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Short-range physics of the three-body recombination for ultracold helium atoms
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Generally, the three-body recombination (TBR) of the ultracold helium atoms in the zero-collision-energy
limit could be described by the original zero-range (Efimov) universal function [E. Braaten, D. Kang, and
L. Platter, Phys. Rev. A 75, 052714 (2007)] using the scattering length a of the He-He interaction and a
three-body parameter a∗ as input, where a∗ is associated with the positive scattering length at which an
interference minimum in the TBR rate occurs at the threshold. This universal property has been reinvestigated
by considering various post-Born-Oppenheimer (post-BO) effects on the relevant scattering process. It is found
that a linear correction to 1/a∗ versus 1/a should be introduced to give a better description of these considered
TBR cases because of the finite-range effects. Particularly, such a correction may be ascribed not only to the
general scattering properties associated with the Efimov channel at the short hyperradial distance, but also to
the tunneling probability in the lowest incident channel. In addition, a successful fit of the modified universal
function that includes correctly the finite-range effects [E. Garrido, M. Gattobigio, and A. Kievsky, Phys. Rev. A
88, 032701 (2013)] or the zero-range universal function with a linearly variational 1/a∗ versus 1/a to numerically
accurate data also indicates a clear manifestation of the van der Waals universality. Finally, the post-BO effects
on the TBR process for the partial wave with the total angular momentum J > 0 are also discussed.
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I. INTRODUCTION

Since the 1970s, it has been theoretically found that, when
the s-wave scattering length a between any two components
in a three-body system is much larger than its van der Waals
length rvdW, the ternary system has novel universal properties
[1–4]. For instance, as a → ±∞, i.e., in the unitary limit,
an infinite sequence of weakly bound three-body states,
which are called Efimov states and related to each other
via a discrete scaling symmetry [1], will accumulate near
the (three-body breakup) threshold. Since these states
are so weakly bound, the scattering observables in the
zero-collision-energy limit, i.e., E → 0, will be influenced
by them and also exhibit similar universal properties [5].
Particularly, via the three-body recombination (TBR) process
of the ultracold Cs atoms, i.e., Cs+Cs+Cs → Cs2+Cs, the
ground Efimov state has been successfully demonstrated for
the first time in experiment [6], and the studies of the Efimov
physics afterwards have been the focus in both experimental
and theoretical investigations (see, e.g., Refs. [7–10] and
references therein). In addition, except for extensive studies
in the fields of traditional nuclear, atomic, and molecular
physics, the three-body systems in the new research fields
continue to be also found to exhibit such a universality (see,
e.g., the Efimov effect in quantum magnets [11]).
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Generally, in the Efimov scenario of the scattering observ-
ables, a three-body parameter (TBP) a−, which is associated
with the negative scattering length at which the threshold reso-
nance of the first Efimov state occurs, is introduced to include
all the effects of the detailed short-range interactions, and
plays a critical role in fixing the whole Efimov spectra or the
corresponding scattering observables [5]. Because the details
of the short-range potentials are different in real systems, a−
has been long considered to have a nonuniversal character
[5,12]. However, it has been found afterwards in ultracold
gas experiments that the universal behavior of a− ≈ 10rvdW is
robust (within a 15% margin) near different broad Feshbach
resonances for the same or different three-body systems (see,
e.g., Refs. [13–15] and references therein).

Theoretically, the universality of the TBP a− was first
attributed to the quantum reflection [16] caused by the sharp
drop of the three-body potential in the Efimov channel at short
hyperradial distances. However, based on accurately numeri-
cal calculations using a number of two-body model potentials,
Wang et al. showed that the Efimov channel does not exhibit a
sharp drop, but a sharp repulsive wall at the small hyperradius
R with R describing the size of the three-body system [17].
Particularly, it has been found that, when the number of the
two-body bound states supported by the pairwise model po-
tentials is large enough, the position of such a repulsive wall
is converged to R ≈ 2rvdW, which prevents the reactants from
getting much closer to experience the short-range interactions
and consequently leads to the observed universal behavior of
a− in the experiments. Further investigations, also based on
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the model calculations, attribute the physical origin of such
a repulsive wall to the three-body deformation caused by the
two-body correlations [18].

Besides these model calculations, the 4He3 system, whose
spectra and scattering properties can be calculated accurately,
has long been viewed as one of the most typical real systems
in exploring the Efimov physics [19–21]. In the framework of
the effective field theory, Braaten and Hammer [22] calculated
the TBR rate of the 4He3 system, whose excited state has been
debated for a long time [21], but has been recently detected
as the Efimov state [23], for several previously developed
He-He potentials. From the results, another TBP a∗, which is
associated with the positive scattering length at which an in-
terference minimum in the TBR rate occurs at the threshold, is
extracted. Particularly, it is found that the TBR rates predicted
by the zero-range (Efimov) universal function are relatively
different when the scattering length a and the two-body en-
ergy length aB of the He-He potential are used respectively as
the two-body input. Here, aB is associated with the binding
energy E2 of the weakly bound helium dimer through the
relation E2 = h̄2/(ma2

B) with m being the mass of the 4He
atom [24]. In addition, it should be emphasized that the TBP
is originally defined as the binding wave number κ∗ of the
reference trimer at the unitary limit with the binding energy of
this trimer given as E∗ = h̄2κ2

∗/m [5]. All the other three-body
parameters that are defined as the observables associated with
the Efimov physics, e.g., the aforementioned a− and a∗, are
closely related to κ∗ (see, e.g., Refs. [5,25–27] for the defini-
tions and relations of different TBPs). Therefore, the universal
character of a− also implies that κ∗ and a∗ may have also
universal properties and this conjecture is confirmed in the
theoretical investigations [17,26]. Nowadays, the universality
of all these TBPs is collectively called the van der Waals
universality [28–30].

