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Nuclear mass and size corrections to the magnetic shielding
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We derive finite nuclear mass and finite nuclear size corrections to the magnetic shielding in light ions.
These corrections are important for the accurate determination of nuclear magnetic moments. We correct several
previous formulas for the nuclear mass corrections and present improved results for the magnetic shielding in
1H, 3He+, and 3He. Finally, we obtain an 3He atomic magnetic moment, which serves as an accurate probe to
measure magnetic fields.
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I. INTRODUCTION

The nuclear magnetic moment in atoms is partially
shielded by atomic electrons. This effect is not very signif-
icant: about 10−5 for light elements. Nevertheless, because
nuclear magnetic moments are determined from the Zeeman
shift in atomic systems, the calculation of the magnetic shield-
ing is necessary for their accurate determination. For example,
the recent measurement of the magnetic moment of the 3He+

ion [1] together with the calculation of magnetic shielding
[2,3] allowed for the most accurate determination so far of the
helion magnetic moment. A similar measurement is planned
for 9Be3+, which will result in an improved determination
of the 9Be nuclear magnetic moment [4]. Moreover, accu-
rate values for nuclear magnetic moments are important for
the determination of atomic hyperfine splitting (HFS), testing
quantum electrodynamics (QED), and the nuclear structure
theory [5]. This is because HFS is very sensitive to the dis-
tribution of the magnetic moment within the nucleus.

In this work, we point out two interesting effects that
are frequently overlooked in calculations of nuclear magnetic
shielding [6], namely, those due to the finite nuclear mass
and the finite nuclear size. Nuclear mass corrections are as
large as relativistic corrections for light atomic systems, while
finite nuclear size effects are much smaller, but they are
expected to be significant for heavier elements. These finite
nuclear mass effects have already been the subject of several
works [7,8]. Here, we rederive them thoroughly, correct some
mistakes, and update numerical values for the most relevant
cases of the H, 3He+, and 3He elements. The finite nuclear
size effects have been studied only numerically and only for
hydrogen-like systems [9,10]. Here, we derive a compact an-
alytic formula in terms of the charge, magnetic, and effective
Zemach nuclear radii, which accounts also for nuclear inelas-
tic effects.

II. BREIT-PAULI HAMILTONIAN WITH THE
HOMOGENOUS MAGNETIC FIELD

To account for finite nuclear mass effects, we have to treat
nuclei on an equal footing with all electrons. Therefore, we

consider a system of charged particles, each having its own
mass ma, charge ea, spin sa, and the so-called g-factor ga,
which is related to the magnetic moment by

�μa = ga ea

2 ma
�sa. (1)

These particles are electrons with spin 1/2 and nuclei with an
arbitrary spin. Our derivation employs a Breit-Pauli Hamilto-
nian with homogenous magnetic field and with separation of
center of mass motion. It closely follows the lines of Ref. [7].
Let us therefore introduce the total mass M

M =
∑

a

ma, (2)

center of mass variables

�R =
∑

a

ma

M
�ra, (3)

�P =
∑

a

�pa, (4)

and relative coordinates

�xa = �ra − �R, (5)

�qa = �pa − ma

M
�P, (6)

such that

[
xi

a, q j
b

] = i δi j

(
δab − mb

M

)
, (7)

[Ri, P j] = i δi j, (8)[
xi

a, P j
] = [

Ri, q j
a

] = 0. (9)

The Hamiltonian of a bound system of charged particles in
an external magnetic field including leading relativistic cor-
rections and with the separated-out center of mass motion is
[7]
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Hin =
∑

a

{ �π2
a

2 ma
− ea

2 ma
ga �sa · �B − �π4

a

8 m3
a

+ ea

8 m3
a

[
4 �π2

a �sa · �B + (ga − 2) { �πa · �B, �πa · �sa}
] − e2

a

2
χa �B2

}

+
∑

a>b,b

ea eb

4 π

{
1

rab
− 1

2 ma mb
π i

a

(
δi j

rab
+ ri

ab r j
ab

r3
ab

)
π

j
b − 2 π

3

〈
r2

Ea + r2
Eb

〉
δ3(rab) − 2 π ga gb

3 ma mb
�sa · �sb δ3(rab)

