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B-spline functions have been widely used in computational atomic physics. Recently, correlated B-spline basis
functions (C-BSBFs), where the interelectronic coordinate r12 is explicitly incorporated, have greatly improved
the computational accuracy in determining polarizability for helium’s singlet states [S. J. Yang, X. S. Mei, T.
Y. Shi, and H. X. Qiao, Phys. Rev. A 95, 062505 (2017)] and Bethe logarithm [S. J. Yang, Y. B. Tang, Y. H.
Zhao, T. Y. Shi, and H. X. Qiao, Phys. Rev. A 100, 042509 (2019)]. This represents a significant advancement
over the traditional B-spline basis, which comprises a straightforward product of two B splines. In this paper,
we detail the extension of C-BSBFs towards calculating leading relativistic and quantum electrodynamics
(QED) corrections for energy levels of the 1 1S, 2 1S, 2 3S, and 3 3S states in helium. To accomplish this,
the relativistic kinetic term p4

1, contact potentials δ3(r1) and δ3(r12), and Araki-Sucher correction 〈1/r3
12〉

were calculated via the global operator method, wherein rn
12 and rn

12 ln r12 were derived from the generalized
Laplace’s expansions. Our computations yielded values for the ground state of δErel/α

2 = −1.951 754 76(6)
and δEQED/α3 = 57.288 164 8(5), aligning well with previous results. These results illustrate the potential of the
C-BSBFs for computing higher-order relativistic and QED effects.

DOI: 10.1103/PhysRevA.108.062818

I. INTRODUCTION

Recent advances in atomic spectroscopy, reaching part-per-
trillion precision for helium, have provided strong experimen-
tal support for testing quantum electrodynamics (QED) and
determining the fine-structure constant α as well as the nuclear
charge radius [1–7]. These measurements, when paired with
high-accuracy atomic structure calculations, present a robust
platform for understanding atomic structure [8–11]. In par-
ticular, helium, the simplest many-electron system, offers an
exemplary testing ground for exploring different methodolo-
gies to describe atomic structures.

Finite basis set variational calculations have emerged as a
potent tool for solving the Coulomb three-body bound-state
problem. This technique, when applied to helium, is particu-
larly effective when basis functions incorporate explicitly the
interelectron separation. The effectiveness of this technique
is exemplified by Patkóš et al.; they employed the explicitly
correlated exponential basis with nonlinear parameters and
completed the α7m Lamb shift of helium triplet states, im-
proving the theoretical accuracy of ionization energies by over
an order of magnitude [8]. Nevertheless, to circumvent the
loss of stability accompanying an increase in the number of
basis functions, the employment of multiprecision packages
and variational optimization of nonlinear parameters is essen-
tial.

*tyshi@wipm.ac.cn

In computational atomic physics, B splines enjoy pop-
ularity due to their complete-enough nature and linear
independence for large basis sets [12–21]. However, systems
with strong electron correlations challenge the generation
of high-accuracy computational results using traditional B-
spline basis functions. An imperative need arises, therefore,
to incorporate the interelectronic coordinate into these basis
functions.

Tang et al. [17] and Zhang et al. [21] have developed
a method to compute Bethe logarithms, the dominant part
of QED, of hydrogen and helium atoms, respectively, using
B-spline basis sets. However, the precision of these methods
is somewhat constrained for the singlet states, which lack
the electron correlation effect in the basis set. To address
this, Yang et al. developed the explicitly correlated B-spline
basis method, demonstrating its applicability in the compu-
tation of energy levels, static dipole polarizabilities [22], and
Bethe logarithms [23] for the helium atom singlet states. The
success of the correlated B-spline basis functions (C-BSBFs)
in describing electronic correlation and improving numerical
convergence rates is indeed remarkable.

In this paper, we exploit the C-BSBF method to com-
pute the leading relativistic and QED corrections to helium
atom energy levels. We utilize the global operator method
to enhance the numerical convergence for the relativistic ki-
netic term p4

1, the contact potentials δ3(r1) and δ3(r12), and
the Araki-Sucher correction 〈1/r3

12〉. This endeavor extends
the applicability of the C-BSBF method, demonstrating its
efficacy in numerical calculations of the expectation values
of singular operators.
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The remainder of this paper is structured as follows.
Section II provides an overview of the theoretical formulas
and methodologies employed in our calculations. Section III
presents calculations of the leading relativistic and QED cor-
rections to energy levels for the 1 1S, 2 1S, 2 3S, and 3 3S
states of helium, in comparison with the available literature.
We conclude and offer potential directions for future work in
Sec. IV. All computations throughout this paper use atomic
units (a.u.).

II. THEORY AND METHOD

A. C-BSBFs

The nonrelativistic Hamiltonian for a two-electron atom
with an infinite mass nucleus has the form of

H =
2∑

i=1

(
p2

i

2
− Z

ri

)
+ 1

r12
, (1)

where pi = −i∇i is the momentum operator of the ith elec-
tron, ri is the coordinate of the ith electron to the atomic
nucleus, r12 is the interelectronic coordinate, and the nuclear
charge Z = 2 for the helium atom.

