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Studying highly relativistic vortex-electron beams by atomic scattering
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We explore the opportunities of using electron scattering by the screened Coulomb potential as a tool to
retrieve properties of the relativistic vortex beams of electrons, such as their transverse momentum and orbital
angular momentum (OAM). We focus on relativistic and ultrarelativistic regimes of the electron energies of
at least several MeV and higher, in which the transverse beam momentum is typically much smaller than
its longitudinal momentum. Different scattering scenarios for the incident electron beam are considered. In
particular, the scattering by a very wide target can be used to probe the electron transverse momentum when its
values are larger than 10 keV. The scattering by a target of a width comparable to that of the incident beam allows
one to obtain information about the electron OAM. Varying target sizes in the range from couple to hundreds of
nanometers, one can in principle distinguish OAM values from several units of h̄ up to thousands and more.
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I. INTRODUCTION

Particles with a definite value of orbital angular momentum
(OAM) [1–3], also dubbed twisted or vortex particles, are of
considerable attention nowadays. Historically, twisted pho-
tons were the first type of such particle that inspired studies
both in theoretical and experimental domains, and pioneering
experiments with them took place in the 1990s. The genera-
tion of twisted electrons is a more recent research field: the
first such electrons were obtained in the early 2010s [4–6].
Currently, the achievable values of OAM projection value
could be as high as hundreds [7] and even thousands [8,9] of
units in terms of h̄. Applications of twisted electrons include
such spheres as ionization by twisted electrons [10–12] and
interaction of twisted electrons with matter [13,14].

Keeping up with the experiment, quantitative theoretical
studies of the scattering processes with twisted electrons are in
development. Let us briefly review several works. Scattering
of twisted electrons by single potential atomic targets and in-
finitely wide (macroscopic) targets were considered in [15,16]
in nonrelativistic and moderately relativistic regimes (electron
kinetic energy up to 1 MeV). A more sophisticated approach
to twisted states consists in treating them as spatially localized
wave packets. Scattering of an “ordinary” Gaussian packet by
a single atom, macroscopic or a localized finite-size (meso-
scopic) targets was given in [17]. Generalizations for the case
of twisted particles in nonrelativistic regime could be found
in [18–20]. Here we shall consider the scattering processes
with relativistic energies for a single-atom, macroscopic, and
mesoscopic targets.

In this work, we revisit the topic of using electron scatter-
ing by an atomic potential as a tool for analyzing properties
of the relativistic Bessel beams of electrons. It is argued in
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[15] that the case of scattering by a single atom is rather
informative on the features of the incident twisted particle,
and it is even possible to retrieve the value of the OAM pro-
jection, while, in contrast, scattering by a macroscopic target
is less sensitive: transverse momentum could be deduced but
not the OAM value. At the same time, calculations with a
single-atom target are not straightforwardly applicable in a
real experiment.

To have both a realistic and OAM sensitive scenario, we
suggest taking a finite-size target, the mesoscopic target, fol-
lowing the example of [18]. We find an amplitude for the
scattering off a mesoscopic target and compare it to the one off
a macroscopic target. As the mesoscopic target continues nat-
urally both into the single-atom and macroscopic scenarios, it
provides a signature criterion to mark the transition between
these two scenarios. We find that the transition takes place at
different target sizes depending on the OAM of the incident
twisted electron, and develop an idea that this can be used to
retrieve the value of OAM in the experiment. Having in mind
the possibilities of generating relativistic twisted electrons
at particle accelerators [21–23], we pay specific attention to
the ultrarelativistic energies, starting from several MeV and
higher. For such energies the usual methods of analyzing the
twisted electron beams used in electron microscopy, in which
the typical electron energies are of order of several keVs, are
hardly applicable, and that makes the proposed method of
detecting OAM promising for analyzing relativistic electron
beams.

In Sec. II we review the basics of Mott scattering, the
modifications needed for the study of twisted electron scatter-
ing, and the technical realizations of the three aforementioned
target kinds. After these introductory steps, we find scattering
amplitudes for all three scenarios in Sec. III. The results
acquired are analyzed in Sec. IV and, finally, the summary
is presented in Sec. V. Throughout the paper we put h̄ =
c = 1 and use Gaussian convention for the electric charge:
α0 = e2 = 1/137.
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II. THEORETICAL PRELIMINARIES

A. Plane-wave Mott scattering

The Mott scattering description is given in many classical
textbooks [24,25]. The corresponding scattering amplitude
can be written as

fλ,λ′ (p, p′) = − ∫
ψ

†
p′λ′ (r)V (r)ψpλ(r)d3r, (1)

S f i = i2πδ(ε − ε′) fλ,λ′ (p, p′), (2)

where

ψpλ = 1√
2εV

upλeipr, ψp′λ′ = 1√
2ε′V

up′λ′eip′r (3)

are the plane-wave wave functions of free electrons with inci-
dent (final) momentum, energy, and helicity p, ε = √

p2 + m2
e

and λ (p′, ε′ and λ′) and V (r) is the scattering potential, me is
the electron mass. The Dirac bispinors upλ can be expressed
as

upλ =
( √

ε + mew
λ(n)

2λ
√

ε − mew
λ(n)

)
, (4)

where the spinors wλ(n) are the eigenfunctions of the helic-
ity operator and n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is a unit
vector along p:


(n)wλ(n) ≡ σ̂n
2

wλ(n) = λwλ(n). (5)

Let us choose the axes so that the incident electron prop-
agates along the z direction. For a spinor wλ along the z
direction, the relation above becomes