+ ga gb

4 ma mb

si
a s j

b

r3
ab

(
δi j − 3

ri
ab r j

ab

r2
ab

)}
+

∑
a,b

ea eb

4 π

1

2 r3
ab

[
ga

ma mb
�sa · �rab × �πb − (ga − 1)

m2
a

�sa · �rab × �πa

]
, (10)

where rab = |�ra − �rb|, and

�πa = �qa + 1

2
�Da × �B, (11)

�Da = ea �xa + ma

M
�D, (12)

�D =
∑

a

ea �xa. (13)

For a point spin s = 1/2 particle, g = 2, 〈r2
E 〉 = 3/(4 m2),

and χ = 1/(4 m3). For a finite size particle 〈r2
E 〉 includes the

mean square charge radius. An equivalent Hamiltonian for a
system of spin 1/2 point particles was originally obtained by
Hegstrom in Ref. [11]. Our Hamiltonian in Eq. (10), however,
is valid for arbitrary spin particles and has a more compact
form.

The magnetic interaction resulting from Hin neglecting the
terms quadratic in �B is

δH = −
∑

a

ea

2 ma
(�xa × �qa + ga �sa) · �B

+
∑

a

1

4 m3
a

[
q2

a
�Da × �qa · �B + 2 ea q2

a �sa · �B

+ ea (ga − 2) �qa · �sa �qa · �B] +
∑

a �=b,b

ea eb

4 π

×
[
− 1

4 ma mb
qi

a

(
δi j

rab
+ ri

ab r j
ab

r3
ab

)
( �Db × �B) j

+ 1

4 r3
ab

ga

ma mb
(�sa × �rab) · ( �Db × �B)

− 1

4 r3
ab

(ga − 1)

m2
a

(�sa × �rab) · ( �Da × �B)

]
. (14)

This is a general interaction Hamiltonian, which is valid for
an arbitrary set of particles. In particular, one can obtain the
bound electron g-factor or the magnetic shielding in atomic
and molecular systems. In the next section we derive the
atomic magnetic shielding with full account of the nuclear
mass.

III. FINITE NUCLEAR MASS CORRECTIONS

We will derive the magnetic shielding constant for arbi-
trary ions with the vanishing orbital angular momentum �L.
The interaction of the nuclear spin with the magnetic field is

obtained from Eq. (14) as

δH = − eN

2 mN
gN �sN · �B

+ eN

4 m3
N

[
2 q2

N �sN · �B + (gN − 2) �qN · �sN �qN · �B]

+
∑

b

′ eN e

4 π

(�sN × �rNb)

4 r3
Nb

·
[

gN

mN me

�Db × �B − (gN − 1)

m2
N

�DN × �B
]
, (15)

where we assumed that for nucleus a = N , all other particles
are electrons, and

∑′ denotes summation over electrons only.
For an electronic state with a spherical symmetry

(�sN × �X ) · ( �Y × �B) = − 2
3 �sN · �B �X · �Y , (16)

one introduces the scalar shielding constant σ

δH = −gN eN

2 mN
�sN · �B(1 − σ ). (17)

This σ is conveniently split into two parts, consisting of the
first- and the second-order matrix elements

σ = σ1 + σ2. (18)

σ1 results from the first-order matrix element of δH in
Eq. (15),

σ1 = 1

2 gN m2
N

[
2 + (gN − 2)

3

] 〈
q2

N

〉

+ 1

3

ee

4 π

〈 ∑
b

′ �rbN

r3
bN

·
[

1

me

�Db − (gN − 1)

gN mN

�DN

]〉
. (19)

Because
∑

a ma �xa = 0, the position �xN of the nucleus with
respect to mass center and the dipole operator �D can be ex-
pressed in terms of the electron coordinates only,