The two-electron wave function is expanded by the fol-
lowing C-BSBFs in which the interelectronic coordinate r12

is included explicitly:

φi j,c,�1�2 = A
[
rc

12Bk
i (r1)Bk

j (r2)YLM
�1�2

(r̂1, r̂2)
]
, (2)

where the operator A ensures the antisymmetry of the basis
function with respect to the exchange of the two electrons.
c is the power of the r12 coordinate. The coupled spherical
harmonic function is given by

YLM
�1�2

(r̂1, r̂2) =
∑
m1m2

〈�1�2m1m2 | LM〉

×Y�1m1 (r̂1)Y�2m2 (r̂2), (3)

with 〈�1�2m1m2 | LM〉 being the Clebsch-Gordan coefficient,
and the orbital angular momentum �1 and �2 are less than the
maximum partial wave �max. Bk

i (r) is the ith of N B-spline
functions with the order of k and constrained to a spherical
cavity [13]; the exponential knots sequence is used to define
B splines:⎧⎪⎪⎨

⎪⎪⎩

ti = 0, i = 1, 2, . . . , k − 1,

ti+k−1 = R0
exp (τR0

i−1
N−2 )−1

exp(τR0 )−1 , i = 1, 2, . . . , N − 1,

ti = R0, i = N + k − 1, N + k,

(4)

where τ represents an adjustable knot parameter utilized to
modify the knot sequence; R0 is the cavity radius. In the
present calculations, c is restricted to be 0 and 1 without
making integral evaluations overly complicated; R0 is chosen
appropriately and set large enough to accommodate the bound
state of interest. The final convergent results will be obtained
by increasing the number of B splines N and the partial wave
�max.

B. Leading relativistic and QED corrections

The leading relativistic correction to the nonrelativistic
energy of the two-electron atom is given by the expectation

TABLE I. Bethe logarithm for the 1 1S, 2 1S, 2 3S, and 3 3S states
of helium.

State Zhang et al. [21] and Yang et al. [23] Korobov [30]

1 1S 4.370 160 22(5) 4.370 160 223 070 3(3)
2 1S 4.366 412 71(1) 4.366 412 726 417(1)
2 3S 4.364 036 7(2) 4.364 036 820 476(1)
3 3S 4.368 666 7(1) 4.368 666 996 159(2)

value of the Breit-Pauli Hamiltonian with the nonrelativistic
wave function ψ :

δErel = 〈ψ |HBP|ψ〉, (5)

where

HBP = α2

{
−1

8

(
p4

1 + p4
2

) + πδ3(r12) + Zπ

2
[δ3(r1)

+ δ3(r2)]− 1

2r12

(
p1 · p2 + r12 · (r12 · p1)p2

r2
12

)}
, (6)

for the S state [11,24,25], where α = 7.297 352 569 3(11) ×
10−3 [26] is the fine-structure constant; δ3(r12), δ3(r1), and
δ3(r2) represent the Dirac delta functions. The last term of
Eq. (6) is a retardation term, since this correction is due to
the retardation of the electromagnetic field produced by an
electron [27], and −[p1 · p2 + r12 · (r12 · p1)p2/r2

12]/2r12 is
labeled as H2.

The leading QED correction can be expressed as an expec-
tation value of the following effective operators [11,28,29]:

δEQED = α3

{
4Z

3

[
19

30
− 2 ln α − ln k0

]
〈ψ |δ3(r1)

+ δ3(r2)|ψ〉 +
[

164

15
+ 14

3
ln α

]
〈ψ |δ3(r12)|ψ〉

− 7

6π
〈ψ |r−3

12 |ψ〉
}
. (7)

Here ln k0 is the Bethe logarithm, and the last term in Eq. (7)
is usually called Araki-Sucher correction [28,31,32], and the
expectation of 〈ψ |r−3

12 |ψ〉 is defined as

〈ψ |r−3
12 |ψ〉 = lim

a→0
〈r−3

12 	(r12 − a)

+ 4π (γ + ln a)δ3(r12)〉, (8)

where 	(x) and γ are the step function and the Euler con-
stant, respectively. Compared with the relativistic correction,
the more difficult to calculate in the leading QED correction
are the Bethe logarithm and Araki-Sucher correction. The
Bethe logarithms for the 1 1S, 2 1S, 2 3S, and 3 3S state of
the helium atom are summarized in Table I calculated by
Zhang et al. [21] using the traditional B-spline functions and
Yang et al. [23] using the C-BSBFs, respectively, based on
the Drake-Goldman method. Korobov’s results listed in the
last column of Table I based on the integral representation
method of Schwartz are the benchmarks. The value of the
Bethe logarithms from Zhang et al. and Yang et al. are used
in this paper, which will achieve the complete calculation of
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the leading relativistic and QED correction using the B-spline
function.