σ̂z

2
wσ (ez ) = σwσ (ez ). (6)

In this case, this spinor has a simple form for the up and down
spins

w1/2(ez ) =
(

1
0

)
, w−1/2(ez ) =

(
0
1

)
. (7)

There is a standard approach that simplifies further calcu-
lation of the twisted particle amplitudes, representing electron
spinors using the Wigner D functions D1/2

σλ (ϕ, θ, 0) [26]

wλ(n) =
∑

σ=±1/2

D1/2
σλ (ϕ, θ, 0)wσ (ez )

=
∑

σ=±1/2

e−iσϕd1/2
σλ (θ )wσ (ez ),

(8)

where d1/2
σλ (θ ) = δσ,λ cos (θ/2) − 2σδσ,−λ sin (θ/2). The

bispinor upλ of the incident electron can then be expressed in
the following way [22]:

upλ =
∑

σ=±1/2

e−iσϕd1/2
σλ (θ )upzσ . (9)

Turning to V (r), the Coulomb potential is used for the
conventional Mott scattering, but a more accurate result can
be obtained using a screened Coulomb potential [27]

V (r) = −Ze2

r
e−μr, (10)

where Z is a charge of the nucleus, e is an electron charge,
and μ is a parameter of screening, which is set to be equal
to 2meα0 = 2/a0, where a0 is the Bohr radius in the case of
hydrogen [15]. After integrating (1) with the potential (10) we
find

fλ,λ′ (p, p′) = 4π
Ze2

q2 + μ2
u†

p′λ′upλ

= 4π
2Ze2

q2 + μ2
(εδλλ′ + meδλ,−λ′ )

×
∑

σ=±1/2

eiσ (ϕ′−ϕ)d1/2
σλ (θ )d1/2

σλ′ (θ ′), (11)

where the primed angles are of the final electron momentum.
Here, for elastic scattering we have (� is an angle between
momentum vectors)

q2 = (p − p′)2 = 2|p|2(1 − cos �)

= 2|p|2[1 − cos θ cos θ ′ − sin θ sin θ ′ cos (ϕ − ϕ′)].

(12)

In accordance with [15,25] the resulting cross section is

dσ

d

= |p|

ε jin

1

16π2
| fλ,λ′ (p, p′)|2, (13)

where jin is a projection on the propagation direction of the
incident particle current

jμ = ψ̄γ μψ, (14)

and γ μ are Dirac matrices. With the plane-wave expression
(3) for the incident electron substituted into the definition
(14), the identity ūpλγ

μupλ = 2pμ, and the incident wave
propagating along z the z projection of the current is simplified
to jz = 1

2ε
2pz = |p|

ε
. Then, for the cross section of the plane-

wave scattering, we find(
dσ

d


)(PW)

= 1

16π2
| fλ,λ′ (p, p′)|2

= 4Z2e4

(q2 + μ2)2
(ε2δλλ′ + m2

eδλ,−λ′ )

×
∣∣∣∣∣

∑
σ=±1/2

eiσ (ϕ′−ϕ)d1/2
σλ (θ )d1/2

σλ′ (θ ′)

∣∣∣∣∣
2

. (15)

This cross section would be useful as a reference in the fol-
lowing discussion.

B. Bessel twisted electrons

A twisted electron moving along the z direction is charac-
terized by the value of the total angular momentum (TAM)
operator Jz, i.e., it has a defined value of m = 0,±1,±2, . . ..
The corresponding wave function, the so-called Bessel beam,
can be written in the following way [15]:

ψκmpzλ(r) =
∫

d2 p⊥
(2π )2

aκm(p⊥)ψpλ

=
√

κ

2π

∑
σ=±1/2

d1/2
σλ (θp)upzσ eipzzJm−σ (κr), (16)
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where p⊥ = (|p⊥| cos ϕp, |p⊥| sin ϕp) is the transverse part of
the electron momentum p and (p⊥, pz ) lay on the surface of a
cone with an opening angle is θp = arctan(κ/pz ), Jm−σ (κr) is
the Bessel function of the first kind and

aκm(p⊥) = (−i)meimϕp

√
2π

κ
δ(|p⊥| − κ ) (17)

is a Fourier coefficient with κ fixing the modulus of the
transverse momentum. In the limit of κ → 0 the twisted wave
function (16) behaves like a plane wave ψpzλ.

It is worth noting that a more general model for a twisted
electron is the Laguerre-Gaussian (LG) beam that takes into
account the beam spreading. However, since the Rayleigh
length of the electron LG beam is much larger than the typical
scale in our settings, the beam spreading is actually negligible.
Moreover, in the experiment only several first rings of the LG
beam profile contribute, therefore the Bessel beam is a good
approximation of the twisted beam profile.

The amplitude for the scattering of the initial twisted elec-
tron is obtained via inserting the twisted wave function (16)
into Eq. (1)

f m,(TW )
λ,λ′ (p, p′, b) = −

∫
ψ

†
p′λ′ (r)V (r)ψκmpzλ(r)d3r

=
∫

d2 p⊥
(2π )2

aκm(p⊥)e−ip⊥b fλλ′ (p, p′)

= (−i)m

√
2π

κ

∫ 2π

0

dϕp

2π
eimϕp−ip⊥b fλλ′ (p, p′).