In later investigations, Braaten et al. further pointed out
that the TBR rate of the 4He3 system may be better predicted
by the zero-range universal function if the TBP a∗ is extracted
using aB as the two-body input [31]. In addition, based on
the only numerically accurate TBR rate at that time, they also
constrained the universal functions for the TBR in the nonzero
temperature and applied them to the 133Cs atoms. Shepard
then calculated the TBR rate of the 4He3 system for several
previously developed He-He potentials by solving accurately
the three-body Faddeev equation in momentum space [32].
Based on their results, the universal functions for TBR in the
nonzero temperature are refined. Recently, to give a better
description of the accurate TBR rate of the 4He3 system
in the zero-collision-energy limit, Garrido et al. proposed
a modified universal function, which carefully includes the
finite-range corrections by making substitutions for a and κ∗
in the zero-range universal function, i.e., replacing a and κ∗
by aB and κ∗ + �/a respectively, where � is an empirical
parameter [33].

From another viewpoint, the departure of the zero-range
universal predictions from the calculated realistic TBR rates
implies that the short-range physics is non-negligible in the
4He3 system. Therefore, when different He-He representa-
tions are adopted in the three-body calculations, a variational
a∗ will be extracted from the zero-range universal func-
tion using the calculated TBR rates and the corresponding

scattering lengths of the He-He interactions as input. Of
course, it is worth emphasizing that although the zero-range
universal functions associated with the TBR rate for both
the positive and negative sides of the scattering length are
derived in the zero-range condition [5], they are widely used
in the experiments to fit the experimental data and extract the
aforementioned TBPs a∗ and a− for the finite scattering length
[6,25], which consequently leads to the extraordinary finding
of the van der Waals universality (see, e.g., Refs. [13–15]).
In this paper, we will also devote special attention to the
dependence of a∗ that is extracted based on the zero-range
universal function on the short-range physics for the 4He3

system.
Using the currently most accurate He-He potential [34,35],

the Efimov physics associated with the TBR process of the
4He3 system is reinvestigated in this paper. Here, by consid-
ering respectively various post-Born-Oppenheimer (post-BO)
effects on the standard BO potential of the He-He interaction,
a series of numerically accurate TBR rates are calculated,
which permits us to give a rigorous check of the ability of the
zero-range universal function in predicting the realistic TBR
rates and study the possible variational behavior of the ex-
tracted a∗ for the present cases. Particularly, the mechanisms
underlying the relevant TBR process will be also analyzed.
In addition, the present paper also gives an intuitive picture
of the various post-BO effects on the TBR process and the
numerically accurate results could be also used to modify
the universal functions for TBR in the nonzero temperature.
Atomic units are used throughout this paper except explicitly
stated otherwise.

II. THEORETICAL APPROACH

A. The adiabatic hyperspherical method

To obtain the accurate TBR rate, the three-body
Schrödinger equation is solved numerically using the adi-
abatic hyperspherical method. Since this method has been
detailed in our previous work [36], only the outline is given in
this paper. In the adiabatic hyperspherical representation [37],
the channel functions {ψν (R; �)}, and the corresponding
eigenvalues {Uν (R)} are obtained via solving the hyperangu-
lar eigenvalue problems for a series of fixed R:

[
�2

2μR2
+ 15

8μR2
+ V (R, θ, ϕ)

]

ν (R; �) = Uν (R)
ν (R; �),

(1)

where � denotes collectively the hyperangular coordinates,
including three external Euler angles (α, β, γ ) and two in-
ternal hyperangles (θ, ϕ). μ is the three-body reduced mass
and �2 is the grand angular momentum operator. V (R, θ, ϕ)
is the three-body interaction. Here, for comparison with the
model calculations [17,18,27], this interaction is also taken
as a sum of three pairwise interaction potentials, i.e., three
He-He potentials, in this paper. The effect of the nonadditional
three-body force on the TBR process of the 4He3 system is
found to be vanishingly small (see Ref. [38]).

After solving the adiabatic hyperangular eigenvalue prob-
lem, i.e., Eq. (1), the three-body wave function can be
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expanded on these obtained channel functions {
ν}:

ψ (R,�) =
N∑

ν=1

ζν (R)
ν (R; �), (2)

where ζν (R) denotes the radial wave functions and N denotes
the number of the total adopted channels.