Drachman proposed the global operator method to evaluate
the two-particle contact potentials δ3(r1) and δ3(r12), which
achieved significant improvements over the direct evaluations
[33]. We employ the equivalent form containing global oper-
ators given by Drachman to calculate the expectation value of
δ3(r1) and δ3(r12):

4π
〈
ψ

∣∣δ3(ri )
∣∣ψ 〉 = 4〈ψ |r−1

i (Eψ − V )|ψ〉

− 2
2∑

s=1

〈∇sψ |r−1
i |∇sψ〉, (9)

4π
〈
ψ

∣∣δ3(r12)
∣∣ψ 〉 = 2〈ψ |r−1

12 (Eψ − V )|ψ〉

−
2∑

s=1

〈∇sψ |r−1
12 |∇sψ〉, (10)

where Eψ is the corresponding eigenvalue of the two-electron
wave function ψ , and V = −Z/r1 − Z/r2 + 1/r12. It will re-
sult in a slow convergence for the kinetic term p4

1 + p4
2 in

the relativistic correction if we calculate its expectation value
directly in the C-BSBFs. Pachucki and Komasa also used a
similar way to transform both the kinetic term and the Araki-
Sucher correction to much more regular forms and obtained
much better numerical convergence on that account [34]. In
the present calculations, as Pachucki and Komasa have done,
we use the following expression to evaluate 〈p4

1 + p4
2〉:

2∑
i=1

〈ψ |p4
i |ψ〉 = 4〈ψ |(Eψ − V )2|ψ〉 − 2

〈∇2
1ψ

∣∣∇2
2ψ

〉
. (11)

The integration of 〈ψ |r−2
12 |ψ〉 will be involved in Eq. (11),

and it is also evaluated to be as follows by using the global
operator method:

〈ψ |r−2
12 |ψ〉 = 2〈ψ | ln r12(V − Eψ )|ψ〉 +

2∑
i=1

〈∇iψ | ln r12|∇iψ〉,

(12)

since we find that ∇2
1 ln r12 = ∇2

2 ln r12 = r−2
12 . The complete

expansion of Eq. (11) is written as

2∑
i=1

〈ψ |p4
i |ψ〉 = 4E2

ψ + 8Eψ

〈
ψ

∣∣∣∣2Z

r1
− 1

r12

∣∣∣∣ψ
〉

+ 4

〈
ψ

∣∣∣∣2Z2

r2
1

− 2Z2

r1r2
− 2Z

r1r12
+ 1

r2
12

∣∣∣∣ψ
〉

− 2
〈∇2

1ψ
∣∣∇2

2ψ
〉
. (13)

The Araki-Sucher correction is converted to the regular form
as well to facilitate the present numerical evaluations:

〈ψ |r−3
12 |ψ〉 = −

2∑
i=1

〈∇iψ |r−1
12 ln r12|∇iψ〉

+ 〈ψ |2(Eψ − V )
ln r12

r12

+ 4π (1 + γ )δ3(r12)|ψ〉, (14)

where rn
12 ln r12 (n = −2,−1, 0, 1) will be involved in inte-

gration. In addition to the above three terms, the expectation
values of other operators appearing in Eqs. (6) and (7) will be
calculated in the C-BSBFs directly.

C. Laplace’s expansion of rn
12 and rn

12 ln r12

The integrations of rn
12 and rn

12 ln r12 are involved in the
computation of Breit-Pauli operators and Araki-Sucher cor-
rections. It is crucial to process this type of integration in
spherical coordinates, which requires separating their radial
and angular dimensions. The generalization of Laplace’s ex-
pansion to arbitrary powers and functions of r12 given by Sack
[35] is used to calculate the integration in which different
powers of r12 are involved. rn

12 can be expanded in the form

rn
12 =

∞∑
�=0

Rn�(r1, r2)P�(cos θ12), (15)

where the Legendre polynomials of cos θ12 are ex-
pressed by using the identity as P�(cos θ12) = 4π/(2� +
1)

m=�∑
m=−�

Y ∗
�m(r̂1)Y�m(r̂2), and the radial function Rn�(r1, r2) has

been formulated by Sack [35] as follows:

Rn�(r1, r2) =
( − 1

2 n
)
�(

1
2

)
�

rn
>

(
r<

r>

)�

× 2F1

(
� − 1

2
n,−1

2
− 1

2
n; � + 3

2
;

r2
<

r2
>

)
. (16)

In Eq. (16), r< = min(r1, r2), r> = max(r1, r2), and the hy-
pergeometric function has the form of

2F1(α, β; γ ; x) = 1 +
∞∑

s=1

(α)s(β )s

(γ )ss!
xs, (17)

where the Pochhammer symbol is defined as

(α)s =
{

1 i f s = 0
α(α + 1) · · · (α + s − 1) i f s > 0 . (18)

The hypergeometric function is a finite series if either α

or β is zero or a negative integer, which implies that for all
positive odd integer values of n, the series of Rn� break off;
and for n = −1, they consist of the leading term only. For
positive even n, the summation is truncated to � = n

