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Effective field theory for the bound states and scattering of a heavy charged particle
and a neutral atom
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We show the system of a heavy charged particle and a neutral atom can be described by a low-energy effective
field theory where the attractive 1/r4 induced dipole potential determines the long-distance, low-energy wave
functions. The 1/r4 interaction is renormalized by a contact interaction at leading order. Derivative corrections
to that contact interaction give rise to higher-order terms. We show that this “induced-dipole EFT” (ID-EFT)
reproduces the π+-hydrogen phase shifts of a more microscopic potential, the Temkin-Lamkin potential, over
a wide range of energies. Already at leading order it also describes the highest-lying excited bound states of
the pionic-hydrogen ion. Lower-lying bound states receive substantial corrections at next-to-leading order, with
the size of the correction proportional to their distance from the scattering threshold. Our next-to-leading order
calculation shows that the three highest-lying bound states of the Temkin-Lamkin potential are well described in
ID-EFT.
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I. INTRODUCTION

When a charged particle interacts with a neutral atom in an
S state at distances significantly larger than the Bohr radius, it
experiences an attractive 1/r4 potential with a strength given
by the atom’s polarizability α [1]. The theory of singular
potentials [2] therefore governs this situation, producing a
particular pattern of bound states and scattering of the charged
particle from the atom as a function of energy. Low-energy
properties are given by 1/r4 dynamics, just as the 1/r6 poten-
tial determines the phase shifts and bound states of atom-atom
systems for wave numbers of order one over the van der Waals
length scale. The analog of the van der Waals length scale is
β4 ≡ √

μα/4πε0meaB, where μ/me is the reduced mass of
the atom-particle system in units of the electron mass and aB

is the Bohr radius.
Traditionally most attention has been devoted to electron

scattering [3], in particular the simplest case of the hydrogen
ground state, whose polarizability is αH = 9a3

B/2 [1,4]. Of
particular current interest is the scattering of a heavier particle
such as a negative muon (μ−), a positive pion (π+), or a pro-
ton. These systems have richer spectra than the electron case
does, and rearrangement channels open up when the projectile
is negatively charged, or positively charged and heavier than
the proton.

Negatively charged heavy particles can also be captured in
states with high orbital quantum number and cascade down
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to lower states, where they provide sensitive probes of nu-
clear properties [5]. The quantum mechanics of their higher
ionic levels is determined by the atomic polarizability and
so it can also be explored with positively charged heavy
particles.

Such ions have β4 � aB. This scale separation enables an
effective field theory (EFT) treatment of this problem. EFT is
a general tool that uses the separation of scales within a sys-
tem, or class of systems, to make systematically improvable
predictions for observables within a well-defined energy win-
dow. (For an introduction to EFT, see Ref. [6], while Ref. [7]
constitutes a pedagogical guide to implementing EFT princi-
ples in a Schrödinger equation setting.) EFTs can be used in
all areas of physics to account systematically for small effects
which are frequently simply neglected. Nuclear and atomic
systems are particularly interesting because they require the
most important, leading-order (LO) interactions to be treated
nonperturbatively and generate bound states and resonances.
They also frequently involve long-range interactions, such as
the Coulomb potential. Nonsingular long-range interactions
do not impose significant modifications to the case of purely
short-range interactions (see, for example, Ref. [7]). Singular
long-range interactions, on the other hand, dramatically affect
the theory at small distances. EFTs for singular potentials have
been studied extensively [8–16] for their relevance in atomic
and nuclear physics [17]. They update and systematize the
work of Case [18] and others on singular potentials in quan-
tum mechanics [2]. The 1/r3 potential is especially relevant as
it is a leading piece of the interaction between two nucleons in
chiral EFT [17,19–24] in the limit that the pion mass is taken
to zero [25,26].
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The impact on observables of the 1/r6 potential in a van der
Waals EFT has been discussed recently [27]. Van der Waals
EFT is similar to quantum defect theory, which has been
applied extensively to predict bound states and scattering in
the situation that a 1/r6 potential determines the long-distance
wave function of an atom-atom system [28,29]. Similar calcu-
lations have been done for the attractive 1/r4 potential [30].

In contrast to the goals of EFT, where an accurate de-
scription of low-energy physics is primary, the semiclassical
Wentzel–Kramers–Brillouin (WKB) approximation is rele-
vant in energy regimes where potential variations are slow
in comparison to the wavelength of the wave function. The
WKB predictions for attractive 1/rn potentials were derived
in Ref. [31]. At low energies, and certainly at threshold, the
WKB approximation does not work well. Near threshold, the
effective-range expansion (ERE) developed for finite-range
potentials can be modified to account for the long-range tail;
doing so generates additional terms that are nonanalytic in
energy. For 1/r4, these terms can be expanded [32,33] as a
series in powers of the wave number in units of β4, kβ4, times
powers of β4/a0, where a0 is the scattering length. The series
starts with a linear correction to k cot δ.

Instead of using either the ERE or a WKB approach, here
we develop an EFT, induced-dipole EFT (ID-EFT), that does
not employ an expansion in kβ4, but instead expands observ-
ables in powers of the ratio aB/β4 and the wave number in
atomic units, kaB [34]. At LO in this expansion the effect
of the finite size of the atom on observables is captured in
a smeared delta function. The Schrödinger equation is then
solved for a potential consisting of that delta function and the
1/r4 induced-dipole potential. While the strength of the 1/r4

potential is fixed to be β2
4 , the strength of the delta-function

piece depends on short-distance details of the atom-charged
particle interaction and must be fit to one datum. Accuracy is
improved in a next-to-leading-order (NLO) calculation, which
introduces an additional piece of the short-distance potential,
with an additional coupling constant, that must be fit to an
additional datum. The same procedure is repeated at higher
orders.

In this problem the standard ERE is limited to wave num-
bers k for which kβ4 � 1. In contrast, ID-EFT can handle
wave numbers comparable to 1/β4. ID-EFT can be regarded
as a systematic implementation of a modified ERE [35]
that includes the long-range effects of the 1/r4 potential on
the relevant matrix elements. It can therefore be derived by
expanding the short-range potential in local operators, and
considering matrix elements of that operator on the basis of
distorted waves [20,36–38]. The standard ERE in powers of k
described above then results if the induced-dipole potential is
treated in perturbation theory as a higher-order effect.