Then, inserting this expansion into the original Schrödinger
equation, we will get a set of coupled equations associated
with the hyperradial part [37]:[

− 1

2μ

d2

dR2
+ Wν (R)

]
ζν (R)

− 1

2μ

∑
ν ′ �=ν

[
2Pνν ′ (R)

d

dR
+ Qνν ′ (R)

]
ζν ′ (R)

= Eζν (R), (3)

with

Wν (R) = Uν (R) − Qνν (R)

2μ
, (4)

Pνν ′ (R) =
〈

ν (R; �)

∣∣∣∣ ∂

∂R

∣∣∣∣
ν ′ (R; �)

〉
�

,

Qνν ′ (R) =
〈

ν (R; �)

∣∣∣∣ ∂2

∂R2

∣∣∣∣
ν ′ (R; �)

〉
�

(5)

where Wν (R) denotes the effective three-body potentials, and
Pνν ′ (R) and Qνν ′ (R) are the nonadiabatic couplings that are
responsible for the TBR process. The subscript � denotes
that only the integral over the hyperangular coordinates is
performed. In addition, to trace the pathway of the flow in
the TBR process, the nonadiabatic coupling strengths are also
calculated [36]:

Fνν ′ (R) = |Pνν ′ (R)|2
2μ|Wν ′ (R) − Wν (R)| . (6)

Finally, Eq. (3) is solved using the R-matrix propagation
method [39], and the S matrix is obtained from the calculated
R matrix. The TBR rate is then directly associated with the S
matrix [37]:

K3 =
∑

i

192π2

μk4
|S f ←i|2, (7)

with k = √
2μE being the hyperradial wave number. i and

f indicate the incident and recombination channels, respec-
tively. For the 4He3 system, there is only one recombination
channel, which corresponds to the so-called Efimov chan-
nel [17,18] and is associated with the weakly bound 4He2

molecule, i.e., 4He2 + 4He.

B. The post-BO effects and scattering properties
of the He-He interactions

For the He-He interaction, a very accurate representa-
tion was constructed by Przybytek et al. [34] and Cencek
et al. [35], which includes various post-BO contributions
to the standard BO potential VB(r). The major post-BO ef-
fects are, namely, the adiabatic corrections [here denoted as
VA(r)] originating from the coupling of the electronic and

nuclear motions, the relativistic effects to the Schrödinger
equation [VR(r)], the quantum electrodynamics corrections
[VQ(r)], and the Casimir-Polder retardation effects [Vr.c.(r)]
[40] (see also Figs. 5 and 6 in Ref. [35] for these post-BO
effects).

Here, to get a series of numerically accurate TBR rates,
these post-BO effects have been carefully readded into the
standard BO potential. The energy differences between VB(r)
and our reconstructed ones, as well as two widely adopted
He-He potentials, i.e., the LM2M2 [41] and HFD-B3-FCI1
He-He potentials [42], are shown in Fig. 1(a). As shown
in this figure, the major differences of these potentials are
located at a short internuclear distance [see also the inset
of Fig. 1(a), which provides the opportunity to assess these
two-body short-range effects on the three-body process]. Note
that because of the cancellation of some post-BO effects, most
of the variational properties shown in the inset of Fig. 1(a) are
different from those of the individual post-BO contributions
discussed in Ref. [35]. In addition, in this figure, the standard
BO potential and these post-BO effects are concisely denoted
by the subscripts attached to their contributions, e.g., “B”
stands for VB(r) and “A” denotes VA(r). Putting these labels
together means the sum of the relevant interactions or cor-
rections. For instance, “BA” denotes that the He-He potential
is constructed by VB(r) + VA(r). We also use such labeling
rules in the following tables and figures to denote the adopted
He-He potentials in the three-body calculations.

The corresponding two-body binding energies and scat-
tering properties of these reconstructed He-He potentials as
well as the two widely adopted He-He potentials are shown
in Table I. As can be seen, because the scattering length of
the He-He interaction is much larger than its corresponding
van der Waals length, a very weakly bound state appears
and varies versus the scattering lengths of different He-He
representations. However, since the scattering lengths of these
He-He potentials are not anomalously large, the scattering
properties shown in Table I may not be well described by
the two-body universal functions that are derived at the uni-
tary limit [43]. For instance, although the variation of the
scattering length a of the He-He interaction follows that of
the corresponding two-body energy length aB [22,43], the
difference between them still exists. Actually, based on the
effective field theory approach, a modified two-body universal
function associated with the relation of a and aB is derived,
which gives [24]

re

aB
= re

a
+ 1

2

r2
e

a2
B

. (8)

Here, re is the effective range. As shown in Fig. 1(b), with
such a modified two-body universal function, the numerical
data associated with a and aB of the He-He potentials could
be well reproduced.

C. Computational details

In the calculations, the lowest 20 channels are used and, by
designing the bases in the hyperangular coordinates carefully,
Uν (R) is calculated to be converged to at least eight digits
for all the cases considered in this paper. In the hyperradial
part, 320 finite element sectors are used in the region of the
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×

FIG. 1. (a) The Born-Oppenheimer representation of the He-He interaction, VB(r), and the energy differences between VB(r) and our
constructed He-He potentials. The differences between VB(r) and the two widely adopted He-He potentials, i.e., the LM2M2 [41] and HFD-
B3-FCI1 [42] potentials, are also shown. The inset zooms in on these differences. (b) The variation of the inverse of the two-body energy
length aB vs the inverse of the scattering length a for different He-He interactions (symbols), shown in units of re. The dashed line is given by
Eq. (8).

short hyperradial distance (R < 2.5 × 103 a.u.), while 10 000
sectors are used in the large-R region (2.5 × 103 � R � 6 ×
105 a.u.). In addition, we used ten points within each sector.
Under such settings, the numerical results about the TBR rates
are checked to be converged to three digits.