2 , since
the factor (− 1

2 n)� ensures that Rn� vanishes when � > n
2 . In

addition, the individual functions Rn� are divergent for n �
−2, but they remain integrable as long as n > −3 [32,36].
Present calculations involve the integrations of 〈ψ |r−2

12 |ψ〉 and
〈ψ |r−3

12 |ψ〉. So giving appropriate radial expansions of r−2
12

and r−3
12 is important in the computation of radial and angular

integrations. Substituting n = −2, � = 0 and n = −2, � = 1
separately into Eq. (16), and performing a summation of the
series, as a result the following specific expressions in terms
of reverse hyperbolic tangent function tanh−1(x) are achieved:

R−2,0(r1, r2) = tanh−1(x)

xr2
>

, (19)

R−2,1(r1, r2) = 3

2x2r2
>

[(x2 + 1) tanh−1(x) − 1], (20)
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TABLE II. The convergence of energies for the ground state with the number of B splines increased under different cavity radii. The order
of B splines is k = 7 and the partial wave is �max = 4.

N R0 = 10 a.u. R0 = 20 a.u. R0 = 40 a.u.

50 −2.903 724 375 350 18 −2.903 724 377 034 14 −2.903 724 377 034 03
60 −2.903 724 375 412 40 −2.903 724 377 034 12 −2.903 724 377 034 10
70 −2.903 724 375 455 99 −2.903 724 377 034 10 −2.903 724 377 034 12
Extrap. −2.903 724 375 5(2) −2.903 724 377 034 0(2) −2.903 724 377 034 1(1)

where x = r</r>; then the recurrence relation

r2
1 + r2

2

r1r2
Rn,� − � + 2 + 1

2 n

� + 3
2

Rn,�+1 − � − 1 − 1
2 n

� − 1
2

Rn,�−1 = 0

(21)

can be used to calculate the radial functions for other values of
�. For n = −3, the expansion coefficients of the hypergeomet-
ric functions are canceled, and the hypergeometric functions
are reduced to a series summation of xn. The hypergeometric
function can be expressed as an analytic function that is in-
dependent of �; correspondingly the radial expansion of R−3,�

can be written as [37]

R−3,�(r1, r2) = (2� + 1)x�

(1 − x2)r3
>

. (22)

Next we will give the explicit formula for the product of
r12 with different powers and ln r12. With differentiation of
Eq. (15), the expansion for rn

12 ln r12 can be expressed as

rn
12 ln r12 =

∑
�

Rn ln,�(r1, r2)P�(cos θ12), (23)

where Rn ln,�(r1, r2) represents the radial function of rn
12 ln r12,

and Rn ln,�(r1, r2) = ∂Rn�(r1,r2 )
∂n . Similarly, the following recur-

rence relation for Rn ln,�(r1, r2) can be derived by taking the
derivative of Eq. (21):

1

2� + 3
Rn,�+1 − 1

2� − 1
Rn,�−1

= r2
1 + r2

2

r1r2
Rn ln,� − 2� + 4 + n

2� + 3
Rn ln,�+1

−2� − 2 − n

2� − 1
Rn ln,�−1. (24)

Then we can calculate the integration with the rn
12 ln r12 (n �

−2) operator in the present paper. For example, for n =
−2, � = 0 and n = −2, � = 1,

R−2 ln,0 = tanh−1(x) ln(r2
> − r2

<)

2r2
>x

, (25)

R−2 ln,1 = 3[ln(r2
> − r2

<) − 1]

4r2
>x2

× [(x2 + 1) tanh−1(x) − x], (26)

and the estimations of R−2 ln,� for other values of � > 1 can be
obtained according to the recurrence relation of Eq. (24).

III. RESULTS AND DISCUSSIONS

The C-BSBFs on an exponential grid are constructed using
B splines confined to a spherical cavity [13]. The accurate
computation of energy levels and wave functions depends
on the appropriate selection of the cavity radius. Taking the
ground state as an example, Table II illustrates the con-
vergence behavior of energy with an increasing number of
B splines in different cavity radii. At a cavity radius of
R0 = 10 a.u., the energy converges to −2.903 724 375 5(2)
a.u.. For R0 = 20 and 40 a.u., the convergence results
are consistent with the range of uncertainties, yielding
−2.903 724 377 034 0(2) and −2.903 724 377 034 1(1) a.u.,
respectively. This consistency indicates that a cavity radius
of R0 = 20 a.u. is sufficient for calculating the ground-state
properties. The same test calculations have been done for
other states, establishing the cavity radius of R0 = 40 a.u.
for the 2 1S state and R0 = 70 a.u. for both the 2 3S and
3 3S states. Furthermore, the effect of the order of B splines,
k, on the energy was examined. At k = 5, the energy was
calculated to be −2.903 724 376 920 87 a.u., whereas at k = 7
and 9, the results were consistent within double precision,
being −2.903 724 377 034 14 and −2.903 724 377 034 11 a.u.,
respectively. In light of the fact that higher orders of B splines
significantly increase computational complexity and resource
consumption, k = 7 is deemed sufficient. After a comprehen-
sive evaluation of the convergence behavior with respect to N
and �max, we fix the maximum partial wave to be �max = 4.
The final convergent result is extrapolated based on the out-
comes obtained at the last three larger numbers of B splines,
N , and the error margin is determined by the difference be-
tween the extrapolated result and the result of the maximum
deviation from the extrapolated result in the last three larger
B-splines’ numbers.