As a specific example, we consider here a heavy charged
particle for which we can expect several bound states within
the regime of validity of the theory. Since an LO description
of this system in which the potential consists solely of a
delta function can support at most one bound state, an EFT
description of multiple bound states relies on the (singular)
interaction being included as a leading effect. To be definite,
we study the bound states and phase shifts of the π+-hydrogen
ion. The spectrum is rich but scattering is not afflicted by open
rearrangement channels. We use the pion-atom scattering

length to fix the strength of the LO delta function. At NLO,
the additional short-range parameter is fitted to the shallowest
bound-state energy. Other energy levels in the system, as well
as the scattering phase shifts, are then predicted by ID-EFT,
up to corrections to each observable that have a fractional
size ∼k4a4

B, where k is the characteristic wave number of the
scattering or bound state. An important aspect of our calcu-
lation is that by carrying it out for several different choices
of the delta-function smearing we can assess which of our
observable predictions are independent of the details of this
short-distance piece of the potential.

Several studies, some of which treated π+H as a two-
body system and some of which treated it as a three-body
system, have been conducted previously [39–41]. In the two-
body treatment the pion-atom interaction was taken to be
an analytical, parameter-free potential—the Temkin-Lamkin
polarization potential [3,42,43]—that superposes some short-
range effects onto the 1/r4 tail. (The Temkin-Lamkin potential
is also useful in complementing approximate solutions of the
three-body system [44].) We take the Temkin-Lamkin poten-
tial’s results for the π+H system’s bound-state energies and
S-wave scattering phase shifts as data that allow us to assess
the efficacy of ID-EFT for this system. We use those results as
a laboratory to demonstrate the ability of ID-EFT to capture
the low-energy portion of the rich spectrum and multifaceted
phase-shift behavior that results from the induced-dipole in-
teraction. We are particularly interested in the fact that in
many other applications of singular potentials—for example,
in nuclear physics—one contends with a single bound state,
while the Temkin-Lamkin potential produces seven bound
states in the π+H system. It is therefore interesting to see how
certain details of the EFT renormalization and calculation play
out in this more complex situation. Results from the Temkin-
Lamkin potential are clean and allow sharp conclusions about
the convergence of the EFT and its breakdown scale, conclu-
sions that were much fuzzier in other contexts where a LO
singular interaction was considered—for example, Ref. [45].

Nevertheless, the Temkin-Lamkin treatment of π+H is an
approximation, and there are significant corrections to that
approximation in a full three-body treatment [39]. Having
developed the basic ideas of ID-EFT in this work, we intend
to return to this problem in subsequent papers. There we
will instead use data from three-body treatments of the π+H
system as input to our EFT.

The remainder of our paper is structured as follows. Our
theoretical formulation is given in Sec. II, with details of its
implementation relegated to Appendixes A–C. The bound-
state and scattering results at LO and NLO are presented
and discussed in Sec. III, while details of extrapolations to
small cutoffs are given in Appendix D. Appendix E describes
the evaluation of WKB phase shifts to which we compare
our results. Conclusions and future prospects are discussed in
Sec. IV.

II. THEORY

A. Leading order

The LO interaction in ID-EDT takes the coordinate-space
form

V (r) = −C4

r4
ρ(r; R) + gLO(R) χ (r; R), (1)
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which, for context, is input to the radial Schrödinger equa-
tion at energy E ,[

− h̄2

2μ

d2

dr2
+ V (r)

]
u(r) = Eu(r), (2)

where μ is the reduced mass of the charged particle-atom
system. The regulator functions ρ(r; R) and χ (r; R) act, re-
spectively, to overcome the 1/r4 potential and mimic the delta
function at short distances. Both interactions are regulated
at the radius R related to the short-distance physics that we
account for at LO through a contact interaction of strength
gLO(R). The precise forms of ρ(r; R) and χ (r; R) are not
important, only that

lim
r→0

ρ(r; R)/r4 = 0, (3)

lim
R→0

χ (r; R) ∝ δ(r). (4)

Here, we take

χ (r; R) = e−(r/R)4
, (5)

ρ(r; R) = [1 − e−(r/R)2
]4. (6)

Once gLO(R) is determined from one low-energy datum, LO
is renormalized [8], namely, other low-energy observables
converge as 1/R increases beyond the breakdown scale of the
theory, 	b ∼ 1/aB.

The short-range interactions of ID-EFT capture the low-
energy effects of physics at distances comparable to the
atom’s size. While the asymptotic form of the potential is
1/r4, as the charged particle approaches its impact on the
atom’s distortion can no longer be accounted for solely by
the polarizability [46]. Here, as an illustration of the method,
we tune gLO(R) at each value of R to match the scattering
length, a0, obtained with the Temkin-Lamkin (TL) potential
[3,42,43],

VTL(r) = − e2

8πε0

α(r)

4πε0

1

r4
, (7)

where e is the electron charge, ε0 is the vacuum permittivity,
and

α(r)

4πε0
= 9

2
a3

B

{
1 − e−2r/aB

[
1 + 2r/aB + 2(r/aB)2

+ 4

3
(r/aB)3 + 2

3
(r/aB)4 + 4

27
(r/aB)5

]}
. (8)

The TL potential is one of several semiphenomenological
polarization potentials [47] that account for various effects
associated with the interaction of the charged particle with
the full charge distribution of the atom. However, at distances
r � aB only the 1/r4 piece of the potential survives. Matching
to Eq. (1), we determine the length-scale associated with this
piece of the potential as β2

4 ≡ 2μC4/h̄2, where

C4 = e2

8πε0
lim

r→∞
α(r)

4πε0
= 1

2

(
e

4πε0

)2

αH (9)

represents the strength of the 1/r4 potential and αH = 9a3
B/2

is the polarizability of the hydrogen atom [1,4]. Details at
short distances are not important in this application, and other

potentials that curb the growth of 1/r4 would do as well. The
TL potential is a rich example as it supports many bound states
when the charged particle is heavy.

β4 and the scattering length a0 are the two physical scales
that are inputs to ID-EFT at leading order. In atomic units
(a.u.), where h̄ = e = me = 4πε0 = 1, lengths are given in
Bohr radii, aB = 4πε0 h̄2/mee2; energies are given in Hartrees,
Eh = h̄2/mea2

B; and αH = 9/2. For the pion-hydrogen system,
β4 = 32.7 a.u. and the TL potential gives a0 = −65 a.u. De-
tails of the determination of a0 in the presence of a 1/r4 tail are
given in Appendix A. In addition, since this is a local theory,
there are, in principle, infinitely many values of gLO that yield
the desired scattering length a0. Each such value produces
a different number of bound states [8]. Here, we choose the
branch of the implicit function gLO(a0) that corresponds to 14
S-wave bound states, as described in Appendix B. There are
only seven states allowed by the TL potential, but in order
to study the renormalization of continuum and bound-state
observables above the approximate breakdown scale of the
theory, we choose a “lower” branch such that the repulsion
of the LO counterterm is not numerically prohibitive.

