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The confined variational method is used to study the elastic scattering of the positron from the ground-state
helium with the scattering energy in the range from 0.05 eV to 11.02 eV. Describing the correlation effect with
explicitly correlated Gaussians, we obtain accurate phase shifts, S-wave scattering length, elastic scattering cross
sections, and annihilation parameters for different incident momenta. Specifically, by a least-squares fit of the
data to the effective-range theory, we determine the room temperature annihilation parameter Zeff = 3.955, which
is in perfect agreement with the measured result of 3.94 ± 0.02 [J. Phys. B 8, 1734 (1975)].
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I. INTRODUCTION

The positron, which is the antiparticle of the electron, is
the most common form of antimatter. In recent years, positron
experimental technology has advanced, leading to the avail-
ability of more intense positron beams [1,2]. Positrons are
crucial tools in various scientific fields, including the testing
of quantum electrodynamics and the standard model of parti-
cle physics [3–5], astrophysics [6], condensed matter physics
[7], and medical imaging [8]. However, certain fundamental
interactions of positrons with ordinary matter, such as low-
energy positron annihilation and positron binding to neutral
atoms and molecules, are not fully understood yet.

Positron scattering has been extensively studied for many
years, both experimentally and theoretically by numerous
researchers [9–26]. These studies have focused on under-
standing the behavior of positrons when they interact with
various substances. To achieve this, sophisticated theoretical
methods have been developed to account for the formation
of positronium (Ps), a transient bound state of a positron and
an electron. Additionally, calculations have been performed to
determine the cross sections for different scattering processes.
In the case of atomic and molecular targets, the positron
annihilation cross section is conventionally parameterized as
σa = πr2

0 (c/v)Zeff , where r0 is the classical electron radius, c
the speed of light, v the incident positron velocity, and Zeff the
effective electron number participating in the annihilation pro-
cess [27]. However, there exist some discrepancies between
experimental annihilation values and theoretical calculations.
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They may be caused by various factors such as experimental
uncertainties, limitations in theoretical models, or complex
interactions within the studied systems. Further research and
improvements are needed to resolve these discrepancies and
achieve a more accurate understanding of positron scattering
and annihilation processes.

The confined variational method (CVM) approach, first
proposed by Mitroy et al. [28] and further developed by Zhang
et al. [29], is an effective theoretical method for studying
low-energy elastic scattering problems. This method has been
successfully applied to various scattering systems, including
e-H, e+-H, e-He, e+-He, Ps-H, Ps-He, and Ps-H2 scatterings
[28–34]. Recently, Wu et al. [31] have developed a technique
that effectively addresses non-physical confinement effects,
allowing the extension of CVM to non-S-wave scatterings
at higher energies. The primary objective of this study is to
extend the previous CVM calculation of e+-He scattering by
considering higher partial waves and higher scattering ener-
gies. This will provide more accurate scattering data, serving
as a new benchmark for other theoretical and experimental
investigations.

The rest of the paper is structured as follows. In Sec. II, a
brief description of the confined variational method is given.
In Sec. III, the scattering phase shifts, S-wave scattering
length, elastic scattering cross sections, and annihilation pa-
rameters are presented. Finally, Sec. IV is a summary and
outlook. The phase shifts are expressed in radians, and atomic
units (a.u.) are used throughout unless otherwise stated.

II. THEORY

The theoretical method used in the present paper to study
the elastic scattering of a positron from a helium atom is
the CVM. Here we give a brief introduction to this method
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[28,29]. In this approach, a many-body calculation is initially
conducted by incorporating a confining potential Vcp into the
original Hamiltonian H of the e+-He system. As a result, the
problem is transformed into a bound-state eigenvalue problem

(H + Vcp)�(r, s) = E�(r, s), (1)

with

H = −1

2

3∑
i=1

∇2
i +

3∑
i=1

Qqi

ri
+

3∑
i< j

qiq j

|ri − r j | , (2)

where indexes 1, 2, and 3 refer to the two electrons and the
positron, respectively, qi are their corresponding charges, and
Q is the helium nuclear charge. Additionally r denotes collec-
tively the coordinates (r1, r2, r3) and s the spins (s1, s2, s3). It
is assumed that the nuclear mass is infinite. The eigenvalue E
is the total energy of the confined scattering system, including
the ground state energy of atomic helium E0 and the scattering
energy Es = k2/2, with k being the scattering momentum. The
eigenfunction �(r, s) is expanded in terms of the explicitly
correlated Gaussian (ECG) basis [35]