Employing C-BSBFs, Yang et al. [22] calculated the
helium atomic energy levels, obtaining a nonrelativistic
ground-state energy of −2.903 724 377 1(2) a.u.. An opti-
mization of the knot distribution was carried out for each
state, yielding the energy values for the 1 1S, 2 1S, 2 3S, and
3 3S states, which are detailed in Table III. For the ground
state, the convergence result of −2.903 724 377 034 0(2) a.u.
was achieved, yielding 13 significant digits, matching Drake’s
results [38]. For the 2 1S, 2 3S, and 3 3S states, 14 significant
digits consistent with Drake’s results [38] were also attained.
It becomes apparent from Eq. (13) that the computation
of 〈p4

1〉 entails numerous operators, which we subsequently
partition into two distinct categories. The first category en-
compasses general operators like 1/r1, 1/r2

1 , 1/r1r2, 1/r12,
and 1/r1r12. These operators, due to their relative computa-
tional simplicity, provide the final convergence values directly
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TABLE III. Energies for the 1 1S, 2 1S, 2 3S, and 3 3S states of
helium.

State This paper Ref. [38]

1 1S −2.903 724 377 034 0(2) −2.903 724 377 034 119 5
2 1S −2.145 974 046 054 4(2) −2.145 974 046 054 419(6)
2 3S −2.175 229 378 236 7(2) −2.175 229 378 236 791 30
3 3S −2.068 689 067 472 4(2) −2.068 689 067 472 457 19

tabulated in Table IV. Notably, our results exhibit an align-
ment with Drake’s work up to at least ten significant digits,
confirming the high accuracy of the wave function obtained
by C-BSBFs. The second category includes the operators
1/r2

12 and ∇2
1∇2

2 , which pose a higher level of computational
complexity. The numerical results of 〈1/r2

12〉, 〈∇2
1∇2

2 〉, and
〈p4

1〉 as the number of B splines N increased are given in
the last three columns of Table V. Under the application of
the global operator method, our C-BSBF based calculations
deliver excellent convergent values for 〈1/r2

12〉. In the ground
state, a value of 1.464 770 923 3(5) is procured, bearing 11
significant figures, harmonizing with reference values using
the explicitly correlated exponential basis [10] and the Hyller-
aas basis [38]. The expectation values of 1/r2

12 for the 2 1S,
2 3S, and 3 3S states of the helium atom have, at a mini-
mum, eight convergent digits, resonating well with the values
reported in the available literature [9,10,39]. However, for
the 〈∇2

1∇2
2 〉 operator, no effective strategy for expedited con-

vergence could be identified, necessitating direct calculation.
Consequently, the convergence accuracy of 〈∇2

1∇2
2 〉 is rela-

tively diminished, primarily limiting the numerical precision
of 〈p4

1〉. Nonetheless, the derived value for 〈p4
1〉 for the 1 1S

state from the C-BSBFs exhibits nine digits, being consistent
with Drake’s Hylleraas results [38,39]. The numerical con-
vergence for triplet states demonstrates superior performance
compared to singlet states, by one to two significant figures,
corroborating well with Hylleraas results [39].

Employing the traditional B-spline basis set, we computed
〈1/r2

12〉 and 〈∇2
1∇2

2 〉, yielding the ground-state results of 1.463
697 and 7.079, respectively. Given the singularity of these
operators, they offer a mere one to three significant digits,
posing a challenge for high-precision atomic energy-level
computations. It becomes discernible that the primary hin-
drance stems from the traditional B-spline basis set, which
struggles to precisely characterize the local properties of the
wave function without incorporating the electron correlation
effect. The expectation values for the remaining three com-
ponents from HBP, along with the singular electron-electron
term 〈1/r3

12〉 from the leading QED corrections, are elucidated
in Table VI. The expectation values of δ3(r12) for the triplet
states are zero, and hence omitted from Table VI. Compar-
isons with results obtained in available literatures are also
made.