With β4 and a0 fixed we can predict all binding energies at
LO. We also compute the phase shifts

δ(LO) = tan−1

(
t (LO)

1 + it (LO)

)
(10)

from

t (LO) = VLO + VLOG0t (LO), (11)

in a short-hand notation where an integral over the momentum
in the two-body propagator G0 is implicit.

We note that the LO potential (1) contains no direct infor-
mation on 	b. As is typical in EFTs, quantitative information
on the breakdown scale enters the calculation only in the
context of higher-order corrections.

B. Next-to-leading order

At next-to-leading-order (NLO) the interaction is modified
to

V (r) = −C4

r4
ρ(r; R) + [gLO(R) + EgNLO(R)]χ (r; R), (12)

where we have chosen an energy-dependent NLO contribution
to the short-distance potential. As is typical, a momentum-
dependent NLO term was first tried. It was found to
cause unnecessary numerical difficulty. The energy-dependent
scheme is less singular and therefore more tractable [37,48].
The new parameter gNLO(R) is obtained from a second low-
energy datum, and other observables converge as R decreases
as long as perturbation theory is employed. Corrections to
the long-range polarization potential from the quadrupole po-
larizability and nonadiabatic contributions are ∝ 1/r6 [47].
They should be included at this order if a phenomenological
analysis were to be performed. Here, we do not consider these
corrections as we are interested only in demonstrating the abil-
ity of ID-EFT to reproduce the low-energy effects of a given
underlying potential (chosen to be the parameter-free TL).
There is no difficulty of principle in including them along the
lines of Ref. [14], where a 1/r4 correction to an attractive 1/r2
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potential was considered. The additional long-range potential
would give rise to perturbative corrections at large distances
as well as a different running of gNLO(R) with R.

For bound states NLO corrections to the LO calculation are
computed using standard first-order perturbation theory, i.e.,

B(n)
NLO = B(n)

LO

(
1 + gNLO(R)

〈
ψ

(n)
LO

∣∣χ ∣∣ψ (n)
LO

〉)
. (13)

The value of gNLO(R) is determined here by demanding that
the binding energy of the shallowest S-wave state, B(6)

NLO, is
fixed to the Temkin-Lamkin result for the pion-hydrogen sys-
tem, 1.2 × 10−4 a.u.

Phase shifts are similarly computed in first-order perturba-
tion theory according to the distorted-wave Born approxima-
tion (DWBA), described in detail for example in Ref. [49],
where the scattering amplitude at on-shell momentum k =√

2μE is

t (NLO) = t (LO) − 2μ

k
〈φ(LO,−)|VNLO|φ(LO)〉, (14)

with “–” denoting an outgoing wave. At NLO, we compute
the phase shift perturbatively according to

δ(NLO) = δ(LO) − 2μ

k
〈φ(LO,−)|VNLO|φ(LO)〉e−2iδ(LO)

. (15)

Alternative but equivalent ways to calculate the NLO scatter-
ing amplitude are discussed in Appendix C.

III. RESULTS

In this section we present numerical results for the scatter-
ing of a charged pion on hydrogen, and for the bound states
of this system. Solutions to Eq. (2) are computed with the
Runge-Kutta method of order 8 with a relative tolerance of
10−8 and absolute tolerance of 10−12. As R decreases, gLO(R)
becomes very large so it can provide the repulsion necessary
to keep a0 and the number of bound states fixed as more of the
1/r4 attraction is exposed. Although working with the 14-state
branch alleviates the problem, we were unable to find accurate
LO and NLO solutions once β4/R became larger than 70. In
order to calculate sufficiently precise phase shifts at LO with
β4/R = 70, g(R) was tuned to a relative accuracy of 10−12.
The total range of R values presented in this work is β4 =
[20, 70] (or R = [1.59, 0.47] a.u.). As we are going to see, this
range in β4 extends high enough for many conclusions to be
drawn about the scope of ID-EFT. At small R, a0 must be cal-
culated to high precision—approximately 0.01%. This limit
was reached using the results of Appendix A. Convergence
with respect to maximum r in the solution of Eq. (2) was
demonstrated across a range of upper values up to 1000 a.u.
The required precision was not reached until approximately
600 a.u.

A. Scattering

The efficacy of our proposed EFT is first tested in
the continuum where we study the LO and NLO S-wave
phase shifts. Figure 1 shows the ID-EFT predictions for the
phase shifts, alongside the Temkin-Lamkin results, the ERE,
and the WKB prediction of Ref. [31]. We find that the varia-
tion of the ID-EFT phase shifts for cutoffs near the breakdown
scale is minimal: were we to draw bands of cutoff variation

1000 2000 3000 4000 5000
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−12

−11

−10

−9

−8
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δ �
=
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(r

ad
)

100 102

−2

0

2

LO
NLO
TL
WKB

FIG. 1. The S-wave phase shifts are shown as a function of the
dimensionless quantity, (kβ4)2. The EFT at LO (solid blue line) and
NLO (green dashed line) at a cutoff R = β4/70 are compared with
the Temkin-Lamkin potential (orange dot-dashed line) [3,42,43] and
a WKB approach [31] with R varied between β4/45 and β4/70 in
the classically forbidden region (red band). ERE results are included
in the inset. The purple dotted line represents the a0 term. The
black, densely dotted line includes the term linear in k as found
in Refs. [32,33]. The LO prediction is included in the inset but
overlapped by the TL and NLO lines.

for β4/R above, say, 50, they would be barely visible on
the scale of the figure. Therefore, our results are plotted at
minimum R (or maximum β4/R ≈ 70). We find excellent
agreement between ID-EFT and the Temkin-Lamkin phase
shifts already at LO over a momentum range that extends
well beyond kβ4 ≈ 1, indicating that the breakdown scale
of the theory is relatively high. In other words, the higher
momentum range over which this agreement holds suggests
that the curvature of the 1/r4 potential is a crucial piece of
physics in the Temkin-Lamkin phase shifts. The agreement at
lower momenta is due to two factors. First, the inclusion of the
1/r4 interaction allows us to capture physics at the k ∼ 1/β4

scale. Second, by fixing a0 at LO, we demand agreement at
threshold. For comparison, the inset of Fig. 1 shows also the
first two terms in the ERE from the inverse scattering length
a0 and a correction linear in kβ4 [32,33]. While they approach
the TL results for kβ4 � 1, ID-EFT captures the sign change
of the phase shifts already at LO. At NLO, as expected, the
agreement between ID-EFT and TL improves significantly at
larger momenta.