(18)

With fλλ′ (p, p′) given in Eq. (11) we obtain

f m,(TW )
λ,λ′ (p, p′, b) = 8πZe2i−m

√
κ

2π
(εδλλ′ + meδλ,−λ′ )eimϕ′

×
∑

σ=±1/2

d1/2
σλ (θp)d1/2

σλ′ (θ ′)Im−σ (α, β, b),

(19)

where

In(α, β, b) =
∫

dφ

2π

einφ−iκb cos (φ+ϕ′−ϕb)

α − β cos φ
, (20)

α = 2|p|2(1 − cos θp cos θ ′) + μ2, (21)

β = 2|p|2 sin θp sin θ ′. (22)

It seems that the integral (20) could not be calculated in
closed form. However, with some complex analysis and for
the case of impact parameter b = 0 we obtain the following
analytical expression:

In(α, β, 0) =
∫

dφ

2π

einφ

α − β cos φ

= − 1

iπβ

∮
|z|�1

z|n|

(z − ζ1)(z − ζ2)

= − 2

β

ζ
|n|
2

ζ2 − ζ1
,

(23)

where ζ1 > 1, ζ2 < 1

ζ1,2 = α

β

(
1 ±

√
1 − β2

α2

)
. (24)

Equation (23) can be now expressed as

In(α, β, 0) = 1√
α2 − β2

(
α −

√
α2 − β2

β

)|n|
. (25)

Similar results are given in [15,19].
For small θp, the integral (20) transforms into

In(α, 0, b) =
∫

dφ

2π

einφ−iκb cos (φ+ϕ′−ϕb)

α

= 1

α
e−in(ϕ′−ϕb)Jn(κb). (26)

We remark that for the large κb � 1 the integral (20) can be
evaluated approximately using the method of stationary phase
[28,29]. We show how it can be done in Appendix B.

C. Distribution of atoms in the target

As was mentioned in the Introduction we shall analyze
electron scattering by the targets of three types: single atom,
macroscopic, and mesoscopic. Physically, such targets can be
represented by a thin foil much wider than the beam size
for the macroscopic or a round piece of thin foil for the
mesoscopic target. To model a target we average the amplitude
(19) with some distribution function n(b):

Fm,λ,λ′ (p, p′, b) =
∫

d2b n(b) f m,(TW )
λ,λ′ (p, p′, b). (27)

We use the following functions for each target type

nmacro(b) = 1

πR2
, (28)

nsingle(b) = δ(b − b0), (29)

nmeso(b) = 1

2πσ 2
b

e
− 1

2

(
b−b0

σb

)2

, (30)

where R is an arbitrary large radius taken as an integration
limit in the macroscopic scenario. In the latter two cases
[Eqs. (29) and (30)] b0 is either a target position or a target
center, while σb gives an effective target size. All three distri-
butions obey the normalization condition

∫
d2b n(b) = 1.

The mesoscopic distribution (30) should reduce to (28) for
a large target size (σb → ∞); we have

nmeso(b) ≈ 1

2πσ 2
b

∼ nmacro(b). (31)

In the limit of small σb, the mesoscopic distribution is reduced
to the Dirac delta.

III. SCATTERING OFF DIFFERENT TARGETS

In this section, we present the results for the scattering
of a twisted electron by different targets. Results for the
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single-atom and the macroscopic target are similar to those
presented in [15]. Though, we are more interested in the
relativistic energies of the incident electron and focus on the
regime when θp is rather small (pz � κ) or, equivalently,
when the factor β of (22) is small. For instance, ultrarela-
tivistic electrons with ε = 100me and κ ∼ 10 keV have the
value of angle θp ≈ 0.01◦, and therefore, α � β. We assume,
that the electron scatters on different atoms independently and
obtain scattering amplitude by summing the contributions of
scattering by individual potentials. This approach seems to be
adequate for the beam size typically larger than the atomic
scale. For the specifics of considering more tightly focused
beams we refer the reader to [30]. We also provide calcula-
tions for the relativistic electron scattering by a mesoscopic
target, which are complementary to those made in [18] in the
nonrelativistic regime.

A. Macroscopic target

The simplest case is scattering by a macroscopic target. In
this scenario, we can obtain an analytic expression for the
cross section. Let us start with squaring the corresponding
amplitude

∣∣F (macro)
m,λ,λ′ (p, p′)

∣∣2 = 1

πR2

2π

κ

∫
d2p⊥
(2π )2

× | fλλ′ (p, p′)δ(|p⊥| − κ )|2, (32)

where we use that
∫

d2b ei(k⊥−p⊥ )b = (2π )2δ(k⊥ − p⊥).
Further, one can use the following identity (see, for
example, [31]):

|δ(|p⊥| − κ )|2 = R

π
δ(|p⊥| − κ ). (33)

Then it turns out that∣∣F (macro)
m,λ,λ′ (p, p′)

∣∣2 = 1

R
64Z2e4

(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∑
σ,σ ′

d1/2
σλ (θp)d1/2

σλ′ (θ ′)d1/2
σ ′λ (θp)d1/2

σ ′λ′ (θ ′)

×
∫ 2π

0

dϕp

2π

ei(σ−σ ′ )(ϕp−ϕ′ )

[α − β cos (ϕp − ϕ′)]2
.