The numerical results of δ3(r1) were also given by Yu et al.
[40], applying the identical C-BSBFs via direct computation,
with the r12 power raised to c = 5. The direct computation
of δ3(r1) heavily depends on the origin value of the wave
function. The implementation of the global operator method
can significantly enhance calculation accuracy [33,34]. Our
result of δ3(r1) for the ground state using the global operator
method is obtained to be 1.810 429 318 50(6) with ten ac-
curate figures; for other states, one can see that the numerical
accuracy of δ3(r1) can reach a precision of at least ten accurate
digits. All current calculations are carried out with the r12

power c = 1. This indicates that the numerical accuracy can
be better in the global operator method with a smaller c than
increasing the r12 power of the direct calculation. Especially
for operators with stronger singularity, such as δ3(r12), the
global operator method remains imperative for efficient nu-
merical convergence. For instance, Yu et al. strived to bolster
the direct calculation accuracy by increasing the r12 power to
c = 5, but with c = 1 and the global operator method, our
present value of 0.106 345 370 66(4) for the ground state
surpassed the accuracy of 0.106 346 068 obtained from Yu
et al. [40] by five orders of magnitude, and aligns well with

TABLE IV. The expectation values of other operators needed for evaluating the relativistic kinetic terms for the 1 1S, 2 1S, 2 3S, and 3 3S
states of helium.

Operator 1 1S 2 1S 2 3S 3 3S

〈1/r1〉 1.688 316 800 717 1(2) 1.135 407 686 126 1(2) 1.154 664 152 972 0(1) 1.063 674 075 760 7(2)
1.688 316 800 717a 1.135 407 686 125 609(6)b 1.154 664 152 972 107 60(20)b 1.063 674 075 760 76(10)b

1.688 316 800 635c 1.135 407 686c 1.154 664 152c 1.063 674 075 7c

〈1/r2
1 〉 6.017 408 867 0(3) 4.146 939 019 80(6) 4.170 445 551 31(2) 4.042 948 747 4(3)

6.017 408 867 0(1)a 4.146 939 019 0(12)b 4.170 445 551 336 2(4)b 4.042 948 747 477(4)b

〈1/r1r2〉 2.708 655 474 480(4) 0.561 861 467 461(2) 0.560 729 635 682 9(3) 0.240 684 804 629 3(2)
2.708 655 474 480a 0.561 861 467 459 6(7)b 0.560 729 635 682 926 40(20)b 0.240 684 804 629 353(11)b

〈1/r12〉 0.945 818 448 799 95(5) 0.249 682 652 394 3(6) 0.268 197 855 414 82(5) 0.117 318 168 097 65(4)
0.945 818 448 800a 0.249 682 652 393 566 7(19)b 0.268 197 855 414 847 80(20)b 0.117 318 168 097 636(6)b

0.945 818 448 705 9c 0.249 682 652 3c 0.268 197 855 3c 0.117 318 168 0c

〈1/r1r12〉 1.920 943 921 900 0(5) 0.340 633 845 861 2(8) 0.322 696 221 719 8(2) 0.131 426 560 051 19(5)
1.920 943 921 900a 0.340 633 845 861 0(19)b 0.322 696 221 719 854 32(8)b 0.131 426 560 051 184(5)b

aDrake [38].
bDrake [39].
cYu et al. [40].

062818-5



FANG, ZHANG, ZHANG, AND SHI PHYSICAL REVIEW A 108, 062818 (2023)

TABLE V. Convergence of the relativistic kinetic terms for the 1 1S, 2 1S, 2 3S, and 3 3S states of helium as the number of B splines N
increased. The expectation values of 1/r2

12 and ∇2
1 ∇2

2 are also listed in the second and third columns. The partial wave is �max = 4.

N 〈1/r2
12〉 〈∇2

1 ∇2
2 〉 〈p4

1〉
1 1S

50 1.464 770 923 579 7.133 709 835 54.088 067 177
60 1.464 770 923 463 7.133 709 771 54.088 067 242
70 1.464 770 923 406 7.133 709 763 54.088 067 251
Extrap. 1.464 770 923 3(5) 7.133 709 7(2) 54.088 067 2(2)
Ref. [10] 1.464 771 7.133 710
Ref. [38] 1.464 770 923 350(1) 54.088 067 230(2)

2 1S
50 0.143 724 814 027 1.428 212 689 1 41.118 675 563 8
60 0.143 724 814 013 1.428 212 706 4 41.118 675 546 0
70 0.143 724 814 008 1.428 212 705 8 41.118 675 546 6
Extrap. 0.143 724 814 00(5) 1.428 212 70(4) 41.118 675 54(4)
Ref. [10] 0.143 725 1.428 213
Ref. [39] 0.143 724 814 00(7) 41.118 675 544(19)

2 3S
50 0.088 906 004 870 0.488 197 568 41 41.835 540 798 28
60 0.088 906 004 913 0.488 197 569 31 41.835 540 797 46
70 0.088 906 004 921 0.488 197 569 91 41.835 540 796 85
Extrap. 0.088 906 004 9(2) 0.488 197 570(4) 41.835 540 796(4)
Ref. [9] 0.088 906 0.488 198
Ref. [39] 0.088 906 004 932 625(5) 41.835 540 797 348(6)

3 3S
50 0.023 097 669 645 0.329 220 596 46 40.475 439 870 27
60 0.023 097 669 653 0.329 220 596 68 40.475 439 868 42
70 0.023 097 669 655 0.329 220 596 89 40.475 439 868 25
Extrap. 0.023 097 669 65(3) 0.329 220 597(2) 40.475 439 868(5)
Ref. [39] 0.023 097 669 656 893(13) 40.475 439 868 127 2(3)

Drake’s Hylleraas value of 0.106 345 370 636 3(12) [39].
Similarly, for the 2 1S state, the present value for δ3(r12)
obtained with c = 1 is also in good agreement with Drake’s
result [39], but much more accurate than the result of Yu et al.
[40] by three orders of magnitude.