III. RESULTS AND DISCUSSIONS

In the framework of universal theories, when the scattering
length a is positive and much larger than its relevant van der
Waals length rvdW, a universal function for the TBR, leading
to the formation of weakly bound products, has been derived
based on the zero-range model at E → 0 [5,31]:

K3 = 768π2(4π − 3
√

3) sin2[s0 ln(a/a∗)]

sinh2(πs0) + cos2[s0 ln(a/a∗)]

a4

m
, (9)

where s0 is roughly 1.006 24 for three identical bosons.
Note that based on the relation a∗ = e−1.16/s0/κ∗ ≈ 0.32/κ∗
[5], the zero-range universal function, i.e., Eq. (9), could be

transformed to another well-known form containing the TBP
κ∗ [see also Eq. (11)]. Additionally, for real systems close to
the unitary point, the zero-range model is merely an approxi-
mation, and there are always finite-range corrections, even in
the unitary limit.

In the following discussions, it will be clearly found that
the presence of a finite range in the real potential undermines
the validity of the zero-range universal function. There are
several ways to take this fact into account, and two of them
could be actually identified from Sec. I. One is considering
carefully the finite-range effects by introducing appropriate
modifications of the zero-range universal function [see also
Eq. (10) and the relevant discussions]. The other one is en-
capsulating directly the short-range physics or the finite-range
effects in the TBP a∗ of Eq. (9). As emphasized in Sec. I, if
Eq. (9) is still adopted to describe the scattering process of
the real systems with the finite scattering length and the cor-
rection of the short-range physics is negligible or identical for
different systems, a universal a∗ could be extracted [13–15].

TABLE I. Two-body binding energies E2, s-wave scattering lengths a, two-body energy lengths aB, effective ranges re, and the van der
Waals lengths rvdW for different He-He potentials. The first eight rows show these associated with the reconstructed He-He potentials [34,35].
The remaining two rows display those calculated with the LM2M2 [41] and HFD-B3-FCI1 [42] potentials. The two-body energy length aB

is related to E2 through E2 = h̄2/(ma2
B) with m being the mass of the 4He atom and rvdW = (mC6/h̄2)1/4/2 [43]. The conversion constant

h̄2/m = 12.119 358 K Å2.

Potential E2 (a.u.) E2 (mK) a (a.u.) a (Å) aB (a.u.) aB (Å) re (a.u.) re (Å) rvdW (a.u.) rvdW (Å)

B 5.441×10−9 1.718 165.898 87.789 158.715 83.988 13.75 7.28 5.081 2.689
BA 5.751×10−9 1.816 161.559 85.494 154.378 81.693 13.73 7.27
BAR 5.034×10−9 1.590 172.182 91.115 165.004 87.316 13.76 7.28
BARQ 5.130×10−9 1.620 170.605 90.280 163.446 86.492 13.78 7.29
Br.c. 4.924×10−9 1.555 174.019 92.087 166.838 88.287 13.77 7.29
BAr.c. 5.219×10−9 1.648 169.228 89.551 162.048 85.752 13.75 7.28
BARr.c. 5.100×10−9 1.611 171.110 90.547 163.930 86.748 13.76 7.28
BARQr.c. 5.115×10−9 1.615 170.864 90.417 163.684 86.618 13.76 7.28
LM2M2 4.140×10−9 1.307 189.150 100.094 181.956 96.287 13.84 7.33 4.983 2.637
HFD-B3-FCI1 5.045×10−9 1.593 172.009 91.023 164.822 87.220 13.78 7.29 4.978 2.634
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FIG. 2. The recombination rates K3 predicted by the zero-range
universal function (curves) with different three-body parameters a∗
[see Eq. (9)], by the modified universal function (plus symbols) with
the fitted parameters κ∗ = 1.906 × 10−3 a.u. and � = 4.086 × 10−2

a.u. [see Eq. (10)], and numerically calculated using different He-He
potentials (other symbols). The black dashed curve denotes that K3

is calculated by the zero-range universal function Eq. (9), but with a∗
being corrected (see Fig. 3).

In contrast, a varying a∗ implies that the short-range dynamics
plays a non-negligible role in the scattering process.