Figure 2 offers a closer look into the errors in the LO and
NLO predictions at minimum R. The most important features
are the slopes of the LO and NLO lines—the rates at which
the error grows—as kβ4 gets very large. To interpret this
accurately, it is important to keep in mind that the LO and
NLO predictions are both dependent on the cutoff, 	 ∼ 1/R,
and breakdown scale, 	b. Where k is greater than the typical
momentum scales of the problem, but less than 	b, we expect
the 	 dependence to dominate the errors, as our cutoff is not
very large. This appears in Fig. 2 between (kβ4)2 ∼ 103 and
104, where the slope of the NLO line is clearly greater than
the slope of the LO line. This is of course by design, because
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1|
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FIG. 2. Relative errors with respect to the Temkin-Lamkin S-
wave phase shifts are shown for the LO (solid blue line) and NLO
(dashed green line) predictions at maximum β4/R ≈ 70. The dot-
dashed red line represents the WKB prediction [31]. The solid, grey,
vertical line corresponds to the sixth-excited-state binding momen-
tum. Both scales are logarithmic.

at NLO we have suppressed the 	 (or R) dependence. Finally,
one can expect that these two lines cross above (kβ4)2 ∼ 104.
This intersection indicates the breakdown scale of ID-EFT in
this system,

	b ∼ 100/β4 ≈ π/aB. (16)

Thus, the phase-shift results indicate that ID-EFT holds in a
region somewhat larger than naively expected.

Bearing this in mind also yields qualitative understand-
ing of other features of Fig. 2. At low momenta, the NLO
prediction is significantly closer to the Temkin-Lamkin re-
sult than the LO one is. However, the slopes of the LO and
NLO deviations on the log-log plot of Fig. 2 are similar
for (kβ4)2 � 103 even though NLO is consistently almost
an order of magnitude more accurate at these low values of
k. (Note that kβ4 is still markedly larger than 1 there, so
effective-range theory does not apply.) The similarity of the
slopes is not coincidental. Forcing the NLO calculation to
reproduce B6 induces an error in the NLO calculation of order
(kβ4)22μB6/	

2
b. For kβ4 � 103 this effect is larger than the

(kβ4)4 errors that dominate in the upper end of the EFT’s
validity range.

This analysis shows that ID-EFT is systematically im-
provable. The deviation from the underlying theory—the
Temkin-Lamkin potential—is parametrically smaller at NLO
than it is at LO. In contrast with the systematic improvement
in ID-EFT, the WKB approximation [31] works as well as
LO at high momenta but fails at low momenta. Details of the
calculation of the WKB phase shifts are given in Appendix E
and results are plotted in Fig. 1 as a band to indicate the varia-
tion with respect to R in the range of the classically forbidden
region. It nearly overlaps with the LO curve, but differences
are highlighted in the inset of Fig. 1: its assumptions are
clearly not applicable at smaller values of k. Figure 2 reveals
that the WKB approach describes the Temkin-Lamkin phase
shift to better than 2% once (kβ4)2 � 10—and as long as kaB

100 101

β
(n)
TL /R

0.25

0.50

0.75

1.00

1.25

1.50

1.75

B
(n

)
/
B

(n
)

T
L

LO
NLO

FIG. 3. Binding energies from both LO (solid blue lines) and
NLO (dash-dotted green lines) are shown relative to the Temkin-
Lamkin binding energies, B(n)

TL. The results are plotted against
the ratio of length scale associated with each state—defined in
Eq. (17)—to the short-distance cutoff R. Vertically stacked pairs are
shown successively for n = 3 (leftmost) through to n = 6 (right-
most). States with n < 3 are not shown as it is clear the EFT
convergence breaks down for them.

remains small. The WKB curve crosses the Temkin-Lamkin
curve at (kβ4)2 ≈ 3 × 102, leading to the dip seen in Fig. 2,
and for (kβ4)2 � 103 it nearly agrees with LO.

B. Bound states

Given the success of our description of phase shifts, we
now turn to information from the bound-state spectrum, in
order to obtain a parallel assessment of the ability of the
EFT to capture the energy dependence below threshold for
|E | � 	2

b/2μ. As a0 ≈ −2β4 is negative and not dramatically
larger than β4, we do not expect that a very shallow bound
state of size much greater than β4 is present in this system,
i.e., we anticipate that B(6) is not fine tuned.

The LO and NLO results for the binding energies B(n) of
the four shallowest S-wave bound states are shown in Fig. 3
relative to the Temkin-Lamkin states. Each state is plotted
against β

(n)
TL /R, where

β
(n)
TL ≡ 1/

√
2μB(n)

TL (17)

is the characteristic size of the nth Temkin-Lamkin bound
state with binding energy B(n)

TL. Because the characteristic size
decreases as we go down the spectrum, the lines do not cover
the same horizontal span even though they are generated with
the same R values. One can see the energies converge as R
increases towards 70/β4, but much smaller values of R would
be needed to see the deeper states “flatten out.”

The shallowest, n = 6, state turns out to be two orders of
magnitude deeper than the typical low-energy scale associated
with β4 in this system,

ε4 ≡ 1

2μβ2
4

≈ 1 × 10−6 a.u.. (18)
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Nevertheless, we obtain excellent agreement at LO with the
Temkin-Lamkin result for this state, which is represented by
the rightmost solid blue line in Fig. 3. This state is still of low
energy compared to the energies of states in atomic hydrogen
and corresponds to a length scale of approximately 4 a.u.
The fact that this length scale is markedly smaller than a0

demonstrates that our prediction is not a consequence of large-
scattering-length universality. We predict B(6) so well using
only β4 and a0 as inputs because we included the attractive
1/r4 potential at LO in our EFT and most of the state’s wave
function extends well outside hydrogen’s electron cloud. At
NLO, we renormalize gNLO(R) to the Temkin-Lamkin binding
energy of this state, so agreement is by construction.