Results of the retardation term H2 have ten convergent
figures at least and are consistent with Drake’s results [39].
The expectation of the singular electron-electron 〈1/r3

12〉 was
computed using the global operator method by the C-BSBFs,
and they coincided with previous results from different basis
functions. We acquired the C-BSBF result of 0.989 273 55(1)
with an accuracy of seven decimals for the ground state, which
is on par with the results of 0.989 273 5 and 0.989 272
4(13) using explicitly correlated Gaussian functions [41] and
exponential basis functions [42], respectively. An improved
value with three additional exact digits is available at Drake’s
website [39] using the Hylleraas basis. For the 2 1S and 2 3S
states, our values corroborate with prior values determined
by the Hylleraas basis and the exponential basis [25]. The
present result for 〈1/r3

12〉 of the 3 3S state equals to 0.008 922
57(2), featuring five convergent figures; we have not found
any available data to refer to yet.

The singular electron-electron 〈1/r3
12〉 expectation value

was also calculated using the traditional B-spline basis set,
yielding a ground-state result of 1.197(N = 70, �max = 4).
The traditional B spline is profoundly inaccurate in computing
〈1/r3

12〉, demanding a more precise description of local prop-
erties of the wave function [41] than 1/r2

12 and ∇2
1∇2

2 . Hence,

the incorporation of electron correlation in the B-spline basis
set is indispensable.

The final relativistic corrections are depicted in the top half
of Table VII, and are compared with results from the explicitly
correlated exponential basis [11] and the Hylleraas basis [39].
Our relativistic corrections are wholly consistent with the
most precise previous computations [11,39], achieving nine
to ten significant figures. The leading QED corrections for the
S states to energy levels are summarized in the bottom half of
Table VII. These results are obtained utilizing Bethe logarithm
values obtained from B splines [21,23] and given by Korobov
[30], respectively. It can be seen that our calculated results
are in good agreement with the significant figures listed by
Yerokhin and Pachucki [11]. The overall computational accu-
racy of the leading QED correction is chiefly determined by
the Bethe logarithms’ contribution. The leading QED correc-
tions results can reach at least seven significant digits, which
already matches the accuracy level of the leading relativistic
correction in this paper.

IV. SUMMARY AND OUTLOOK

In this paper, we employed the C-BSBFs to compute the
leading relativistic and QED corrections to the energy levels
of the helium atom. Challenging operators such as the rela-
tivistic kinetic term p4

1, contact potentials δ3(r1) and δ3(r12),
and Araki-Sucher correction 〈1/r3

12〉, which typically pose
significant calculation difficulties, were tackled via a global
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TABLE VI. The expectation values of δ3(r1), δ3(r12), H2, and 1/r3
12 for the 1 1S, 2 1S, 2 3S, and 3 3S states of helium. Comparisons with

results obtained in available literatures are also made. The partial wave is �max = 4.

N 〈δ3(r1)〉 〈δ3(r12)〉 〈H2〉 〈1/r3
12〉

1 1S
50 1.810 429 318 479 0 0.106 345 370 649 3 −0.139 094 690 900 0.989 273 549 0
60 1.810 429 318 502 1 0.106 345 370 658 3 −0.139 094 690 823 0.989 273 549 5
70 1.810 429 318 504 0 0.106 345 370 646 3 −0.139 094 690 720 0.989 273 548 4
Extrap. 1.810 429 318 50(6) 0.106 345 370 66(4) −0.139 094 690 5(7) 0.989 273 55(1)
Ref. [40] 1.810 429 318 371 521 8 0.106 346 068
Ref. [39] 1.810 429 318 499 0(6) 0.106 345 370 636 3(12) −0.139 094 690 539 20(20) 0.989 273 544 768(13)
Ref. [41] 0.989 273 5
Ref. [42] 0.989 272 4(13)

2 1S
50 1.309 460 780 398 8 0.008 648 433 612 1 −0.009 253 046 273 0.067 946 580 5
60 1.309 460 780 376 2 0.008 648 433 588 4 −0.009 253 046 108 0.067 946 582 2
70 1.309 460 780 376 3 0.008 648 433 587 3 −0.009 253 046 092 0.067 946 578 8
Extrap. 1.309 460 780 37(5) 0.008 648 433 58(5) −0.009 253 046 0(4) 0.067 946 58(2)
Ref. [40] 1.309 460 780 3 0.008 648 6
Ref. [39] 1.309 460 780 1(4) 0.008 648 433 6(14) −0.009 253 046 05(4)
Ref. [43] 0.067 946 32