φn(r, s) = |v|2Kn+L exp

(
−1

2
rT Anr

)
YLM (v)χ (s), (3)

where |v|2Kn+L, with Kn an non-negative integer, is the prefac-
tor that plays a key role in describing the increasing number of
nodes of the wave function, v = uT r, with uT = (u1, u2, u3)
being a global vector, χ (s) is the spin function, An is a param-
eter matrix, YLM is the spherical harmonics, and L and M are
the quantum numbers for the total orbital angular momentum
and its z component, respectively. For instance, for the L = 1
and k = 0.3 case, we employ 420 basis functions for each Kn

value of 0, 1, 2, 3, and 4. Consequently, the total number of
basis functions used amounts to 2100.

The confining potential used here is

Vcp(r3) =
{

0, r3 < R0,

G(r3 − R0)2, r3 � R0,
(4)

where r3 is the distance between the positron and helium nu-
cleus, and R0 is the confining radius. Moreover, R0 is carefully
selected to guarantee that the intricate short-range interaction
between the positron and helium can be disregarded outside
the sphere of radius R0. In this study, the value of R0 is chosen
as 17a0, where a0 is the Bohr radius.

The confining potential parameter G in Eq. (4) is tuned
to ensure that a specific total energy E is yielded. With the
confining potential Vcp thus constructed, we then solve the
one-dimensional bound-state problem[

−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ Vm(ρ) + Vcp(ρ)

]
�(ρ) = E ′�(ρ).

(5)

In this step, we need to establish an adjustable model potential
Vm that has the same scattering energy E ′ = Es under the same
confining potential Vcp. We choose Vm(ρ) to have the form of

Vm(ρ) = λe−αρ − αd

2ρ4
[1 − e−(ρ/β )6

], (6)

where λ, α, and β are adjustable parameters, and the long-
range polarization potential of the term ∼ρ−4 is explicitly

TABLE I. Convergence test of the confining parameter G, the
total energy E , the positron momentum k, and the phase shift δk

L =
δ0.5

0 for the e+-He scattering, as the size of basis set N increases. The
notation a[b] represents a × 10b. In atomic units.

N G E k δ0.5
0 (radians)

1200 1.7618605[−3] −2.7787049 0.49999999989 −2.0764[−2]
1600 1.7618224[−3] −2.7787190 0.49999999995 −2.0800[−2]
2000 1.7617824[−3] −2.7787224 0.50000000014 −2.0838[−2]
2400 1.7617814[−3] −2.7787233 0.50000000018 −2.0839[−2]
2800 1.7617813[−3] −2.7787243 0.50000000018 −2.0839[−2]

included with αd = 1.3832 a.u. being the polarizability of the
ground-state helium [36]. In this work, we fix α = 0.5 and
β = 5, and adjust λ so that the bound-state problem Eq. (5)
can yield the eigenvalue E ′ = Es = k2/2 for given k. Finally,
the phase shift δk

L is determined by solving the one-dimension
scattering equation for Vm[

−1

2

d2

dρ2
+ L(L + 1)

2ρ2
+ Vm(ρ)

]
φ(ρ) = Esφ(ρ). (7)

III. RESULTS AND DISCUSSIONS

A. Phase shifts

Table I presents the convergence study of confining param-
eter G and δk

L with L = 0 and k = 0.5a−1
0 as the size of basis

set N increases. We can see that δ0.5
0 converges smoothly to

fourth significant figure. In general, more basis functions are
needed as k and L increase due to the increasing complexity
of the wave function. In the present CVM calculations, the
smallest basis set is N = 2100 for δ0.1