But introducing the NLO interaction reduces the dis-
agreement between the other binding energies and the
Temkin-Lamkin energies. The deeper states in Fig. 3 at
smaller β

(n)
TL /R values are an excellent visualization of how the

theory scales with energy. B(5), the fifth excited state, second
pair of lines from the right, is captured to within ∼10% at LO
and ∼1% at NLO. Moving downward in the spectrum, where
the pion’s wave function has more overlap with the hydrogen
atom, the NLO error for B(4) and B(3) grows systematically
larger. This is a natural outcome in ID-EFT. We are fixing the
scattering amplitude at threshold and continuing it to negative
energies to find poles, including the analyticity properties im-
plied by the 1/r4 potential in that continuation. In fact, by the
time we reach B(3), NLO is not an improvement—both LO and
NLO are off by 50%. This indicates that the series does not
converge, which is why the ground and first two excited states
are not shown in Fig. 3. As the continuation is made over a
bigger energy range our prediction becomes less accurate.

In order to extrapolate our results to the R → 0 limit,
we assume that the effects associated with finite R can be
accounted for via an expansion in R/β4. Therefore, we rely
on the assumed convergence behavior of observables close to
the renormalization point to extract asymptotic estimates. We
expand

O(R) = O∞

[
1 +

∞∑
m=1

cm

(
R

β4

)m
]
, (19)

with O∞ being the asymptotic result for the LO or NLO
energy of these bound states in ID-EFT and cm the coefficients
of the expansion. In the leading-order case the ID-EFT results
for all seven binding energies are found by fitting the first
coefficient of the expansion (19) and then reporting only O∞
in Table I. At NLO the situation is more complicated: both the
m = 1 and m = 4 term are needed to accurately fit the data.
The rationale for this fit function is explained in Appendix D.

The NLO results show convergence to the TL results for
the shallowest three states, but for the lowest three states NLO
repulsion is so strong that they are no longer bound. (This
further supports the use of the 14-state branch in our local
regulator scheme.) This reordering of the states at NLO occurs
already for the n = 3 state: its repulsive NLO correction is
so large that it renders B(3)

NLO smaller than B(4)
NLO. The matrix

element in Eq. (13) is clearly no longer a perturbation for
n � 3.

The error of these binding energies relative to the Temkin-
Lamkin result is shown in Fig. 4. It ranges from 1% for the

TABLE I. Asymptotic (R → 0) results for LO and NLO binding
energies compared to the Temkin-Lamkin spectrum. LO results are
obtained from a fit to Eq. (19). Details about the NLO fit are given in
Appendix D. Negative values indicate that the state is not bound.

n BLO (a.u.) BNLO (a.u.) BTL (a.u.)

6 1.19 × 10−04 1.20 × 10−04 1.20 × 10−04

5 1.75 × 10−03 1.56 × 10−03 1.56 × 10−03

4 8.59 × 10−03 5.39 × 10−03 6.12 × 10−03

3 2.72 × 10−02 4.91 × 10−03 1.47 × 10−02

2 6.84 × 10−02 −3.02 × 10−02 2.74 × 10−02

1 1.49 × 10−01 −1.84 × 10−01 4.42 × 10−02

0 2.98 × 10−01 −6.95 × 10−01 6.48 × 10−02

sixth excited state, to 12% for the fifth excited state, to a
factor of 4 for the ground state. It is notable that the LO error
grows linearly with the energy of the bound state: the slope is
∼1. The NLO interaction removes this error but leaves errors
quadratic in energy, and indeed at NLO the slope is ∼2.

Thus, we find evidence that the three shallowest states are
within the regime of validity of ID-EFT, even though their
binding energies vary by a factor of ∼100. The breakdown
binding energy ∼10−2 a.u. inferred from where the LO and
NLO trends intersect in Fig. 4 implies 	b ∼ 100/β4. This
value is in good agreement with the determination from scat-
tering, Eq. (16).

IV. CONCLUSIONS

We presented an effective field theory, ID-EFT, to describe
the low-energy scattering of a heavy charged particle on a
neutral atom, and the associated shallowest bound states. This
EFT captures at leading order the physics of the long-range,
but singular attractive, potential created by the atom’s polar-
ization. Renormalization requires at LO also a short-range
interaction that is fixed by one datum. At next-to-leading

102 103 104

[β4/β
(n)
TL ]2

10−2

10−1

100

101

| B
(n

)
/B

(n
)

T
L
−

1|

FIG. 4. The relative error between the Temkin-Lamkin binding
energies BTL and those obtained with ID-EFT. LO results are shown
as blue circles. NLO results are shown in green—squares indicate
bound states while x’s indicate that the NLO correction pushes the
state into the continuum.
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order a second short-range interaction, determined by a sec-
ond datum, systematically improves results for observables till
momenta reach the breakdown scale.

We illustrated the workings of the EFT above and below
threshold when the charged particle is a pion and the atom
is hydrogen. We took as data results of the Temkin-Lamkin
potential: the scattering length at LO and the shallowest bind-
ing energy at NLO. We compared the EFT outcomes with the
exact results for other predictions using the same potential.
Because, relative to the scale set by the long-range potential,
the scattering length is not particulalry large and the shallow-
est state is not particularly shallow, there is no fine tuning in
this system and the EFT goes well beyond the effective range
expansion.

We found a momentum breakdown scale somewhat larger
(by a factor ≈ π ) than the inverse of the Bohr radius, 1/aB. For
smaller momenta, phase shifts are well described at LO and
the description improves systematically at NLO. The three
shallowest bound states are also better reproduced at NLO
than at LO. For larger momenta, the pion probes the inside
of the atom; the atom can no longer be treated as a single unit.
The four lowest-lying states of the pion-hydrogen ion have
sizes somewhat smaller than aB and are outside the regime of
validity of the EFT.

Although here we used the Temkin-Lamkin potential as
an example, ID-EFT offers a simple way to account for the
long-range properties of this type of system without requiring
detailed knowledge of the dynamics inside the atom. ID-EFT
can be applied to other heavy charged particles and/or atoms
and compared to data and/or other calculations where atomic
structure is taken into account. For example, the proton-
hydrogen system has been studied with a three-body model
and a uniquely shallow state predicted [39]. A comparison
with our methods would be useful and the ability to quantify
the uncertainties associated with the prediction of this shal-
low bound state could motivate experimental measurements.
Regardless, we expect to find a similar convergence pattern,
although details will depend on the values of leading-order
parameters and the breakdown scale.
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APPENDIX A: ACCURATE CALCULATIONS
OF THE SCATTERING LENGTH IN THE PRESENCE

OF A 1/r4 POTENTIAL

The zero-energy solution to the reduced radial Schrödinger
equation for a finite-range potential goes asymptotically like

u(r) ∝ 1 − r/a0. (A1)

In general, the solution can be calculated numerically and
the long-range portion of the wave function can be fit to a
straight line such that the slope and intercept give an accurate
and stable estimate of the scattering length. However, once a
long-range potential is introduced, the tail of the interaction
can make this extraction slow to converge.