Since a of the He-He interaction is much larger than its
rvdW (see Table I), the present 4He3 system has long been
considered to have the feature of the Efimov physics and
its TBR rate should follow the zero-range universal function
Eq. (9) [22,31]. To seriously check the ability of Eq. (9)
in predicting the TBR process of the 4He3 system, a series
of TBR rates, based on various He-He potentials shown in
Table I, are calculated and shown versus a of the He-He
potentials in Fig. 2. Based on the construction rule of these
reconstructed He-He interactions and the data shown in this
figure and Table I, each post-BO effect on the TBR process
can be easily identified. Here, it is interesting to note that no
matter how different the short-range He-He potentials are [see
the inset of Fig. 1(a)], the TBR rates of all these cases are
likely to be only determined by a of the He-He interactions.
In the following, we will discuss whether the variation of these
accurate TBR rates versus a of the He-He potentials could be
well predicted by the zero-range universal function. Because a
larger a corresponds to a smaller effect of the short-range
physics on the low-energy scattering process, the TBR rate
associated with the largest a among these reconstructed He-
He potentials (see the last black square in Fig. 2) is first used
to extract a∗ of Eq. (9). This gives a∗ = 149.513 a.u. and the
corresponding predication about the variation of the TBR rate
is shown as the blue solid curve in Fig. 2. As can be seen, with
the decrease of a, the prediction of Eq. (9) tends to gradually
deviate from and underestimate the numerically accurate TBR
rates. Of course, when a∗ is extracted using the TBR rate
associated with the case of the largest a (red open triangle) as
the three-body input, such a deviation between the predictions
of the zero-range universal function (red dashed-dotted curve)
and the accurate TBR rates also appears as the decrease of a.

This implies that the corrections of the finite-range effects
or the short-range physics are non-negligible in the TBR
process of the 4He3 system, and modifications of the zero-
range universal function should be required to incorporate
such corrections. In Ref. [31], it was suggested that a better
prediction could be made by Eq. (9) when a∗ is extracted
using aB instead of a as the two-body input. Based on the
only numerically accurate TBR rate at that time, i.e., the one
calculated with the HFD-B3-FCI1 He-He potential (see the
red open circle in Fig. 2), and the relevant aB (see Table I),
they obtained a∗ = 143.1 a.u. The prediction of Eq. (9) with
this value of a∗ is also displayed in Fig. 2 (see the green
dotted curve), which, unfortunately, tends to be even worse.
To give a much better description of the accurate TBR rates,
more modifications to the zero-range universal function were
proposed by Garrido et al. [33], which then includes correctly
the finite-range corrections and gives [44]

K3 = 768π2(4π − 3
√

3) sin2[s0 ln(aκ∗ + �) + 1.16]

sinh2(πs0) + cos2[s0 ln(aκ∗ + �) + 1.16]

a4
B

m
.

(10)

Note that, as introduced in Sec. I, Eq. (10) is actually obtained
by replacing a (associated with the a4 scaling) and κ∗ in
the zero-range universal function containing κ∗ [see Eqs. (9)
and (11)] by aB and κ∗ + �/a, respectively. Here, the K3,
calculated using the reconstructed He-He potentials associ-
ated with the smallest and largest a (the first and last black
squares in Fig. 2), and the corresponding aB (see Table I) are
used as input to extract the parameters κ∗ and � in Eq. (10),
which consequently gives κ∗ = 1.906 × 10−3 a.u. and � =
4.086 × 10−2 a.u. Based on these fitted parameters, it is found
that the predictions of this modified universal function agree
with the numerically accurate TBR rates very well (see the
plus and other symbols in Fig. 2).

Using the fitted κ∗, the corresponding binding energy of
the reference trimer at the unitary limit is determined to be
E∗ ≈ 0.16 mK, which is 519 times smaller than that of the
reference trimer associated with the ground state of the 4He3

system [45] and clearly associated with the excited (Efimov)
state. Interestingly, although the structure of the ground he-
lium trimer does not satisfy fully the properties of the Efimov
states, the energy ratio of the aforementioned two reference
trimers is close to the neighboring energy ratios of the Efimov
states (≈515). In addition, the perfect fit of Eq. (10) to our
numerical data with such a single κ∗ implies that the energy
of the reference trimer at the unitary limit, or κ∗, remains
independent of the interaction potentials under consideration.
This universal property is similar to the well-known universal-
ity exhibited by different He-He potentials, which all yield a
ground-state energy value at the unitary limit of E ′

∗ = 83 mK
(see Ref. [45]). To further check this universality, the modified
Efimov binding-energy equation proposed by Kievsky and
Gattobigio [see Eq. (7) of Ref. [46]] is employed to fit the
energies of the helium excited trimer state for the same family
of the He-He potentials presented in Table III of Ref. [47]
(not shown), which gives E∗ ≈ 0.15 mK at the unitary limit
and reaffirms the robust universal property across different
He-He potentials. Actually, based on the universal κ∗ sug-
gested in Ref. [17] for the van der Waals interactions, i.e.,
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TABLE II. The numerically calculated three-body recombination rates in the zero-collision-energy limit and the extracted a∗ based on the
zero-range universal function Eq. (9) using these numerically calculated rates respectively as input.