0 and the largest one is
N = 3600 for δ0.9

2 .
Table II lists the present S-, P-, D-, and F -wave phase

shifts, and a comparison with various theoretical methods, in-
cluding the many-body method (MBM) [24], Kohn variational
method (KVM) [37], random phase shift exchange approx-
imation (RPSEA) [38], convergent close coupling method
(CCC) [39], polarized-orbital approximation method (POM)
[40], and random phase approximation (RPA) [21]. The
graphical comparisons of the phase shifts are given in Fig. 1.
As the scattering energy increases, the S-wave phase shift
reaches a maximum and eventually becomes negative. And
it reaches maximum value at k = 0.2, which is 4.058 ×
10−2 rad. The absolute values of the CVM calculations are
slightly larger than the MBM ones for all the listed k. The
CCC results may not be such accurate since those datas
are extracted from the graphs of Ref. [39]. The CVM S-wave
results are larger than the RPSEA [38] and RPA values [21]
for almost all the k except for k = 0.9a−1

0 . However, there is a
huge difference for δ0.5

0 between the POM value [40] and the
CVM one. Overall, the CVM results are in good agreement
with the KVM ones [37] though most of them have only two
significant figures; in addition, the KVM value of δ0.1

0 is 6%
larger.

The CVM P-wave phase shifts are converged to the third
significant figure for k = 0.1a−1

0 and 0.3a−1
0 , and to the second

significant figure for 0.5a−1
0 � k � 0.9a−1

0 . Due to the diffi-
culty of the high partial wave calculation, the CVM D-wave
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TABLE II. Phase shifts for the e+-He scattering. The notation a[b] represents a × 10b. Phase shifts are in radians.

k (a.u) CVM (this work) MBM [24] KVM [37] RPSEA [38] CCC [39] POM [40] RPA [21]

S wave

0.1 3.289[−2] 3.005[−2] 3.5(1)[−2] 2.6[−2] −3.27[−2] 3.848[−2] 1.2[−2]
0.3 3.033[−2] 2.760[−2] 3.0(1)[−2] 1.6[−2] −2.41[−2] 4.373[−2] 1.0[−2]
0.5 −2.084[−2] −2.074[−2] −2.1(1)[−2] −3.2[−2] −2.74[−2] −0.428[−2] −3.7[−2]
0.7 −8.853[−2] −8.564[−2] −8.9(1)[−2] −9.1[−2] −9.30[−2] −7.162[−2] −9.9[−2]
0.9 −1.583[−1] −1.519[−1] −1.57(1)[−1] −1.52[−1] −1.63[−1] −1.418[−1] −1.54[−1]

P wave

0.1 2.648[−3] 2.403[−3] 3.0[−3] 2.6[−3] 2.65[−3] 2.60[−3] 5[−4]
0.3 1.922[−2] 1.778[−2] 1.9(1)[−2] 2.0[−2] 1.85[−2] 1.920[−2] 1.1[−2]
0.5 4.03[−2] 3.795[−2] 4.1(1)[−2] 3.9[−2] 3.94[−2] 3.997[−2] 3.1[−2]
0.7 5.30[−2] 5.340[−2] 5.6(1)[−2] 5.3[−2] 5.33[−2] 5.388[−2] 4.7[−2]
0.9 5.97[−2] 6.043[−2] 6.1(1)[−2] 5.7[−2] 5.80[−2] 5.642[−2] 5.2[−2]

D wave

0.1 4.21[−4] 3.788[−4] 1.4[−3] 6[−4] 5.76[−4] 4.0[−4]
0.3 3.77[−3] 3.396[−3] 4(1)[−3] 5.1[−3] 3.77[−3] 3.68[−3] 7[−4]
0.5 1.05[−2] 9.585[−3] 1.1(1)[−2] 1.16[−2] 1.04[−2] 1.025[−2] 6[−3]
0.7 2.01[−2] 1.868[−2] 2.1(2)[−2] 2.15[−2] 1.97[−2] 1.916[−2] 1.7[−2]
0.9 3.04[−2] 2.972[−2] 3.1(2)[−2] 3.2[−2] 3.06[−2] 2.842[−2] 2.9[−2]