�xN = − me

M

∑
a

′ �raN , (20)

�D = ee

∑
a

′�raN

(
1 + (Z − Ne)

me

M

)
, (21)

where M = mN + Ne me, Ne is the number of electrons, and
Z is the nuclear charge in units of the elementary charge.
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Consequently, the shielding constant σ1 takes the form

σ1 = α

3 me

〈 ∑
a

′ 1

ra

〉
+ (4 + gN )

6 gN

〈
p2

N

〉
m2

N

+ α

3

〈 ∑
b

′ �rbN

r3
bN

·
∑

a

′�raN

〉
1

gN

me

M

×
[

(Z − Ne)

M
+ (1 − gN )

(
1

me
+ Z

mN

)]
, (22)

where �pN = −∑
a

′ �pa, and we used �P|φ〉 = 0. Consider now
the following matrix element:〈 ∑

a

′ �raN

r3
aN

·
∑

b

′�rbN

〉
= 1

i Z α

〈
[ �pN , H − E ]

∑
b

′�rbN

〉

=
∑

b

′ 1

i Z α
〈 �pN [H − E , �rbN ]〉

= 〈
p2

N

〉 1

Z α

M

mN me
, (23)

which is used to simplify σ1,

σ1 = α

3 me

〈∑
a

′ 1

ra

〉
+

〈
p2

N

〉
3 gN m2

N

[
3 − gN

2

+ mN

M

(
1 − Ne

Z

)
+ (1 − gN )

mN

Z me

]
. (24)

The σ2 part is given by the second-order interaction coming
from the Hamiltonian

δH = −
∑

a

ea

2 ma
�xa × �qa · �B − eN ee

4 π

�sN

2 mN

·
∑

b

′ �rbN

r3
bN

×
[

gN
�qb

me
− (gN − 1)

�qN

mN

]
, (25)

namely,

σ2 =2

3

〈 ∑
a

ea

2 ma
�xa × �qa

1

(E − H )

∑
b

′ ee

4 π

�rbN

r3
bN

×
[ �pb

mb
− (gN − 1)

gN

�pN

mN

]〉
. (26)

Using ∑
a

ea

2 ma
�xa × �qa = ee

2 me

�L +
(

ee

2 me
+ Z ee

2 mN

)

× me

M

∑
a

′�raN × �pN , (27)

we arrive at

σ2 = α

3 M

(
1 + Z me

mN

) 〈∑
a

′�raN × �pN
1

(E − H )

×
∑

b

′ �rbN

r3
bN

[ �pb

me
− (gN − 1)

gN

�pN

mN

]〉
. (28)

The total shielding constant is σ = σ1 + σ2, where σ1 is
given in Eq. (24) and σ2 in Eq. (28). For the numerical cal-

TABLE I. Contributions to the shielding constant 106σ , for 1H,
3He+, and 3He using Refs. [3,8]. The new results are σ (2,1)(He),
σ (2,2), σ (6), and σfs. Because the direct numerical calculation of QED
corrections to σ (6) is not sufficiently accurate for low Z [9,10], we
estimate uncertainty from QED corrections at this order by assuming
that it does not exceed the known relativistic contribution to σ 6. σfs

was calculated using rC (p) = rM (p) = 0.84 fm [12], r̃Z (p) = 0.87
fm [5], rC (h) = rM (h) = 1.97 fm [13], and r̃Z (h) = 2.60 fm, and
other physical constants are from Ref. [14].

1H 3He+ 3He

σ (2,0) 17.750 451 5 35.500 903 0 59.936 771 0
σ (2,1) −0.017 603 7 −0.013 933 4 −0.023 020 1
σ (2,2) 0.000 014 1 0.000 001 4 0.000 002 1(7)
σ (4,0) 0.002 546 9 0.020 375 1 0.052 663 1
σ (4,1) 0.000 000 0(28) 0.000 000 0(74) 0.000 000 0(192)
σ (5,0) 0.000 018 4 0.000 082 0 0.000 096 3
σ (6,0) 0.000 000 2(2) 0.000 006 5(65) 0.000 012 9(129)
σfs −0.000 000 1 −0.000 006 7 −0.000 013 5(67)

106σ 17.735 427(3) 35.507 427(10) 59.966 512(24)
Previous 17.735 436(3) 35.507 434(9) 59.967 029(23)

culations, it is convenient to apply the expansion in the mass
ratio, which takes the form (in a.u.)