(34)

The integral in the above expression can be expressed through
the integral (23)

2π∫
0

dϕp

2π

ei(σ−σ ′ )(ϕp−ϕ′ )

[α − β cos (ϕp − ϕ′)]2
= − ∂

∂α
Iσ ′−σ (α, β, 0)

= αδσ,σ ′ + βδσ,σ ′

(α2 − β2)3/2
. (35)

To find the cross section we need to calculate the incident
electron current jz. In contrast to the plane-wave case, for a
twisted wave function we need to average the current over the
incident plane [15]

j (macro)
z = 1

πR2

∫
d2b ψ̄κmpzλ(b)γ 3ψκmpzλ(b)

= 1

2επR2

κ

2π

∫
d2b

∑
σ,σ ′

d1/2
σλ (θp)d1/2

σ ′λ (θp)ūpzσ γ 3upzσ ′

∫ 2π

0

dϕp

2π
ei(m−σ ′ )ϕp−iκb cos ϕp

2π∫
0

dϕp

2π
e−i(m−σ )ϕp+iκb cos ϕp

= 1

πR2

pz

ε

∫ ∞

0
dbκbJ2

m−λ(κb) = pz

ε

1

π2R
. (36)

Using Eq. (13) for the cross section, we find(
dσ

d


)(macro)

= 4Z2e4

cos θp

(
ε2δλλ′ + m2

eδλ,−λ′
) ∑

σ,σ ′
d1/2

σλ (θ )d1/2
σλ′ (θ ′)d1/2

σ ′λ (θ )d1/2
σ ′λ′ (θ ′)

αδσ,σ ′ + βδσ,−σ ′

(α2 − β2)3/2
. (37)

Notice the factor ∼1/(α2 − β2) in the expression above. It
leads to the appearance of a characteristic resonance peak in
the cross-section graph (see Figs. 1 and 2), its position around
θ ′ � θp.

Let us rewrite the plane wave expression (15) in different
terms for convenience

(
dσ

d


)(PW )

= 4Z2e4

α2

(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∣∣∣∣∣

∑
σ=±1/2

eiσ (ϕ′−ϕ)d1/2
σλ (θ )d1/2

σλ′ (θ ′)

∣∣∣∣∣
2

. (38)

Then, if we go into the relativistic regime in (37) (neglecting
the β terms and assuming cos θp = 1) we find coincidence
with (38)

lim
θp→0

(
dσ

d


)(macro)

= 4Z2e4
(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∣∣∣∣∣∣

∑
σ=±1/2

d1/2
σλ (θp)d1/2

σλ′ (θ ′)

∣∣∣∣∣∣
2

1

α2

=
(

dσ

d


)(PW)

. (39)
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FIG. 1. The cross section for a macrosopic iron target and relativistic electron energies. Left panel: ε = 2me, blue solid θp = 0.1◦

(κ = 1.5 keV), dashed red θp = 0.5◦ (κ = 7.7 keV), dot dashed green θp = 1◦ (κ = 15 keV). Middle panel: ε = 5me, blue solid θp = 0.1◦

(κ = 4.4 keV), dashed red θp = 0.5◦ (κ = 21.9 keV), dot dashed green θp = 1◦ (κ = 43 keV). Right panel: ε = 20me, blue solid θp = 0.1◦

(κ = 17.8 keV), dashed red θp = 0.5◦ (κ = 89 keV), dot dashed green θp = 1◦ (κ = 178 keV).

This expression is approximately valid for the values of
θp � 5 deg, but near the resonance the Taylor series converges
much slower. However, for small κ � 10 keV the resonance
is barely distinguishable (see Fig. 1). Hence, the macroscopic

FIG. 2. The cross section for a macrosopic golden target and
ultrarelativistic electron energies. Top panel: ε = 100me, blue solid
θp = 0.001◦ (κ = 0.89 keV), dashed red θp = 0.01◦ (κ = 8.9 keV),
dot dashed green θp = 0.1◦ (κ = 89 keV). Bottom panel: ε =
1000me, blue solid θp = 0.001◦ (κ = 8.9 keV), dashed red θp =
0.01◦ (κ = 89 keV), dot dashed green θp = 0.1◦ (κ = 891 keV).

cross section is well approximated by the plane-wave one for
θp � 5 deg when we are not interested in scattering angles
near the resonance or when κ is small.

In the discussion above, we use the screened Coulomb
potential (10). However, as was proposed in [15], we can use
an alternative form of the potential: an analytical fit to the
self-consistent Dirac-Hartree-Fock-Slater data [32]. It is as-
sumed to provide a more realistic description of atom-electron
collisions. Such a potential would read

Vat (r) = −Ze2

r

3∑
i=1

Aie
−μir, (40)

where the coefficients Ai and μi depend on the atomic number
and are given in [32], A1 + A2 + A3 = 1. See the coefficients
for iron and gold in Table I.

We can implement this new potential into our calculations.
For scattering by a macroscopic target, the result for the cross
section was obtained in [15]. Repeating all the previous steps
we find(

dσ

d


)(macro)

at

= 4Z2e4

cos θp

(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∑
σ,σ ′

d1/2
σλ (θ )d1/2

σλ′ (θ ′)d1/2
σ ′λ (θ )d1/2

σ ′λ′ (θ ′)

×
3∑

i,k=1

AiAkIat
σ−σ ′ (αi, αk, β ),

(41)

Iat
n (αi, αk, β ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αiδσ,σ ′ + βδσ,σ ′

(α2
i − β2)3/2

, if i = k,

In(αi, β, 0) − In(αk, β, 0)

αk − αi
, if i 
= k.

(42)

TABLE I. Parameters of atomic potential (40) for some elements
[15,32].

Elem. A1 A2 μ1/(meα0 ) μ2/(meα0) μ3/(meα0)

Fe(26) 0.0512 0.6995 31.825 3.7716 1.1606
Cu(29) 0.0771 0.7951 25.326 3.3928 1.1426
Ag(47) 0.2562 0.6505 15.588 2.7412 1.1408
Au(79) 0.2289 0.6114 22.864 3.6914 1.4886
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Since In(α, β, 0) is proportional to 1/
√

α2 − β2, so is the
function Iat

σ−σ ′ (αi, αk, β ). Therefore, the cross section (41)
with the modified potential manifests the same resonance as
Eq. (37).