Potential K3 (cm6/s) a∗ (a.u.) a∗ (Å) Potential K3 (cm6/s) a∗ (a.u.) a∗ (Å)

B 4.804×10−28 148.254 78.453 Br.c. 1.056×10−27 149.513 79.119
BA 2.816×10−28 147.549 78.079 BAr.c. 6.839×10−28 148.743 78.712
BAR 8.962×10−28 149.275 78.993 BARr.c. 8.137×10−28 149.097 78.899
BARQ 7.769×10−28 149.009 78.852 BARQr.c. 7.944×10−28 149.070 78.884
LM2M2 3.084×10−27 151.724 80.289 HFD-B3-FCI1 8.800×10−28 149.277 78.994

κ∗ = 0.226e−π/s0/rvdW [48], and the rvdW of our reconstructed
He-He potentials shown in Table I, it is easy to get κ∗ =
1.960 × 10−3 a.u. for the 4He3 system, which agrees within
3% with our fitted result and again confirms the universality
of κ∗ or the so-called van der Waals universality.

Inserting the fitted κ∗ and � in Eq. (10) and equating the
variable of sin2 to zero, we get a∗ = 144.247 a.u., which is
expected to be more accurate than those extracted based on
Eq. (9) because of the correct inclusion of the finite-range
effects. Here, the unique a∗ obtained above is also the man-
ifestation of the van der Waals universality. In fact, in the
study of the van der Waals universality for the systems with
positive a, it is found that a∗ is around 27.7rvdW [27]. Us-
ing the rvdW of our reconstructed He-He potentials shown in
Table I, it gives a∗ ≈ 140.744 a.u. for the 4He3 system, which
differs by only 2% from ours. Based on our fitted a∗ and
the numerically determined relation between a∗ and a− in
Ref. [27], i.e., a∗/a− = −0.143 × 19.7 = −2.817 [48], it is
found that a− = −10.08rvdW, which only differs by about 3%
from the suggested universal result −9.73rvdW in Ref. [17]
(see also Refs. [17,27] for relevant discussions and compar-
isons of their results with the experimental data). Therefore,
the perfect fit of Eq. (10) to our numerical results indeed indi-
cates a robust manifestation of the van der Waals universality.

Of course, as described before, besides the modifications
used in Eq. (10), an adaptive a∗ in Eq. (9) could be also
introduced directly to encapsulate the finite-range effects. Par-
ticularly, when the short-range physics is non-negligible in
the TBR process, a variational a∗ may be extracted using
Eq. (9). To investigate the possible variational behavior of
a∗ or the dependence of a∗ on the short-range physics, each
numerically accurate TBR rate calculated in the present paper
is respectively used as input in Eq. (9) to extract a∗ and the
results as well as these calculated TBR rates are shown in
Table II. Figure 3 shows the variation of 1/a∗ as a function of
1/a for the 4He3 system (symbols). Interestingly, it is found
that there is nearly a linear relation between them.

To understand such a variational behavior, the zero-range
universal function Eq. (9) should be reassessed. If a∗ is
replaced by κ∗ through the relation a∗ = e−1.16/s0/κ∗, the vari-
able of sin2 and cos2 in Eq. (9) becomes s0 ln(aκ∗) + 1.16,
i.e.,

s0 ln(a/a∗) = s0 ln(aκ∗) + 1.16. (11)

In order to take into account the finite-range effects, the TBP
κ∗ in Eq. (11) should be replaced by κ∗ + �/a, which is one
important substitution in deriving Eq. (10) based on the zero-
range universal function [33,46] and theoretically justified by

the running Efimov parameter proposed by Ji et al. [26]. Then,
we have that

s0 ln(a/a∗) = s0 ln(aκ∗ + �) + 1.16. (12)

From the above equation, the variation of 1/a∗ versus 1/a can
be deduced:

1

a∗
= e1.16/s0

(
κ∗ + �

a

)
= A1 + A2

1

a
. (13)

We have a linear relation between 1/a∗ and 1/a, which
could be used to describe the linearly variational behavior
of 1/a∗ versus 1/a shown in Fig. 3. To account for this, we
perform the fit using the data associated with the reconstructed
He-He potentials (see Tables I and II) and the result is shown
as the black dashed line in Fig. 3. As can be seen, this linear
fit agrees very well with all the numerically calculated data.
Inserting the fitted values of A1 = 5.518 × 10−3 and A2 =
2.035 × 10−1 into Eq. (13), we find that κ∗ = 1.742 × 10−3

a.u. and � = 6.425 × 10−2 a.u., which are comparable to
the fitted values based on Eq. (10). To be exact, these two
separately fitted values of κ∗ agree within 10%, while the
difference between the two fitted values of � is a little larger
(roughly 36%). We consider this to be in reasonable agree-
ment because another replacement of a by aB in the zero-range
universal function is also used in deriving Eq. (10). Actually,

FIG. 3. The inverse of the three-body parameter (1/a∗) as a
function of the inverse of the scattering length (1/a). a∗ is extracted
from the zero-range universal function Eq. (9) using the numerically
calculated K3 as input. The black dashed line is a linear fit to the
data associated with the filled squares based on Eq. (13), which gives
A1 = 5.518 × 10−3 and A2 = 2.035 × 10−1.
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FIG. 4. Schematic diagram of the major reaction pathways men-
tioned in the main text. The shadow area denotes the classically
forbidden region.

the fitted κ∗ of this model, i.e., Eq. (13), differs by only 11%
from the suggested κ∗ in Ref. [17] and is well located within
the stated 15% margin.