2 3S
50 1.320 355 082 933 78 −0.001 628 430 082 9 0.038 861 479 8
60 1.320 355 082 931 58 −0.001 628 430 067 4 0.038 861 479 6
70 1.320 355 082 931 10 −0.001.628 430 064 8 0.038 861 481 0
Extrap. 1.320 355 082 930(6) −0.001 628 430 06(4) 0.038 861 46(3)
Ref. [40] 1.320 355 082 9
Ref. [39] 1.320 355 082 934 92(9) −0.001 628 430 061 553(3)
Ref. [43] 0.038 861 485 631 95

3 3S
50 1.285 060 253 969 23 −0.000 504 504 232 33 0.008 922 569 5
60 1.285 060 253 936 06 −0.000 504 504 228 95 0.008 922 569 6
70 1.285 060 253 938 13 −0.000 504 504 228 33 0.008 922 569 9
Extrap. 1.285 060 253 93(7) −0.000 504 504 228(9) 0.008 922 57(2)
Ref. [40] 1.285 060 253 9
Ref. [39] 1.285 060 253 932 1(13) −0.000 504 504 227 201(9)

operator method to enhance their numerical convergence.
Moreover, the Laplace expansion method as proposed by
Sack [35] was introduced to handle the two-electron distance
function. Combined with the high-precision calculation of the
Bethe logarithms [23], the C-BSBF methodology facilitates
high-precision computations of the leading relativistic and
QED corrections for the energy levels of the helium atom. It is
worth emphasizing that the inclusion of the correlated factor
r12 in the C-BSBFs is vital to the calculations of p4

1, δ3(r12),

and 〈1/r3
12〉; in the absence of this factor, these operators

exhibit slow convergence. Thanks to its approximate linear in-
dependence and ample consideration of electronic correlation,
the C-BSBF method provides stable numerical convergence.
As evidenced in Table VIII, the C-BSBF methodology en-
ables us to determine the accuracy of the 2 3S-2 1S transition
frequency (including corrections up to the mα5 order) to a
precision of kHz level. The fine-structure constant utilized in
this paper is taken from CODATA 2018 [26]. It is noteworthy

TABLE VII. The leading relativistic and QED corrections to energy levels, δErel and δEQED for the 1 1S, 2 1S, 2 3S, and 3 3S states of
helium. The corresponding comparison data given in available literatures are also listed.

1 1S 2 1S 2 3S 3 3S

The leading relativistic correction

δErel/α
2 −1.951 754 76(6) −2.034 167 34(2) −2.164 477 971(2) −2.045 092 764(2)

Ref. [39] −1.951 754 767 −2.034 167 342 −2.164 477 972 −2.045 092 764

The leading QED correction
δEQED/α3(BL with B splines) 57.288 164 8(5) 42.523 605 15(8) 43.010 017(2) 41.839 303 4(7)
δEQED/α3(BL from Korobov) 57.288 164 808(6) 42.523 605 035(8) 43.010 017 06(2) 41.839 301 459(9)
Ref. [11] 57.288 165 2 42.523 605 1 43.010 016 8
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TABLE VIII. The 2 3S-2 1S transition frequency for the helium
atom along the leading relativistic and QED corrections, in kHz.

�E (2 3S-2 1S) Ref. [46]

NR 192 490 838 748(2) 192 490 838 756
mα4 45 657 858(8) 45 657 859
mα5 −1 243 670(6) −1 243 671

that more recent and precise values of the fine-structure con-
stant, α, have been reported [44,45], surpassing the accuracy
of the value stipulated in CODATA 2018. However, given the
current computational precision at the kHz level, variations
in the values of α do not influence the final results of the
present computations. This result aligns with the results of
Pachucki et al. [46], and achieves a level of precision in
the leading-order relativistic and QED correction to transi-
tion frequencies that is commensurate with the most recent
experimental advancements [1]. These computations were ac-
complished using double precision alone, obviating the need
for multiprecision calculations. Thus, this approach offers a
pathway towards the calculation of atomic structure.

Given the inherent approximate completeness and substan-
tial numerical stability of B-spline functions, they adeptly
delineate both bound and continuum states, thereby finding
extensive applicability in numerous problems necessitating

state summation. The development of correlated B-spline
basis sets, built upon the foundation of B-spline functions,
meticulously incorporates electron correlation, facilitating a
more accurate and encompassing representation of the eigen-
states in two-electron systems. This approach holds promising
potential for extensions to sophisticated calculations involving
higher-order corrections, such as the second-order perturba-
tions with the Breit-Pauli operator [47] and the relativistic
corrections of the Bethe logarithm [48], and beyond. Moving
forward, our ambition is to undertake the resolution of the
Dirac-Coulomb-Breit equation, grounded on the foundation
of correlated B-spline basis sets. This endeavor is projected
to realize heightened precision in computations pertaining to
atomic structures and to extend our reach to a more compre-
hensive array of atoms and ions with higher nuclear charge,
particularly where the applicability of nonrelativistic QED
theory is constrained.
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