For small θp, the cross section (41) is reduced to

lim
θp→0

(
dσ

d


)(macro)

at

= 4Z2e4
(
ε2δλλ′ + m2

eδλ,−λ′
)

×
(

3∑
i=1

Ai

αi

)2∣∣∣∣∣
∑

σ=±1/2

d1/2
σλ (θp)d1/2

σλ′ (θ ′)

∣∣∣∣∣
2

.

(43)

Shall we decide to deal with a detector that is insensitive to
the electron polarization, the sum of the cross section over
final polarizations λ′ is necessary.

B. Single-atom target

Now we shall analyze the scattering by a single-atom po-
tential. The distribution function for the scattering by a single
atom is given by (29) and the squared scattering amplitude
then reads

∣∣F (single)
m,λ,λ′ (p, p′)

∣∣2

= |F (p, p′, b0)|2

= 32πZ2e4κ
(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∣∣∣∣∣

∑
σ=±1/2

d1/2
σλ (θp)d1/2

σλ′ (θ ′)Im−σ (α, β, b0)

∣∣∣∣∣
2

. (44)

In contrast to the previous cases, obtaining an analytic
result here is obstructed due to an ambiguity in defining the
cross section. The problem is that the incident current jz goes
to zero for some values of the impact parameter since jz ∼
J2

m−λ(κb0), and hence the usage of (13) is compromised (see
also a discussion on this issue given in [15]). To overcome this
obstacle, we go instead to the consideration of the number of
scattering events, following the lead of the authors of [18,33]

dν ≡ Ne|S f i|2 V d3 p′

(2π )3
, (45)

where Ne is a number of incident electrons. Then we acquire
a relation similar to the cross-section formula

(
dν

d


)(single)

= Ne

16π2

|p|
ε

∣∣F (single)
m,λ,λ′ (p, p′)

∣∣2
. (46)

The luminosity [18,34] then reads

L(TW ) = Ne
κ

2π

|p|
ε

πT

RLz
= Ne

κ

2π

π |p|
Rvε

= Ne

cos θp

κ

2π

π

R
,

(47)
where we write explicitly the normalization factor and use
Lz = vT , where v is a velocity of the incident electron. The

large factor R does not cancel here because in our setup the
wave beam is not regularized (compare with [18]). However,
it can be approximately identified with the beam size, see Ap-
pendix A. Moreover, as we shall see further, in the physically
meaningful results this factor will eventually cancel out.

Substituting the single-atom scattering amplitude (44) into
Eq. (46) we find

(
dν

d


)(single)

= Ne

cos θp

κ

R
2Z2e4

(
ε2δλλ′ + m2

eδλ,−λ′
)

×
∣∣∣∣∣

∑
σ=±1/2

d1/2
σλ (θp)d1/2

σλ′ (θ ′)Im−σ (α, β, b0)

∣∣∣∣∣
2

.

(48)

For small θp this formula is reduced to

(
dν

d


)(single)

= Ne
κ

2R
J2

m−λ(κb0)

(
dσ

d


)(PW)

= L(TW )J2
m−λ(κb0)

(
dσ

d


)(PW)

. (49)

Note that for κ = 0 this quantity equals to the plane wave
cross-section times the luminosity factor. In principle, we can
backtrack this relation and define the twisted cross section for
the scattering by a single-atom target the following way [18]:

(
dσ

d


)(single)

≡ 1

L(TW )

(
dν

d


)(single)

= J2
m−λ(κb0)

(
dσ

d


)(PW)

. (50)

C. Mesoscopic target

It was shown in [15] that with a macroscopic target, the
sensitivity to the OAM of the incoming twisted electron is
lost. However, a single-atom target is not the simplest exper-
imentally realizable option, though a possible one (see, for
example, [35]). Moreover, a trapped atom target has a spatial
probability distribution of some considerable width (typically
hundreds of nanometers) and therefore is realistically de-
scribed as a wave packet and the method of the previous
subsection is not applicable. A finite-size mesoscopic target
appears as a more experimentally viable option, is easier to
prepare (with respect to a single-atom one), and could still
lead to experimental differentiation of the OAM values. We
shall model such a target by a Gaussian distribution (30)

∣∣F (meso)
m,λ,λ′ (p, p′, b0)

∣∣2 =
∫

d2b |F (p, p′, b)|2 e
− 1

2

(
b−b0

σb

)2

2πσ 2
b

.

(51)
The calculations of the amplitude and the number of events are
similar to the ones in the previous section and can be found in
Appendix C.
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Number of events in the limit of small β and b0 = 0 equals(
dν

d


)(meso)

= e−σ 2
b κ2 2Z2e4

α2
Im−λ

(
σ 2

b κ2
)

× κ

R

Ne

cos θp

[
ε2 cos (θ ′/2)δλ,λ′

+ m2
e sin (θ ′/2)δλ,−λ′

]
= e−σ 2

b κ2
Im−λ

(
σ 2

b κ2)L(TW )

(
dσ

d


)(PW)

, (52)

where Im−λ(σ 2
b κ2) is the modified Bessel function of first kind.