F wave

0.1 1.45[−4] 1.4[−4] 2[−4] 2.35[−4] 1.3[−4]
0.3 1.28[−3] 1.24[−3] 1.6[−3] 1.1[−3] 1.21[−3]
0.5 3.52[−3] 4(1)[−3] 4.3[−3] 3.49[−3] 3.43[−3] 7[−4]
0.7 6.3[−3] 8(1)[−3] 8.5[−3] 6.55[−3] 6.88[−3] 4[−3]
0.9 1.2[−2] 1.2(1)[−2] 1.4[−2] 1.17[−2] 1.14[−2] 1.1[−2]

phase shifts are all converged to the second significant figure.
While the the CVM F -wave phase shifts are converged to the
second significant figure for 0.1a−1

0 � k � 0.5a−1
0 , and to the

first significant figure for k = 0.7a−1
0 and 0.9a−1

0 . The CVM
P-, D- and F -wave phase shifts gradually increase along with
the increase of k. Note that, there are significant differences
between the CVM and the KVM values at k = 0.1 and L = 1
and L = 2. To confirm this, convergence results of CVM δ0.1

1
and δ0.1

2 have been calculated and shown in Table III and
Table IV, respectively. Moreover, the KVM values of δ0.1

1

and δ0.1
2 are calculated by the formula δk

L ≈ παk2

(2L−1)(2L+1)(2L+3) .

The KVM value of δ0.1
2 is an order of magnitude larger than

other theoretical results. The POM [40] is more effective in
describing the P- and D-wave scattering than the S-wave
scattering, as indicated by the results of CVM calculations.
In a broader context, it becomes evident that the accuracy of

TABLE III. Convergence test of the confining parameter G, the
total energy E , the positron momentum k, and phase shift δ0.1

1 (in
radians) for the e+-He scattering, as the size of basis set N increases.
The notation a[b] represents a × 10b. In atomic units.

N G E k δ0.1
1

1600 0.7209473[−5] −2.898723757 0.09999999997 −2.9530[−2]
1800 0.7208084[−5] −2.898724095 0.10000000000 −2.7754[−2]
2000 0.7207090[−5] −2.898724335 0.09999999924 −2.6484[−2]
2200 0.7207086[−5] −2.898724338 0.09999999929 −2.6478[−2]

the RPA values for all three partial waves falls short of that
achieved by the corresponding RPSEA [38].

B. S-wave scattering length

The S-wave scattering length is an important quantity that
characterizes the strength of interaction between a positron
and an atom at low energies. The S-wave scattering length
as can be extracted from the effective-range expansion of the
low-k scattering phase shift, written as

tanδk
0 = −ask

(
1 + 4αd k2

3
lnk

)
− παd k2

3
+ Dk3 + Fk4,

(8)

where D and F are two fitting parameters. The higher-order
terms have been ignored in this expansion for low-k scat-
tering processes. To obtain an accurate scattering length, we
calculate the S-wave phase shift for 0.04a−1

0 � k � 0.08a−1
0

TABLE IV. Convergence test of the confining parameter G, the
total energy E , the positron momentum k, and the phase shift δ0.1

2 (in
radians) for the e+-He scattering, as the size of basis set N increases.
The notation a[b] represents a × 10b. In atomic units.

N G E k δ0.1
2

1600 0.2363711[−5] −2.898724352 0.09999999906 4.279[−4]
1800 0.2363705[−5] −2.898724358 0.09999999928 4.237[−4]
2000 0.2363701[−5] −2.898724365 0.09999999943 4.209[−4]
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FIG. 1. Comparison of the phase shifts for S, P, D, and F wave of e+-He scattering for k � 0.9a−1
0 . Black line for the CVM. Upper triangle

for the MBM [24]. Purple hexagon for the KVM [37]. Blue Square for the RPSEA [38]. Red line for the CCC [39]. Cyan circle for the POM
[40]. Pink down triangle the RPA [21].

and present the results in Table V. Figure 2 illustrates the
relationship between tanδk

0 and positron momentum k. We
determine the CVM scattering length by fitting Eq. (8). If
we fit tanδk

0 within the range 0.05a−1
0 � k � 0.08a−1

0 , the
scattering length is found to be as = −0.473a0. When fitting
tanδk

0 using both 0.04a−1
0 � k � 0.08a−1

0 and 0.04a−1
0 � k �

0.07a−1
0 , we obtain scattering lengths of as = −0.477a0 and

as = −0.480a0, respectively. Taking into account the uncer-
tainties associated with the fitting procedures, we recommend
a scattering length of as = −0.477a0. Table VI provides a
comparison of scattering lengths obtained from various the-
oretical calculations.