Inserting the fitted κ∗ and � into the right side of Eq. (12)
and equaling it to zero, we could also extract the TBP a∗,
which gives a∗ = 144.374 a.u. This value agrees very well
with that extracted based on Eq. (10), which can be ascribed to
the fact that both models could make accurate predictions of
the numerical TBR rates, comparing the black dashed curve
and symbols in Fig. 2. In addition, it should be noted that a
more accurate analysis shows that the empirical parameter �,
considered as a constant fitting parameter in the two models
discussed before, depends also slowly on κ∗ (see Refs. [26,46]
for relevant discussions).

According to the analysis before, either the modifications
of the zero-range universal function used in Eq. (10) or the
variation of a∗ when extracted based on Eq. (9) undoubt-
edly indicates the non-negligible effect of the finite-range
corrections or the short-range physics. Particularly, the lin-
early variational behavior of 1/a∗ versus 1/a shown in Fig. 3
clearly indicates that the role of the short-range physics
in the TBR process tends to be more and more important
with the decrease of a. To understand the underlying mecha-
nism, the two well-known interference pathways of the flow in
the lowest two effective potentials are sketched in Fig. 4 (see
the filled arrows). Generally speaking, the flow in the lowest
incident channel recombines into the Efimov channel near
R ≈ a (see the filled purple arrow). Then, the system contin-
ues to decrease its size and the preformed molecule rebounds
off the third atom near the classical turning point (see the
filled blue arrows). This flow pathway will interfere with the
original recombination pathway denoted by the purple arrow
and consequently influences the formation of the molecular
products (see the filled green arrow). In the zero-range limit,
the destructive interference occurs in the TBR process when
the variable of sin2 in Eq. (9) is equal to zero. For the present
4He3 system, the unique recombination channel corresponds
to the Efimov channel. In addition, because the scattering
length of the He-He interaction is roughly equal to a∗, the

FIG. 5. For the zero-collision-energy limit, a zoom-in plot of the
classical turning points of the flow governed by the Efimov channel
for all the considered cases (see the main text). The horizontal dashed
line denotes the zero-collision-energy limit.

relevant TBR process is near one of these destructive interfer-
ences.

The universality of the TBP a− is ascribed to the converged
potential wall near R ≈ 2rvdW in the Efimov channel [17],
which prevents the reactants from getting much closer to
experience the short-range interactions. Here, in contrast, the
effects of the short-range physics on the scattering process
should be also related to the variation of the potential wall
in the small-R region, which modifies the flow pathway in
the Efimov channel (see the pathway denoted by the filled
blue arrows in Fig. 4). Figure 5 shows the potential walls
associated with the Efimov channel for all the present cases.
Note that the classical turning point of the probability flow in
the Efimov channel for each case, which characterizes to some
extent the position of the potential wall, is denoted by the
crossing of the corresponding potential wall and the horizontal
dashed line at E → 0. As displayed, these classical turning
points are also roughly 2rvdW (see also Table I for rvdW of
the interacting pair for these cases), but there exists a small
variation.

Actually, except for a small departure for the case calcu-
lated using the HFD-B3-FCI1 He-He potential, the classical
turning point is nearly proportional to the corresponding scat-
tering length of the He-He potential. Therefore, with the
decrease of a, the flow in the Efimov channel will take a longer
travel time before interfering with the recombination pathway
denoted by the filled purple arrow in Fig. 4, which leads to the
departure of the realistic TBR process from the destructive
interference predicted in the zero-range limit. Consequently,
the realistic TBR rate is more and more underestimated by the
zero-range universal function with the decrease of a. There-
fore, the small variation of the potential wall near R ≈ 2rvdW

in the Efimov channel is expected to, in large part, account
for the linearly variational behavior of 1/a∗ versus 1/a shown
in Fig. 3. Here, it should be emphasized that the variation of
the classical turning point in the Efimov channel is the result
of the three-body interaction. There is no simple proportional
relation between the variation of the two-body He-He interac-
tion at a short internuclear distance and that of the classical
turning point in the Efimov channel, comparing the inset of
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FIG. 6. (a) The differences of the lowest incident channels between the one where V (R; θ, ϕ) is constructed by VBA(r) and all the other
cases. (b) The nonadiabatic coupling strength between the lowest incident and recombination channels, i.e., F1,2(R), for all these cases
considered in the main text. The inset displays the ratio of the hyperradius R∗, where F1,2(R) peaks at relatively large R, to the corresponding
scattering length. The dashed line shows the ratio value of 3.15.

Fig. 1(a) and Fig. 5, which is again the clear manifestation of
the van der Waals universality.