For a point-like target, σb = 0, the modified Bessel func-
tion turns out to be equal to

Im−λ(0) = δm−λ,0. (53)

Then, we have the following expression for the number of
events: (

dν

d


)(meso)

→ δm−λ,0L(TW )

(
dσ

d


)(PW)

=
(

dν

d


)(single)

(b = 0). (54)

For a large target with σb ∼ R → ∞, the modified Bessel
function has the following limit:

Im−λ

(
σ 2

b κ2
) → eσ 2

b κ2

√
2πσbκ

. (55)

Then for the number of events we have(
dν

d


)(meso)

= 1√
2πσbκ

κ

2R

Ne

cos θp

(
dσ

d


)(PW)

. (56)

For the realistic atomic potential (40) and small β, we find

(
dν

d


)(meso)

= e−σ 2
b κ2

2Z2e4

(
3∑

i=1

Ai

αi

)2

Im−λ

(
σ 2

b κ2
)

× κ

R

Ne

cos θp

[
ε2 cos (θ ′/2)δλ,λ′

+ m2
e sin (θ ′/2)δλ,−λ′

]
. (57)

To compare the scattering by the mesoscopic target to the
macroscopic scenario, we need to introduce dν/d
 in the
latter case(

dν

d


)(macro)

= Ne

16π2

|p|
ε

∣∣F (macro)
m,λ,λ′ (p, p′)

∣∣2
. (58)

In the limit of small θp,(
dν

d


)(macro)

= π

R

Ne

cos θp

1

π2R

(
dσ

d


)(PW )

= 2

πRκ

κ

2R

Ne

cos θp

(
dσ

d


)(PW )

. (59)

If we assume that R = 2
√

2/πσb, then (59) is equal to (56).
This means that in the limit of the large target the scattering

of a twisted electron by a mesoscopic target becomes similar
to the scattering by a macroscopic one in accordance with
our mundane intuition. To “measure” this effect for any given
target size σb we define the following ratio:

Rm−λ(σb, κ ) ≡
(

dν

d


)(meso)/(
dν

d


)(macro)

. (60)

In the limit of small β and for b0 = 0 (typical for relativis-
tic regime) we have

Rm−λ(σb, κ ) =
√

2πσbκ e−σ 2
b κ2

Im−λ

(
σ 2

b κ2
)
. (61)

Here we use the amplitudes for the potential (10), but this
relation holds also for the realistic potential (40) since factors∑

Ai/αi cancel in the considered limit.
Our idea behind the introduction of the function R is that it

would manifest how the scattering result varies with changing
the target size from a point-like atom to an infinitely large
target. Several examples are given in Fig. 3. Moreover, with
this ratio we can explore the process sensitivity to the incident
electron OAM value.

So far we used the Gaussian distribution (30) to model
the mesoscopic target. Alternatively, we can use the uniform
distribution on a finite interval

∣∣F (meso)
m,λ,λ′ (p, p′, 0)

∣∣2 =
∫

Sb

d2b |F (p, p′, b)|2 1

πR2
b

, (62)

where Rb is a radius of the circular target and Sb is its area. In
terms of the number of events, we have the following:

(
dν

d


)(meso)

=
∫

Sb

d2b
1

πR2
b

(
dν

d


)(single)

. (63)

Equation (49) can be used for the single-atom target in the
limit β → 0, then for (63) we find

(
dν

d


)(meso)

=
∫

Sb

d2b
1

πR2
b

J2
m−λ(κb)L(TW )

(
dσ

d


)(PW )

.

(64)

This integral can be evaluated numerically and the results
are shown in Fig. 4, where we plot (dν/d
)/L, with L ≡
L(TW ) × (dσ/d
)(PW), for the Gaussian mesoscopic (52), the
uniform mesoscopic, and the macroscopic targets, all in the
relativistic limit of small β.

IV. RESULTS

First, we would like to numerically motivate an approxima-
tion used in the previous section, i.e., that, for the relativistic
regime, one can assume the transverse momentum κ to be
small relative to total linear momentum of the incident elec-
tron. We start with determining the opening angle θp value
from the typical scale of the incident wave beam. In our
framework we can define the characteristic beam width rbeam

either from the half-width radius of the squared wave function
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FIG. 3. The ratio of the numbers of events Rm−λ = (dν/d
)(meso)/(dν/d
)(macro) from Eq. (61) for different TAM projections m.
Parameters: ε = 5 me, λ = 1/2. Left panel: θp = 0.001 deg, κ = 44 eV; middle panel: θp = 0.1 deg, κ = 4.4 keV; right panel: θp = 1 deg, κ =
44 keV.

for the zero-order beam or from matching the first maximum
for the higher-order modes [first maximum of Jn(z) is situated

FIG. 4. Comparison of the number of scattering events functions
for the Gaussian mesoscopic (blue solid line), the uniform meso-
scopic (red dashed line), and the macroscopic (green dot dashed
line) targets. Parameters: m − λ = 1 (top panel) and m − λ = 10
(bottom panel), the uniform target radius Rb = 2

√
2/πσb, see before

Eq. (60).

at z ≈ n]

κ ≈

⎧⎪⎨
⎪⎩

1/rbeam, if m − λ = 0,

m − λ

rbeam
, otherwise.

(65)

For an angle between the total linear momentum and the
propagation axis that gives

θp ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arcsin

(
1

rbeam

√
ε2 − m2

e

)
, if m − λ = 0,

arcsin

(
m − λ

rbeam

√
ε2 − m2

e

)
, otherwise.