TABLE V. S-wave phase shifts of the e+-He scattering for k <

0.1. The notation a[b] represents a × 10b. Phase shifts are in radians.

k (a.u.) CVM (this work) MBM [24]

0.04 1.664[−2] 1.514[−2]
0.05 2.004[−2]
0.06 2.314[−2] 2.109[−2]
0.07 2.598[−2]
0.08 2.855[−2] 2.606[−2]

The CVM scattering length is consistent with the SVM-
stabilization value of −0.474a0 [41], the KVM-5 term
Hylleraas value of −0.472a0 [22], the KVM-14 term

FIG. 2. S-wave phase-shift dependence on the incident positron
momentum k. Blue triangles: MBM [24]; green circles: POM
[40]; red squares: CVM; red solid line: the effective-range fit for
0.04a−1

0 � k � 0.08a−1
0 using Eq. (8).
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TABLE VI. Comparison of theoretical e+-He S-wave scattering
length. In atomic units.

Method Scattering length

CVM (this work) −0.477
MBM [24] −0.435
POM [40] −0.529
KVM-5 term Hylleraas [22] −0.472
KVM-14 term Hylleraas [42] −0.48
KVM-22 term Hylleraas [44] −0.50
SVM stabilization [41] −0.474
Drachman’s model B [22] −0.524
MP [26] −0.5017
MP [26] −0.5056
Semi-empirical (SEM) [43] −0.481
SVM [45] −0.452
MP [46] −0.45

Hylleraas value of −0.48a0 [42], and the semiempirical model
(SEM) value of −0.481a0 [43]. It is worth noting that all
three studies [22,42,44] utilize the same KVM, but they differ
in the size of base set used to construct the helium wave
function, which leads to slight variations in their scattering
lengths. Furthermore, the CVM scattering length is approxi-
mately 9% smaller than the MBM result [24], yet it is about
10% larger than the POM result [40] and Drachman’s model
B result [22]. Finally, the CVM scattering length exceeds the
model-potential (MP) result [26] and the KVM result [44] by
approximately 6%.

C. Total cross section

The elastic total cross section is obtained as a sum over the
partial waves

σt = 4π

k2

∞∑
L=0

(2L + 1) sin2 δk
L. (9)

In this work, the CVM σt is calculated by including the
CVM S-, P-, D- and F -wave phase shifts. The elastic cross
sections within the framework of CVM are depicted in Fig. 3
and compared with experimental data from Stein et al. [9],
Mizogawa et al. [14], Nagumo et al. [12], Sullivan et al.
[13], and theoretical calculations by MBM [24], KVM [37],
and SEM [43]. For ease of comparison, in Fig. 3 we also
give a CVM continuous line which was obtained by fitting
the selected CVM σt values. The CVM findings exhibit a
close agreement with the experimental results of Mizogawa
et al. [14] and Sullivan et al. [13] for k greater than or equal
to 0.5a−1

0 . However, it is noteworthy that the magnetic-field-
free measurements by Nagumo et al. [12] yield larger values
than both the corresponding theoretical predictions and other
experimental observations. Comparing the CVM results with
other theoretical calculations, we find a strong accord with
the CCC [39], SEM [43], and KVM [37]. In contrast, the
results from MBM [24] appear slightly smaller than both other
theoretical predictions and experimental data for k � 0.5a−1

0 .
Significant disparities emerge when examining the agreement
between experimental data and theory for k < 0.2a−1

0 , though

FIG. 3. Comparison of the elastic total cross sections of e+-He
scattering for k � 0.9a−1

0 . Theory: Squares for the CVM. Upper
triangle for the MBM [24]. Solid circle for the SEM [43]. Hexagon
for the KVM [37]. Solid line for the CCC [39]. Experiment: Stars for
Stein et al. [9]. Right triangle for Mizogawa et al. [14]. Diamonds for
Nagumo et al. [12]. Down triangle for Sullivan et al. [13].

the alignment of different theoretical approaches within the
same k range. The precise CVM result of σt for k = 0.1a−1

0
indicates a significant underestimation of the experimental
values of Stein et al. [9].