σ = σ (2,0) + σ (2,1) + · · · , (29)

σ (2,0) = α2

3

〈∑
a

′ 1

ra

〉
, (30)

σ (2,1) = α2

3

me

mN

[〈 ∑
a

′ 1

ra

1

(E − H )′
p2

N

〉
+ 〈

p2
N

〉 (1 − gN )

Z gN

+
〈∑

a

′�ra × �pN
1

(E − H )′
∑

b

′ �rb × �pb

r3
b

〉]
, (31)

where all matrix elements in the above are assumed with
infinite nuclear mass, and σ (i, j) denotes the expansion term of
order αi (me/mN ) j . The last term in the above differs in sign
from that derived previously in Refs. [7,8], see Table I for the
updated numerical values.

For the hydrogenic ion in nS state the nonrelativistic shield-
ing constant, using Eq. (24), is

σ = (Z α)2

3 n2

mN

mN + me
+ (Z α)2 m2

e

3 n2 gN (mN + me)2

×
[

3 − gN

2
+ mN

mN + me

(
1 − 1

Z

)
− (gN − 1)

mN

Z me

]

= (Z α)2

3 n2 gN (1 + x)2

[(
3 − gN

2
+ x

1 + x

)

+ x2

Z

(
1

1 + x
+ gN

)]
, (32)

where x = mN/me. It is convenient to define δgN = −gN σ

δgN = (Z α)2

3 n2 (1 + x)2

[
gN

2
− 3 − x

1 + x

− x2

Z

(
1

1 + x
+ gN

)]
, (33)
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which is in agreement with the known formula for the electron
g-factor in the S-state of the hydrogenic ion [7,15],

δge = (Z α)2

3 n2 (1 + x)2

[(
ge

2
− 3 − x

1 + x

)

− Z x2

(
1

1 + x
+ ge

)]
, (34)

with x = me/mN , which verifies the new formula for the mag-
netic shielding in hydrogen-like ions. Its small electron mass
expansion takes the following form:

σ = Z α2

3 n2

[
1 + me

mN

(
1

gN
− 2

)

+ m2
e

m2
N

(
4 Z − 3

gN
− Z

2
+ 3

)
+ · · ·

]
, (35)

where the quadratic in the mass ratio term differs from that
derived previously in Ref. [[3], Eq. (64)] due to the computa-
tional mistake. As seen from Table I, the largest uncertainty
for light ions comes from the relativistic recoil correction
σ (4,1), but this has not yet been studied in the literature.

IV. FINITE NUCLEAR SIZE CORRECTIONS

Let us pass now to another nuclear correction, which is
due to the finite distribution of the charge and the magnetic
moment within the nucleus. We will study this correction for
hydrogenic ions only, but generalization for an arbitrary ion is
straightforward. For light hydrogenic ions this effect is given
by

σfs = −Z α2

3
[2 (Z α)2 m2

(
r2

C + r2
M

) + 8 (Z α)3 m r̃Z ], (36)

where m = me, rC is the charge radius, rM the magnetic ra-
dius, and r̃Z the effective Zemach radius of the nucleus. This
formula is proved as follows.