(66)

In Table II we assemble our estimations for κ and θp for
various widths rbeam after setting ε = 2me. Such beam widths
are currently obtainable for the electron vortices [36,37]. We
can see that small values of θp (� 1 deg) are typical for a
rather wide range of beam parameters, thus justifying the
approximation made in the previous section. In the case of
larger incident energy ε and other parameters fixed, θp tends
to become even smaller, as θp ∝ ε−1 for large ε. For exam-
ple, for ε = 10me, m − λ = 1, and rbeam = 1 nm we have
θp = 1.15×10−3 deg. We remark, though, that large θp values
are not uncommon for some energies, see, for instance, the
analysis of [15] for the nonrelativistic incident electron.

Let us now go back to the figures that were introduced
earlier in the paper. In Fig. 1 the results for differential cross
section for incident relativistic (ε/me = 2, 5, 20) twisted
electron scattered by a macroscopic iron target are presented.
The position of the peak corresponds to the value of the
opening angle for the twisted electron θ ′ = θp; determining
θ ′ from the scattering and knowing the electron energy from
beforehand one can easily calculate the transverse momentum
κ . However, this peak is distinguishable only for values of
κ � 10 keV. This sets a threshold for measuring the κ with
the described method. The value of 10 keV comes from the
screening parameter μ, which is approximately equal to the
inverse Bohr radius, being the natural scale of the problem. In
Fig. 2 we take a golden macroscopic target and electrons with
ultrarelativistic energies (ε/me = 100, 1000) and observe a
similar picture. In fact, the scattering picture does not alter
substantially with the change of the element: for higher val-
ues of Z the cross section increases in general, but the peak
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TABLE II. The values of the transverse momentum κ (eV) and the angle θp (deg) with ε = 2me and different wave beam width.

κ (eV) [θp (deg)]

m − λ rbeam = 1 Å rbeam = 1 nm rbeam = 10 nm rbeam = 1µm

1 2×103 (1.3×10−1) 2×102 (1.3×10−2) 2×10 (1.3×10−3) 2×10−1 (1.3×10−5)
5 1×104 (6.6×10−1) 1×103 (6.6×10−2) 1×102 (6.6×10−3) 1 (6.6×10−5)
10 2×104 (1.3) 2×103 (1.3×10−1) 2×102 (1.3×10−2) 2 (1.3×10−4)
100 2×105 (1.3×10) 2×104 (1.3) 2×103 (1.3×10−1) 2×10 (1.3×10−3)
1000 – 2×105 (1.3×10) 2×104 (1.3) 2×102 (1.3×10−3)

becomes less pronounced, as can be seen in Fig. 5 for iron,
copper, silver, and gold targets.

The values of κ � 10 keV in Figs. 1 and 2 are hardly
achievable in the experiment and are presented here mainly
to illustrate the tendencies of the cross sections. Furthermore,
for κ � 10 keV the width of the beam may became smaller
than the size of an atom and that can make our target model
inapplicable. However, the increase of κ can be compensated
for by the increase of the OAM value, see (65).

The scattering by a macroscopic target is at a disadvan-
tage because it cannot provide information about the electron
OAM, whereas the scattering by a single-atom target or by
a mesoscopic target can. We reproduce here the formula for
the single-atom scattering amplitude (48) and find its approx-
imation for small angle θp (49). In the relativistic regime, the
amplitude of this process can be found analytically.

For the scattering by a mesoscopic target, we obtain an an-
alytical solution for the amplitude when the target is centered
(b0 = 0) and the angle θp is small. This approach was studied
in [18] for the nonrelativistic regime where the Gaussian dis-
tribution was also used for modeling the mesoscopic target.
We show that, for the limit of small or large target size σb, this
amplitude reduces to the single-atom (44) or the macroscopic
(59) scattering amplitudes, respectively. By comparing the
mesoscopic and the macroscopic amplitudes, we explore the
transition between the mesoscopic and the macroscopic target
scattering behavior and observe how the sensitivity to the
angular momentum disappears. This phenomenon can be used
to estimate the twisted electron orbital angular momentum in
the experiment.

FIG. 5. The cross section for the macroscopic target made of dif-
ferent elements: iron, copper, silver, and gold. Parameters: ε = 5me,
θp = 0.3◦ (κ = 13.1 keV).

In Fig. 3 we plot the ratio (61) as a function of the target
size σb for different transverse momentum κ of the incident
electron. The curve corresponding to m − λ = 0 is different
from the others because the zero-order Bessel function be-
haves distinctly. Since Jm−λ(0) = δm−λ,0, the wave function
with the zero OAM interacts with a small target in its cen-
ter, while for nonzero values of the OAM, the target “goes
through” the wave beam center without overlapping its proba-
bility density. In (61) this can also be seen directly because
the modified Bessel function with small argument behaves
similarly when in it has zero index.

In Fig. 3, for every curve we can observe an evolution from
left (small target size) to right (wide target) as an electron
beam goes from the “single atom” scattering scenario, through
the mesoscopic scattering and, finally, to the macroscopic
scattering scenario. It can be seen from the single-atom scat-
tering (49) that, for m − λ 
= 0 and when the target is on the
propagation axis (impact parameter b0 = 0), the scattering
amplitude is equal to zero, which explains the smaller values
on the left side of the curves. For the macroscopic target,
there is no dependence on the orbital angular momentum
m − λ, so all curves converge to unity in the right part of this
figure.

V. DISCUSSION AND CONCLUSION

In this paper, we show how the scattering by a screened
Coulomb potential can be used to analyze the properties of
the twisted relativistic electron beams. The scattering by a
macroscopic target allows us to measure the transverse mo-
mentum κ (and the beam cone angle θp) under a condition
that κ has values of at least 10 keV. The electrons with such
high transverse momenta can, in principle, be generated via
scattering processes at accelerator facilities, especially when
employing the generalized measurement technique [22].