D. Annihilation parameter

The annihilation parameter Zeff characterizes the process of
electron-positron pair annihilation that occurs during positron
interacting with an atom or a molecule. In the context of a
plane wave approximation, Zeff precisely equals the number of
target electrons. To gain a deeper understanding of the intri-
cate mechanisms involved in the thermalization of positrons
in gaseous environments, it becomes crucial to ascertain the
energy (or temperature) dependence of Zeff. Nonetheless, the
computation of Zeff is challenging, necessitating a comprehen-
sive consideration of electron-electron and electron-positron
correlations, as well as electron exchange effects. Zeff (k) can
be calculated by the partial-wave expansion

Zeff (k) =
∑

L

ZL,eff (k). (10)

In the context of the e+-He scattering scenario explored in this
study, the expectation value of

∑2
i=1 δ(ri − r3) is computed

using the CVM wave function

〈δL〉 =
〈
�L,k

∣∣∣∣
2∑

i=1

δ(ri − r3)

∣∣∣∣�L,k

〉
, (11)

where �L,k is the many-body wave function in Eq. (1). This
calculation is subject to the constraint of normalization. Sub-
sequently, the ratio of the square of the confined radial wave
function to the continuum radial wave function at the confine-
ment boundary, represented by R0 = 17a0, is determined as
follows:

OL = |�(R0)|2
|uL(R0)|2 . (12)
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TABLE VII. Convergence test of the confining parameter G,
model potention parameter λ, and the annihilation parameter Z0,eff

at k = 0.1. The notation a[b] represents a × 10b. In atomic units.

N G λ Z0,eff

1600 0.7388617[−4] −4.43912900[−3] 3.810
2000 0.7388677[−4] −4.68729569[−3] 3.816
2500 0.7388707[−4] −4.44063229[−3] 3.818

Here, �(ρ) corresponds to the confined radial wave function
as defined in Eq. (5). In order to obtain the correct value of
�(R0), in this step we adjust λ and α in Vcp of Eq. (5) so that
this one-dimension bound-state problem Eq. (5) can yield the
energy and normalization conditions simultaneously

E ′ = Es,

〈�(ρ)|Vcp(ρ)|�(ρ)〉 = 〈�L,k|Vcp(r3)|�L,k〉. (13)

uL(ρ) is the continuum radial function which has the form

uL(ρ) = (2L + 1)1/2ρ
[

jL(kρ) cos δk
L − yL(kρ) sin δk

L

]
. (14)

Within this equation, jL(kρ) and yL(kρ) represent the spher-
ical Bessel functions of first and second kind, respectively.
Finally, the value of ZL,eff (k) is computed according to the
formula:

ZL,eff (k) = 〈δL〉
OL

. (15)

The partial-wave CVM annihilation parameter ZL,eff (k) has
been calculated for different partial waves and the results
are listed in Table VIII and are compared with the MBM
approach [24]. As anticipated, the CVM values of ZL,eff (k)
exceed the corresponding MBM values for each k, owing to
the fact that the CVM offers a more accurate representation
of the short-range interaction between positron and helium,
when utilizing a well-optimized ECG basis. The S-wave zero-
energy annihilation parameter Z (0)

0,eff is determined through a
fitting procedure [47], expressed as follows:

Z0,eff (k) = Z (0)
0,eff + Z (1)

0,eff k2 + Z (2)
0,eff k4. (16)

The majority of experimental data pertaining to Zeff has been
obtained from positrons thermalized at room temperature,
where k ∼ 0.045a−1

0 [48,49]. Notably, the most precise mea-
surement of Zeff to date, which stands at 3.94 ± 0.02, was

FIG. 4. Dependence of the annihilation parameter Zeff on the
incident momentum k for positron in helium gas. Solid square:
CVM; triangle: MBM [24]; circle: POM [40]; empty square: SEM
[43]; dotted line: KVM [50]; star: KVM [51]; diamonds: experiment
[48,49].

conducted by Coleman et al. in 1975 [49] using the time-
to-amplitude converter and multichannel analyzer system. A
convergence result of Z0,eff has been given in Table VII.