In order to overcome this challenge, we derive the so-called
“infrared corrections” perturbatively assuming that the 1/r4

potential is weak at large distances. The exact solution be-
comes a sum

u(r) =
∞∑

i=0

u(i)(r). (A2)

The first-order correction at zero energy is then

− d2

dr2
u(1)(r) = β2

4

r4
u(0)(r), (A3)

where u(0)(r) is taken to be Eq. (A1) up to an overall factor.
After integration, we obtain

u(1)(r) = β2
4

2a0

(
1

r
− a0

3r2

)
, (A4)

and a better approximation for u(r) (again, up to an overall
factor),

u(r) ≈ 1 − r

a0
+ β2

4

2a0

(
1

r
− a0

3r2

)
. (A5)

With this corrected form of the zero-energy solution, we are
able to fit the coefficients of

u(r) = b0 + b1r + b−1/r + b−2/r2, (A6)

and reliably extract a0 = −b0/b1 at much lower r. Addition-
ally, we are able to compare the fit to the predicted coefficients
of the 1/r and 1/r2 terms where

β2
4

2a0
= b−1

b0
, (A7)

β2
4

6
= b−2

b0
. (A8)

We find excellent agreement between the fit results and the
analytical predictions.

APPENDIX B: LOCAL BRANCHES

Several aspects of renormalization studies depend strongly
on the ability to numerically approximate the limit β4/R →
∞. In local systems characterized by singular interactions,
as R decreases and more of the singular well is exposed,
the strength of the repulsive counterterm grows quickly. For
these same local systems, there are an infinite number of
“branches,” each corresponding to a unique number of bound
states, as noted in Ref. [8]. In order to achieve the practical
β4/R → ∞ limit for the seven states mimicking the Temkin-
Lamkin states, we chose to leverage this option and work on
the n = 14 branch.

The advantages of this choice are highlighted in Fig. 5,
where g(n=7)

LO begins to increase rapidly at R ≈ β4/40, but
g(n=14)

LO does not reach the same value until R ≈ β4/70. Us-
ing this deeper branch, shallower states reach the asymptotic
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FIG. 5. The running of the LO coupling for the n = 7 (solid
purple) and n = 14 branches (dashed black).

regime—where Eq. (19) is valid—faster. On the n = 14
branch, the seven states of interest are now the shallowest
states, and we are able to capture far more of the asymptotic
behavior.

APPENDIX C: NLO IMPLEMENTATION COMPARISON

The NLO amplitude can be written in different forms, some
of which we briefly compare here. In all cases, we define

t (NLO) ≡ t (LO) + δt, (C1)

and the LO t matrix is given by Eq. (11).
In the first method, presented in Sec. II B,

δt = −2μ

k
〈φ(LO,−)|VNLO|φ(LO)〉. (C2)

From the relation between scattering wave function and the
scattering amplitude, we can write instead

δt = (1 + t (LO)G0)VNLO(G0t (LO) + 1). (C3)

This form is used, for example, in Ref. [50]. By substituting
Eq. (11) in Eq. (C3),

δt = VNLO + VNLOG0t (LO)

+VLOG0(1 + t (LO)G0)VNLO(G0t (LO) + 1)

= VNLO + VNLOG0t (LO) + VLOG0 δt, (C4)

which is the form used in Refs. [51,52]. We have checked
numerically that these three equivalent forms for δt indeed
give the same result.

Since the calculation of δt respects unitarity only pertur-
batively, there are then different ways to express the relation
between t (NLO) and δ(NLO). Starting with the standard (unitary)
relationship between the scattering amplitude and the phase
shift,

t (NLO) = 1

2i

(
e2iδ(NLO) − 1

)
, (C5)
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FIG. 6. (Upper panel) The real parts of the NLO phase shifts
computed using Eq. (C9) (solid green line) and Eq. (C5) (dashed
orange line). The TL results are shown as a dash-dotted red line.
(Lower panel) Imaginary components of the NLO phase shifts (col-
ors and styles are the same as in the upper panel). The (strictly real)
difference between the TL results and the LO phase shifts is indicated
with a dash-dotted red line.

we write δ(NLO) = δ(LO) + ε and expand in small ε, ignoring
O(ε2) terms and higher. This yields

t (NLO) ≈ 1

2i

[
e2iδ(LO)

(1 + 2iε) − 1
]
. (C6)

Simplifying, we get

t (NLO) = t (LO) + ε e2iδ(LO)
, (C7)

where

t (LO) = 1

2i

(
e2iδ(LO) − 1

)
(C8)

and the NLO correction to the scattering amplitude is related
to the NLO piece of the phase shift by

ε = e−2iδ(LO)
δt . (C9)

This relation is strictly perturbative, in the sense that all quan-
tities are computed to NLO accuracy and not further.

If instead one computes δ(NLO) from δt nonperturbatively,
via Eq. (C5), thereby assuming that unitarity remains strictly
valid at NLO, two key differences emerge. First, the real
part of the phase shift is less accurate, as seen in the upper
panel of Fig. 6. Second, an imaginary component accumulates
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at higher momenta—shown explicitly in the lower panel of
Fig. 6. Consistently computing the scattering amplitude and
phase shifts perturbatively produces not only formally correct
results but more accurate predictions.

Note that the imaginary component of the phase shift ac-
cumulated in such a calculation, although unphysical, does
provide insight into the expected size of the next-to-next-to-
leading-order (NNLO) correction. The first term omitted in
the expansion of exp(2iε) in Eq. (C6) is real and O(ε2). If we
consider also the prefactors in Eq. (C6), we conclude that this
is the piece of Eq. (C5) that generates the leading piece of the
imaginary part of the nonperturbative phase shift, and hence
(δ(NLO)) should also be O(ε2). In the lower panel of Fig. 6,
we see in the context of the O(ε) difference between the TL
phase shifts and our LO phase shifts that this conclusion is
well supported.

Retaining �(δ(NLO)) from Eq. (C5), and simply ignoring
(δ(NLO)) accounts for some effects beyond NLO. But this
is an incomplete NNLO calculation. The line this produces
in Fig. 2 has approximately the same slope as the NLO line,
which is based on Eq. (C9). However, as �(δ(NLO)) calculated
nonperturbatively gives worse results (compared to the TL
phase shifts) than the consistent perturbative calculation, the
line this produces in Fig. 2 is displaced up, towards the LO
curve. It then intersects the LO curve at a smaller momentum,
leading to an underestimate of the breakdown scale. This is
just a new example of a well-known phenomenon: including
a partial subset of small corrections does not necessarily im-
prove the result. For another example of the same type, see
Fig. 5 of Ref. [53], and for a more dramatic example, with
far-reaching consequences, Ref. [54].