The shift of nonrelativistic hydrogenic levels due to rC is
given by

δH = e A0 − e

6
r2

C
�∇ �E

= − Z α

(
1

r
− 2 π

3
δ3(r) r2

C

)
, (37)

where e = ee. The finite nuclear size affects the nonrelativistic
wave function, which in turn affects the matrix elements for
the nuclear magnetic shielding,

σC = 2
α

3 m

〈
1

r

1

(E − H )′
2 π

3
Z α r2

C δ3(r)

〉

= −2 (Z α)2 m2 r2
C

Z α2

3
. (38)

To derive the contribution from the magnetic radius of the
nucleus, let us rederive the leading shielding that comes from
the e2 �A2/(2 m) term in the kinetic energy of the electron

δE = α

2 m

〈
( �B × �r) ·

(
�μ × �r

r3

)〉

= �μ · �B α

3 m

〈
�r · �r

r3

〉
. (39)

The shielding σ is thus given by

σ = − α

3 m

〈
�r · �∇

(
1

r

)〉
. (40)

The magnetic radius rM enters the magnetic interaction simi-
larly to rC in Eq. (37); therefore, the shift due to the magnetic
radius is

σM = α

3 m

2 π

3
r2

M 〈�r · �∇(δ3(r))〉

= α

3 m

2 π

3
r2

M (−3) 〈δ3(r)〉

= −2 (Z α)2 m2 r2
M

Z α2

3
. (41)

The calculation of the shift due to the Zemach radius r̃Z

is more complicated. r̃Z represents the hyperfine anomaly,
namely, (E exp

hfs − Epoint
hfs )/EF = −2 Z α m r̃Z , see Eq. (48). If

we assume that it comes exclusively from the charge and
magnetic moment distribution, it becomes rZ given by
Eq. (49), which can only be derived from the Dirac equation.
Let us thus start derivation from the relativistic hyperfine
splitting

Ehfs = − e 〈ψ†|�α · �AI|ψ〉, (42)

where, for a point nucleus,

�AI = 1

4 π
�μI × �r

r3
. (43)

In the nonrelativistic limit Ehfs is given by the Fermi formula

EF = − e

2 m
〈φ|{�σ · �p, �σ · �AI}|φ〉

= −〈φ| �μe · �BI|φ〉

= −2

3
〈φ| �μe · �μI δ

3(r)|φ〉. (44)

We are now ready to consider the leading finite nuclear size
correction EZ to the hyperfine splitting

EZ = 2

〈
φ†(0)

0

∣∣∣∣(−e) �γ · �AI
1

� p − m
e γ 0 A0

∣∣∣∣φ(0)

0

〉

= 2 e2
∫

d3 p

(2 π )3

1

�p2

×
〈
φ†(0)

0

∣∣∣∣�γ · �AI(−�p) ( � p + m) γ 0 A0( �p)

∣∣∣∣φ(0)

0

〉
, (45)

where p0 = m and

A0( �p) = −Z e

�p2
GE ( �p2), (46)

�AI( �p) = −i �μI × �p
p2

GM ( �p2), (47)

with normalization GE (0) = GM (0) = 1. EZ can be simplified
to

EZ = 2 Z α m

π2

∫
d3 p

p4
[GE (p2) GM (p2) − 1] EF

= −2 Z α m rZ EF , (48)
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where

rZ =
∫

d3r1

∫
d3r2 ρE (r1) ρM (r2) |�r1 − �r2|, (49)

and where ρE and ρM are the Fourier transforms of GE and
GM . If we are about to represent complete hyperfine anomaly,
then rZ becomes r̃Z in Eq. (48), because it may include the
nuclear inelastic contribution.

Let us now combine perturbation due to rZ and the ho-
mogenous magnetic field

δE = 2 〈ψ̄M |(−e) �γ · �AI
1

� p − e �A − m
e γ 0 A0|ψM〉, (50)

where

|ψM〉 =
(

I − 1

2 m
�γ ( �p − e �A) + e

8 m2 �σ �B
)∣∣∣∣φM (0)

0

〉
, (51)

and where φM is an eigenstate of

HM = p2

2 m
− Z α

r
− e

2 m
�σ �B

(
1 − p2

2 m2
+ Zα

6 m r

)
. (52)