In 1974, Humberston [51] performed KVM calculations
of Z0,eff and derived values of Z0,eff (0) = 4.0, Z0,eff (0.022) =
3.9, and Z0,eff (0.045) = 3.88 ± 0.01, where k = 0.022a−1

0
corresponds to a temperature of 77 K. Fitting Z0,eff (k) for
the range 0.04a−1

0 � k � 0.08a−1
0 results in Z (0)

0,eff = 4.01 and
Z0,eff (0.045) = 3.96. Alternatively, fitting for 0.05a−1

0 � k �
0.08a−1

0 yields Z (0)
0,eff = 3.99 and Z0,eff (0.045) = 3.95. Given

the uncertainties inherent in the fitting procedure, we suggest
adopting the values Z (0)

0,eff = 4.00 and Z0,eff (0.045) = 3.955.
Considering that Z1,eff (k) for k � 0.08a−1

0 is smaller than
3 × 10−2, and even Z2,eff (k) for k � 0.08a−1

0 is considerably
smaller, it is reasonable to assume that Zeff is approximately
equal to Z0,eff within this range of k.

Figure 4 illustrates the relationship between Zeff and
positron momentum k. In the close-up view provided by
Fig. 4, it becomes evident that the CVM value of Z0

0,eff closely
resembles the KVM value [51]. When the thermal tempera-
ture increases to 77 K and subsequently to 297 K, the CVM

TABLE VIII. Annihilation parameter for S-, P-, and D-wave positrons-He scattering. The notation a[b] represents a × 10b.

ZS,eff ZP,eff ZD,eff

k(a.u.) CVM MBM [24] CVM MBM [24] CVM MBM [24]

0.04 3.969 3.788
0.05 3.945
0.07 3.900
0.08 3.874 3.709
0.1 3.818 3.660 3.286[−2] 3.233[−2] 1.046[−4] 9.235[−5]
0.3 3.161 3.079 2.999[−1] 2.764[−1] 7.151[−3] 6.976[−3]
0.5 2.656 2.569 7.257[−1] 6.779[−1] 5.416[−2] 4.714[−2]
0.7 2.261 2.186 1.157[0] 1.102[0] 1.695[−1] 1.512[−1]
0.9 1.967 1.902 1.514[0] 1.465[0] 3.638[−1] 3.366[−1]
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fitting results of Zeff = 3.99 and Zeff = 3.955, respectively,
fall within the error bars of accurate experimental measure-
ments taken approximately fifty years ago. In contrast, the
outcomes produced by other ab initio theoretical approaches,
such as KVM [50] and MBM, remain out of the margins of
error. On the contrary, the POM [40] overestimates Z0,eff (k)
for k < 0.1a−1

0 . This observation suggests that, from the per-
spective of positron annihilation, the CVM provides a more
accurate description of the annihilation effect within this low-
energy region.

With an increase of k, we observe a decline in Z0,eff (k),
accompanied by an increase in both Z1,eff (k) and Z2,eff (k)
(see Table VIII). Consequently, there exists a minimum value
for Zeff (k) within the range of 0.3a−1

0 < k < 0.5a−1
0 . For the

range 0.5a−1
0 � k � 0.9a−1

0 , when we compare the CVM-
derived Zeff (k) with results from other theoretical methods,
it becomes apparent that these alternative approaches consis-
tently underestimate the annihilation effect of the e+-helium
system.

IV. SUMMARY

The phase shifts for S, P, and D waves, total cross sections,
and annihilation parameters ZL,eff(k) have been computed for
e+-helium scattering at the positron momentum k < 0.9a−1

0
using the CVM in conjunction with an explicitly correlated
Gaussian basis. The total cross sections predicted by the CVM

suggest a significant underestimation of the experimental val-
ues in Ref. [9], particularly for k < 0.2a−1

0 . Consequently,
our current work will motivate further investigation from both
experimental and theoretical perspectives to better understand
lower energy e+-helium scattering.

Furthermore, the CVM calculations of ZL,eff(k) have suc-
cessfully validated the precision of experimental data obtained
by Coleman et al. [49] concerning positron annihilation in
helium gas at room temperatures. Our CVM results can also
serve as a benchmark for guiding future theoretical and exper-
imental studies in this field.
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