APPENDIX D: R DEPENDENCE OF THE NLO BINDING
ENERGIES

Extracting asymptotic binding energies at LO is relatively
straightforward, but it turns out to be markedly more compli-
cated at NLO. First, we observe that the NLO binding energy
formula, Eq. (13), contains two different R-dependent terms.
The first is BLO(R). The second includes a matrix-element
ratio when the NLO renormalization condition

gNLO(R) =
(

B(6)
TL

B(6)
LO

− 1

)
1〈

ψ
(6)
LO

∣∣χ ∣∣ψ (6)
LO

〉 (D1)

is inserted. B(n)
LO(R) is well described with a straight line, i.e.,

without including any of the m > 1 terms in Eq. (19). The
matrix-element ratio is more complicated: we expect it to be
even in R because of analyticity in the regulator parameter.
But whether the nonlinear piece of the NLO binding energy is
proportional to R2 (simplest dependence) or R4 (which is the
leading R dependence of the regulator) is not immediately ap-
parent. Consequently, we have tried several approaches to fit
the NLO binding energies and record them here for posterity.

We require two features of our NLO binding energy analy-
sis. First, we expect that the NLO renormalization procedure
ought to reduce the linear R dependence for states where
the binding momentum is not far from the additional renor-
malization point, γ (6): for these states the coefficient of the
linear-in-R term will be smaller than those found when fitting
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FIG. 7. Results of a fit to Eq. (19) where only m = 1 and m = 4
terms are included. (Top panel) Binding energy as a function of
the cutoff distance R. Both quantities are in atomic units. Data are
indicated as blue circles. The fit is represented with a solid green
line. The asymptotic value of the binding energy is indicated on the
y axis as a green square. Shaded (purple online) regions highlight
the range of R over which the fit was conducted. (Middle panel)
Data and fit results for the linear term of our fit are shown with
the asymptotic binding energy and the best-fit quartic R dependence
subtracted. (Bottom panel) The residuals of our R + R4 fit. Note
that the y scale in the bottom panel is expanded roughly 100 times
compared to the top panel. Note also that the difference in x-axis
range gets progressively smaller as one moves from the top to middle
to bottom panel.

the LO binding energies. Second, we expect that the EFT fails
systematically. The NLO corrections ought to increase with a
positive power of the binding momentum.

Figure 7 displays the steps we took to understand the R
dependence of the binding energy of the fourth excited state
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in our NLO calculation. The upper panel of Fig. 7 shows
the R dependence of this quantity is not exclusively linear.
A successful fit to Eq. (19) is shown together with the data.
While the ability of the fit to describe the data is clear (and
highlighted in the bottom panel), it seems odd at first glance
that data that is decreasing as R decreases leads to an asymp-
totic value that is larger than any value in the data set. The
minimum, and subsequent change in derivative, of B(4)

NLO with
respect to R is due to the linear term in the fit assuming a
dominant role, a role that it does not have for the R values at
which the fit is performed.

The middle panel of Fig. 7 shows that we can confidently
extract the linear coefficient in the region where we have data
on the bound state energy. In this panel we have subtracted
the asymptotic value and quartic term from the data, leaving
only the linear dependence. A linear fit is clearly an excellent
description of the residuals: the linear dependence that domi-
nates at small R is indeed present in the data even where the
quartic term is more significant.

The bottom panel of Fig. 7 then shows the residuals once
the linear-in-R term in our fit is subtracted. The residuals show
no systematic trend with R and are of order 10−7 in atomic
units. Any remaining R dependence will therefore not affect
the extrapolation at the level of accuracy we are quoting in
this paper.

To be thorough, we also fitted our data using R + R2 and
R + R2 + R4 forms. While these approaches did align with
the data in the region 0.467 < R < 0.54, they also produced
coefficients of the linear-in-R term that were larger than the
LO value of the same coefficient for states with n � 4, i.e.,

states where including NLO corrections and renormalizing to
B6 should have decreased the linear dependence on R. These
fits also yielded asymptotic values of the binding energies
that had no systematic trend with n, and showed clear signs
of overfitting. We defer the question of why there is no R2

term present in the function BNLO(R) to future work, only
commenting here that we do not believe this behavior will
prevail for all regulators.

APPENDIX E: DETAILS ABOUT THE WKB
CALCULATION

Reference [31] derives the phase shift at momentum k to
be

δ0(k) =  + π

4
− In

[
β2/(n−2)

n k
]2/(n−2)

(E1)

for singular potentials of the form 1/rn where n > 2. In this
expression In is a straightforward integral while the calcula-
tion of

 =
∫ ∞

r0

dr
√

−2µV (r) (E2)

is a little more delicate. Here, r0 is the classical turning point
where V (r) = 0. It is the point where the potential crosses
zero from below as the short-distance repulsion takes over
at shorter distances. This point was found with the FORTRAN

library MINIPACK for each value of R tested in this manuscript.
In the relevant range of R, r0 < R. The integral was then com-
puted numerically with another FORTRAN library, QUADPACK.
The variation of  is O(10−2) in radians.

[1] J. H. Van Vleck, The Theory of Electric and Magnetic Suscep-
tibilities (Oxford University Press, London, 1932).

[2] W. Frank, D. J. Land, and R. M. Spector, Rev. Mod. Phys. 43,
36 (1971).

[3] N. F. Mott and H. S. W. Massey, The Theory of Atomic Colli-
sions, 3rd ed. (Clarendon Press, Oxford, 1965).

[4] N. F. Mott and I. N. Sneddon, Wave Mechanics and Its Applica-
tions (Clarendon Press, Oxford, 1948).

[5] D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).
[6] D. B. Kaplan, arXiv:nucl-th/9506035.
[7] P. Lepage, arXiv:nucl-th/9706029.
[8] S. R. Beane, P. F. Bedaque, L. Childress, A. Kryjevski, J.

McGuire, and U. van Kolck, Phys. Rev. A 64, 042103 (2001).
[9] M. Bawin and S. A. Coon, Phys. Rev. A 67, 042712 (2003).

[10] H. E. Camblong and C. R. Ordóñez, Phys. Lett. A 345, 22
(2005).

