somewhat lower n. For instance,
with all other experimental parameters being similar, a transi-
tion between n = 18 and n = 19 would reduce the effects of
the dipole-dipole interactions by a factor of ∼6 compared to
the previous measurement [7]. Another experimental benefit
to reducing n below that demonstrated in [7] is that blackbody-
radiation-induced transitions would be mitigated because the
thermal radiation spectral density for temperatures � 300 K
is reduced for the more energetic transitions occurring be-
tween lower-lying states. This may allow the experiment to
be performed at liquid-nitrogen as opposed to liquid-helium
temperatures.

The MIT measurement [7] used pulsed lasers at a repetition
rate of 61 Hz to produce circular Rydberg states. Therefore,
another option to mitigate dipole-dipole interactions could be
to produce a near-continuous source of circular Rydberg states
using continuous-wave (cw) lasers. Since the dipole-dipole
interaction is related to the peak density of circular Rydberg
states, a near-continuous source of circular Rydberg states
could allow for a large reduction in the peak density while
maintaining sufficient statistics. This could be accomplished
by first using the 1S–2S two-photon transition to populate the
2S metastable state as in Refs. [42,43], followed by excitation
to Rydberg levels using a 365-nm cw laser. Then circular-
ization would be performed using the methods outlined in
Ref. [6]. The use of a cw rather than a pulsed laser for the
excitation into the Rydberg states [44] constitutes the main
technological advancement over the methods used in Ref. [7];
its use could lead to a drastic increase in the number of avail-
able Rydberg atoms and thus drastically improved statistics
with simultaneously reduced systematic effects due to lower
peak Rydberg atom density.

To perform spectroscopy of the n = 18 to n = 19 circular
Rydberg states, a millimeter-wave Ramsey apparatus akin to
the one employed in Ref. [7] could be used. To excite the
transition, a radiation source at 1.04 THz is needed. While the
millimeter-wave source in [7] operated at 256 or 316 GHz,
a similar source operating at frequencies above 1 THz is
possible using a planar GaAs Schottky diode frequency
multiplier [45]. The output power of such terahertz sources

is relatively low. However, due to the large transition matrix
element between circular Rydberg states, the transition can
be saturated with <1 nW and a 3-mm beam waist. Therefore,
commercially available terahertz sources would likely be
sufficient [46].

V. CONCLUSIONS

The main conclusions of this paper are as follows. In
Sec. II, we showed that the quality factors of transitions
among circular Rydberg are sufficient to comfortably al-
low for a distinction between the 2006 and 2018 CODATA
values of the Rydberg constant (see Eqs. (2) and (3) and
Refs. [2,3]). Furthermore, according to the considerations
reported in Sec. II, cross-damping terms do not present an
obstacle to such a measurement. In Sec. III, we showed that
the theory of bound states is sufficiently under control to allow
for a determination of the Rydberg constant from transitions
among circular Rydberg states in atomic hydrogen. Experi-
mental considerations (Sec. IV) corroborate the advances in
technology which make such a measurement more feasible
than reported in Ref. [7], in part by reducing several sys-
tematic effects through a less dense atomic beam which can
be realized in a continuous-wave excitation scheme into the
circular states.

A few concluding remarks on the proton-radius puz-
zle are in order. We recall that the proton-radius puzzle
refers to the difference between the “smaller” proton ra-
dius of Rp ≈ 0.84 fm obtained in Ref. [4] and the larger
value of Rp ≈ 0.88 fm from the 2006 CODATA adjustment
(see Refs. [1,2,12,13] and references therein). Various recent
scattering experiments [47,48] and spectroscopic experiments
[42,43,49–51] came to conflicting conclusions on the proton
radius. A recent measurement described in Refs. [43] led to
a value of Rp ≈ 0.86 fm. It was very recently pointed out
in Ref. [15] that two older scattering experiments, carried
out in 1969 at Brookhaven (see Refs. [52,53]), are consis-
tent with an 8% discrepancy in the cross sections between
muon-proton and electron-proton scattering, which translates
into 4% for the form-factor slope, which in turn amounts to
2% for the radius. This is precisely the difference between
the smaller proton radius of Rp ≈ 0.84 fm and the recently
obtained [43] value of Rp ≈ 0.86 fm. The MUon proton Scat-
tering Experiment (MUSE) experiment [54–56] at the Paul
Scherrer Institute (PSI) aims to remeasure the muon-proton
cross sections in the near future.

In conclusion, we have shown that the idea formulated
in Refs. [6,7,16–18,40,41] could lead to a feasible pathway
toward a determination of the Rydberg constant. This could
be interesting because most recent spectroscopic experiments
[42,43,49–51] focus on transitions in atomic hydrogen which
depend on both constants in question, namely, the proton ra-
dius and the Rydberg constant. Focusing on Rydberg states, as
proposed here, means that one isolates one of these constants,
thereby potentially obtaining a clear and distinct picture of
the proton-radius puzzle. The current situation provides mo-
tivation not only to carry out the MUSE experiment at PSI
[54–56] but also to redouble efforts to measure the Rydberg
constant.
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