In addition, the small departure of the case calculated by
the HFD-B3-FCI1 He-He potential from others implies that
there may exist other non-negligible short-range physics ac-
counting for the linearly variational behavior of 1/a∗ versus
1/a shown in Fig. 3. Note that the shape of the potential
well for this case actually also has a small departure from
others (not shown). The leading one of the other influence
factors is that the flow in the lowest incident channel tun-
nels into the small-R region and jumps into the Efimov
channel at the small hyperradius where the peak of F1,2(R)
occurs (see the open blue arrows in Fig. 4). Here, since the
effective potentials associated with the lowest incident chan-
nel for these cases are difficult to be directly distinguished,
the differences between the case constructed using VBA(r)
and other cases are calculated and shown in Fig. 6(a). As
shown, the lowest incident channel tends to be more and
more repulsive with the increase of the scattering length of
the He-He interaction. In other words, this signifies that the
flow pathway indicated by the open blue arrows in Fig. 4
tends to be easier to occur with the decrease of a, which
consequently leads to the increase of the TBR rate. To some
extent, this clearly accounts for the departure of the nu-
merically calculated TBR rates from the prediction of the
zero-range universal function (see Fig. 2), or the correspond-
ing linearly variational behavior of 1/a∗ versus 1/a shown in
Fig. 3.

To give an intuitive picture of the tunneling probability in
the lowest incident channel for these cases, the position R∗
of the recombination pathway near R ≈ a (the filled purple
arrow in Fig. 4), which can be characterized by the hump of
the nonadiabatic coupling strength F1,2(R) at relatively large
R, is first located. Figure 6(b) shows F1,2(R) for the present
cases and the inset exhibits the value of R∗/a, which gives
R∗ ≈ λa with λ ≈ 3.15. Note that the departure of R∗ from
a should be ascribed to the fact that the scattering length of
the He-He potential is not anomalously large. In addition,
replacing a by R∗ directly has no effect on the prediction of
the zero-range universal function. Therefore, to some extent,
it is a possible flow pathway in the lowest incident channel

from R∗ to the small-R region (see the open blue arrows
in Fig. 4), accounting for the departure of the zero-range
universal prediction associated with the two interference
pathways from the realistic TBR rates.

To characterize its effects on the TBR process of the 4He3

system, the WKB tunneling probability is used to evaluate the
recombination probability associated with this flow pathway
(see also the open blue arrows in Fig. 4):

Pν=2
R∗→R = exp

[
−2

∫ R∗

R

√
2μWν (R)dR

]
. (14)

As shown in Fig. 7, the tunneling probability of the flow in the
lowest incident channel is inversely proportional to its repul-
sive behavior shown in Fig. 6(a). As described before, with the
decrease of the scattering length of the He-He potential, the
flow in the lowest incident channel tends to be much easier
to tunnel into the smaller hyperradial region and jumps into
the Efimov channel. This may also account, to some extent,
for the fact that the accurate TBR rate becomes larger than
the zero-range universal prediction with the decrease of the
scattering length of the He-He potential. Of course, as the
next leading correction to the zero-range universal theory, it

FIG. 7. For the zero-collision-energy limit, the tunneling proba-
bility of the incident flow in the lowest incident channel from R∗ [see
Fig. 6(b)] to the small R.
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FIG. 8. The total and partial three-body recombination rates for
all these cases considered in the main text.

is also expected to account for the small departure of the case
calculated by the HFD-B3-FCI1 He-He potential from other
cases.

Finally, the post-BO effects on the TBR process of the 4He3

system for the partial wave with the total angular momentum
J > 0 are also calculated, which are shown in Fig. 8. As
displayed, similar to those in the zero-collision-energy limit,
the post-BO effects on the TBR rate are also proportional to
the scattering length of the He-He potential for these partial
waves before they gradually become indistinguishable with
the increase of the collision energy E . For J� = 0+ symmetry
with � denoting the parity of the system, it is found that the
depth of the Stückelberg minimum, the manifestation of the
destructive interference between the two main recombination
pathways described before in E , is also inversely proportional
to the scattering length of the He-He potential. With the in-
crease of a, the Stückelberg minimum becomes shallower and
its position is shifted to larger E .

IV. CONCLUSION

In summary, based on various post-BO corrections on the
standard BO He-He interaction and two widely adopted He-
He potentials, the effects of the short-range physics on the

TBR process of the 4He3 system have been investigated. It
is found that the numerically accurate TBR rates could be
well predicted by the zero-range Efimov universal function
when a linearly variational 1/a∗ versus 1/a is introduced.
Particularly, two leading short-range mechanisms are inves-
tigated to account for the variation of 1/a∗ versus 1/a. One
is associated with the flow in the Efimov channel at short
hyperradial distances, which is characterized by the classical
turning point. With the decrease of a, the flow in the Efi-
mov channel will take a longer travel time to go through the
short hyperradial distance before interfering with the other
main recombination pathway, which consequently leads to
the variation of the extracted a∗. The other one is associated
with the short-range tunneling probability of the flow in the
lowest incident channel, which is inversely proportional to a.
So the tunneling probability is larger for a smaller a, which
consequently leads to a larger TBR rate than that predicted
by the zero-range universal function. In addition, a perfect
fit of the modified universal function proposed by Garrido
et al. [33] or the zero-range universal function with a linearly
variational 1/a∗ versus 1/a to our numerical data indicates a
clear manifestation of the van der Waals universality. Finally,
the post-BO effects on the TBR process for the partial wave
with the total angular momentum J > 0 are discussed and
found to be also similar to those in the zero-collision-energy
limit before they gradually become indistinguishable with the
increase of the collision energy.
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