[11] E. Braaten and D. Phillips, Phys. Rev. A 70, 052111 (2004).
[12] H.-W. Hammer and B. G. Swingle, Ann. Phys. 321, 306 (2006).
[13] M. Pavón Valderrama and E. Ruiz Arriola, Ann. Phys. 323,

1037 (2008).
[14] B. Long and U. van Kolck, Ann. Phys. 323, 1304 (2008).
[15] D. Bouaziz and M. Bawin, Phys. Rev. A 89, 022113 (2014).
[16] D. Odell, A. Deltuva, J. Bonilla, and L. Platter, Phys. Rev. C

100, 054001 (2019).
[17] H.-W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys.

92, 025004 (2020).
[18] K. M. Case, Phys. Rev. 80, 797 (1950).

[19] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev.
C 72, 054006 (2005).

[20] M. C. Birse, Phys. Rev. C 74, 014003 (2006).
[21] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[22] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[23] D. B. Kaplan, Phys. Rev. C 102, 034004 (2020).
[24] U. van Kolck, Front. Phys. 8, 79 (2020).
[25] A. Bulgac, G. A. Miller, and M. Strikman, Phys. Rev. C 56,

3307 (1997).
[26] S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck,

Nucl. Phys. A 700, 377 (2002).
[27] D. Odell, A. Deltuva, and L. Platter, Phys. Rev. A 104, 023306

(2021).
[28] B. Gao, Phys. Rev. A 58, 1728 (1998).
[29] B. Gao, Phys. Rev. A 58, 4222 (1998).
[30] B. Gao, Phys. Rev. A 88, 022701 (2013).
[31] V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A

59, 1998 (1999).
[32] T. F. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2,

491 (1961).
[33] T. F. O’Malley, L. Rosenberg, and L. Spruch, Phys. Rev. 125,

1300 (1962).
[34] For target atoms other than hydrogen, the size is, of course,

larger than aB.
[35] H. A. Bethe, Phys. Rev. 76, 38 (1949).
[36] H. van Haeringen and L. P. Kok, Phys. Rev. A 26, 1218 (1982).

062817-10

https://doi.org/10.1103/RevModPhys.43.36
https://doi.org/10.1016/j.ppnp.2003.09.003
http://arxiv.org/abs/arXiv:nucl-th/9506035
http://arxiv.org/abs/arXiv:nucl-th/9706029
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.67.042712
https://doi.org/10.1016/j.physleta.2005.06.110
https://doi.org/10.1103/PhysRevA.70.052111
https://doi.org/10.1016/j.aop.2005.04.017
https://doi.org/10.1016/j.aop.2007.08.003
https://doi.org/10.1016/j.aop.2008.01.003
https://doi.org/10.1103/PhysRevA.89.022113
https://doi.org/10.1103/PhysRevC.100.054001
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1103/PhysRev.80.797
https://doi.org/10.1103/PhysRevC.72.054006
https://doi.org/10.1103/PhysRevC.74.014003
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevC.102.034004
https://doi.org/10.3389/fphy.2020.00079
https://doi.org/10.1103/PhysRevC.56.3307
https://doi.org/10.1016/S0375-9474(01)01324-0
https://doi.org/10.1103/PhysRevA.104.023306
https://doi.org/10.1103/PhysRevA.58.1728
https://doi.org/10.1103/PhysRevA.58.4222
https://doi.org/10.1103/PhysRevA.88.022701
https://doi.org/10.1103/PhysRevA.59.1998
https://doi.org/10.1063/1.1703735
https://doi.org/10.1103/PhysRev.125.1300
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRevA.26.1218


EFFECTIVE FIELD THEORY FOR THE BOUND STATES … PHYSICAL REVIEW A 108, 062817 (2023)

[37] T. Barford and M. C. Birse, Phys. Rev. C 67, 064006 (2003).
[38] T. Barford and M. C. Birse, J. Phys. A 38, 697 (2005).
[39] R. Lazauskas and J. Carbonell, Few-Body Syst. 31, 125 (2002).
[40] J. Carbonell, A. Deltuva, and R. Lazauskas, Compt. Rend. Phys.

12, 47 (2011).
[41] R. Lazauskas, arXiv:1904.04675 [nucl-th].
[42] A. Temkin, Phys. Rev. 116, 358 (1959).
[43] A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
[44] W. Oehm, H. Bürger, and W. Sandhas, Phys. Rev. A 42, 6560

(1990).
[45] D. B. Kaplan and J. V. Steele, Phys. Rev. C 60, 064002

(1999).
[46] L. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy. Soc. A

254, 259 (1960).

[47] H. Nakanishi and D. M. Schrader, Phys. Rev. A 34, 1810
(1986).

[48] M. C. Birse, J. A. McGovern, and K. G. Richardson, Phys. Lett.
B 464, 169 (1999).

[49] I. J. Thompson and F. M. Nunes, Nuclear Reactions for
Astrophysics: Principles, Calculation and Applications of Low-
Energy Reactions (Cambridge University Press, Cambridge,
2009).

[50] B. Long and C.-J. Yang, Phys. Rev. C 86, 024001 (2012).
[51] J. Vanasse, Phys. Rev. C 88, 044001 (2013).
[52] S. König, J. Phys. G 44, 064007 (2017).
[53] I. Stetcu, J. Rotureau, B. R. Barrett, and U. van Kolck, Ann.

Phys. 325, 1644 (2010).
[54] D. R. Phillips and T. D. Cohen, Phys. Lett. B 390, 7 (1997).

062817-11

https://doi.org/10.1103/PhysRevC.67.064006
https://doi.org/10.1088/0305-4470/38/3/009
https://doi.org/10.1007/s006010200010
https://doi.org/10.1016/j.crhy.2010.12.001
http://arxiv.org/abs/arXiv:1904.04675
https://doi.org/10.1103/PhysRev.116.358
https://doi.org/10.1103/PhysRev.121.788
https://doi.org/10.1103/PhysRevA.42.6560
https://doi.org/10.1103/PhysRevC.60.064002
https://doi.org/10.1098/rspa.1960.0019
https://doi.org/10.1103/PhysRevA.34.1810
https://doi.org/10.1016/S0370-2693(99)00991-0
https://doi.org/10.1103/PhysRevC.86.024001
https://doi.org/10.1103/PhysRevC.88.044001
https://doi.org/10.1088/1361-6471/aa60d6
https://doi.org/10.1016/j.aop.2010.02.008
https://doi.org/10.1016/S0370-2693(96)01411-6