We claim that the e �A terms in the propagator and in the wave
function can be neglected, because they lead to an additional
p2 in the denominator and their contribution thus goes with
the nuclear radius to the third power. Therefore, we have only
two corrections due to the last terms in Eqs. (51) and (52),
namely,

δE = 2

〈
φ

∣∣∣∣HZ
e

8 m2 �σ �B
〉

− 2 〈φ|HZ
1

(E − H )′
e

2 m
�σ �B

(
− p2

2 m2
+ Zα

6 m r

)
|φ〉,

(53)

where

HZ = 2
3 �μe · �μI δ

3(r) (2 Z α m rZ ). (54)

Therefore,

δE = �μI · �B α (Z α)3 m rZ
8

3

(
1

4
− X

m2 (Z α)3

)
, (55)

where

X = 〈φ|π δ3(r)
1

(E − H )′

(
− p2

2 m2
+ Zα

6 m r

)
|φ〉

= 5

4
(Z α)3 m2. (56)

Thus, with δE = �μI · �B σZ ,

σZ = − 8
3 α (Z α)4 m rZ , (57)

which proves Eq. (36). In addition, Yerokhin [16] verified this
equation by numerically calculating the magnetic shielding
with Dirac wave functions for various Z , charge, and mag-
netic radii of the nucleus. The advantage of Eq. (36) over the
direct numerical calculation is the presence of r̃Z instead of
rZ , which represents the sum of elastic and inelastic contri-
butions to HFS, and thus can be determined from the HFS
anomaly.

V. SUMMARY

The total magnetic shielding for hydrogen-like ions includ-
ing contributions up to order α6 is (cf. Eq. (25) of Ref. [2])

σ = Z α2

3
+ 97

108
Z3 α4 + 289

216
Z5 α6 + 8 α2

9 π
(Z α)3

×
[

ln(Z α)−2 + 2 ln k0 − 3 ln k3 − 221

64
+ 3

5

]

+ Z α2

3

[(
1

gN
− 2

)
m

mN
+

(
4 Z − 3

gN
− Z

2
+ 3

)
m2

m2
N

]

− Z α2

3

[
2 (Z α)2 m2

(
r2

C + r2
M

) + 8 (Z α)3 m r̃Z
]
, (58)

where [17]

ln k0 = 2.984 128 556, (59)

ln k3 = 3.272 806 545. (60)

Numerical results for all these known contributions to the
magnetic shielding in H, He+, and He are presented in Table I.
The updated values are σ (2,1) for He, where we corrected the
sign error in the last term in Eq. (31). This leading recoil
correction to the magnetic shielding is about 0.02 × 10−6,
which is the relative 2 × 10−8 correction in the determina-
tion of nuclear magnetic moments. The higher-order recoil
correction, the last term in Eq. (35), which is also corrected
in this work, is much smaller and thus is negligible at present
accuracy of measurements. The same holds for nuclear finite
size effects, described by Eq. (36); they are negligible for
light elements and can safely be neglected. However, the nu-
clear finite size effects can be significant for heavy elements,
where they strongly affect binding energies and hyperfine
splitting.

Finally, our recommended values for the nuclear magnetic
shieldings are in the penultimate row, and they are compared
to previous recommendations from Ref. [3] in the last row.
The largest change of 0.5 × 10−9 is for the He atom; changes
to H and He+ ion are negligible.

We can now use these new shieldings to recalculate the
helion magnetic moment from He+ measurement

μ(3He+) = − 4.255 099 606 9(30)(17) × μN

2
, (61)

namely, it is

μ(3He++) = μ(3He+)

1 − σ (3He+)

= −2.127 625 350 0(17) μN , (62)

which differs slightly from that in Ref. [1], while our recom-
mended value for the atomic 3He magnetic moment is

μ(3He) = μ(3He+)
1 − σ (3He)

1 − σ (3He+)

= −2.127 497 763 7(17) μN , (63)

which can serve as a reference in gaseous NMR measurements
[18] because it is the most accurately known atomic magnetic
moment.
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