Moreover, we demonstrate how a target of a finite size
(mesoscopic) can be used to retrieve information about
the twisted electron orbital angular momentum m − λ. Our
method allows us to estimate the electron OAM by taking tar-
gets of different sizes σb and analyzing the ratio Rm−λ(σb, κ )
of the number of events for mesoscopic and macroscopic tar-
gets, assuming the electron transverse momentum κ is known.
For κ ∼ 40 eV, the OAM of any value can be retrieved for
realistic targets wider than 1 nm. In contrast, for higher values
of κ , the scattering process is sensitive only to higher values of
the OAM for such targets, for κ = 4.4 keV, we can distinguish
m − λ starting from 50 and higher. For κ = 44 keV, the lowest
retrievable value of OAM is m − λ = 500. In general, for
high-enough transverse momentum (κ � 1 keV) there is a

062803-9



IVANOV, CHAIKOVSKAIA, AND KARLOVETS PHYSICAL REVIEW A 108, 062803 (2023)

restrictive bottom bound in the range of measurable OAM
values for the realistic target sizes (�1 nm). Increasing κ leads
to a rise of this bottom bound value. However, the proposed
method does not, in principle, impose an upper bound on the
OAM value we can possibly measure.

To conclude, we estimate the sensitivity of the proposed
OAM measurement method. Let us consider two values of the
OAM m2 − λ2 and m1 − λ1, which we wish to distinguish,
and introduce the following relations:

δ = (m2 − λ2) − (m1 − λ1)

m2 − λ2
, (67)

D = max
σb,κ∈R+

[Rm2−λ2 (σb, κ ) − Rm1−λ1 (σb, κ )], (68)

where m2 − λ2 > m1 − λ1. The relation δ characterizes the
OAM detuning and the function D quantifies the necessary
accuracy in the scattering amplitude measurement. If there is
a two times difference between the OAM values (δ = 0.5)
we have D ≈ 0.45. For closer OAM values (smaller δ), D
also decreases: for δ ≈ 0.08 we have D ≈ 0.064, and for
δ ≈ 0.01 we have D ≈ 0.007. For example, to distinguish
m1 − λ1 = 11 and m2 − λ2 = 12 (detuning δ = 0.083) we
must have the experimental setup resolution better than D =
0.064. We notice that D and δ are of the same order of magni-
tude. We can use this fact at a preliminary stage of experiment
planning.
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APPENDIX A: NORMALIZATION OF WAVE FUNCTIONS

The plane-wave normalization is introduced as follows:

ψPW = NPW upλeipx. (A1)

The wave function should obey a normalization condition on
ρ = j0,

∫
V d3r ρ(r) = 1. That results in

NPW = 1√
2εV

. (A2)

Let us follow the same steps to find the normalization
constant of the twisted wave function

ψκmpzλ(r) = NTW
∫

d2 p⊥
(2π )2

aκm(p⊥)ψpλ. (A3)

Using
R∫
0

J2
n (κr)κrdr = R

π
([31]), we find

NTW =
√

π

2εRLz
. (A4)

We could also regularize the twisted wave-function density
employing the Gaussian distribution exp −1/2(r/σ )2. Then
we have

κ

∫ R

0
J2

n (κr)e− 1
2 ( r

σ )2

rdr = 2πσ 2κe−σ 2κ2
In(σ 2κ2). (A5)

For a large value of σ there is a limit [see Eq. (55)] for the
Bessel function reducing the expression above to

√
2πσ . In

this case, the normalization constant is

NTW,reg =
√

1

2ε
√

2πσLz

. (A6)

Therefore, we can interpret R in (A4) as a Bessel beam width.

APPENDIX B: EVALUATION OF THE INTEGRALS
WITH METHOD OF STATIONARY PHASE

For small κb, the integral (20) can be easily evaluated nu-
merically. However, for large κb the integral becomes highly
oscillatory making the calculation much harder. However, the
method of the stationary phase [28,29] is applicable in this
limit. This method is used to evaluate integrals of the follow-
ing form:

F (λ) =
∫ b

a
f (x) exp[iλS(x)]dx, (B1)

where λ � 1 is a large parameter. The point x0 where
S′(x) = 0 is called a stationary point. If [S′′(x0) 
= 0], we have
the following approximation:

F (λ; x0) =
√

2π

λ|S′′(x0)| [ f (x0) + O(λ−1)]

× exp

[
iλS(x0) + iπ

4
sgn S′′(x0)

]
. (B2)

Let us see how this method can be applied to the integral
(20) [in principle, it also can be used for (C3)]. In terms of

FIG. 6. The number of events for the hydrogen single-atom tar-
get. ε = 2me, θp = 10◦ (κ = 154 keV), b = 1 nm, m = 3/2, λ =
1/2. Blue solid line: numerical calculation; orange dashed line:
method of stationary phase.
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(B1) the parameters are λ = κb, x = φ. If n � κb, then we
can take

S(x) = − cos (φ + ϕ′ − ϕb), (B3)

f (x) = 1

2π

einφ

α − β cos φ
. (B4)

Here S′(x) = sin (φ + ϕ′ − ϕb) and it equals to zero if
φ = ϕb − ϕ′ or φ = ϕb − ϕ′ + π , thus we have two stationary
points. Using (B2), we find the stationary phase approxima-
tion for (20)

In(α, β, b) ≈
√

1

2πκb

[
ein(ϕb−ϕ′ )e−i(κb− π

4 )

α − β cos (ϕb − ϕ′)

− ein(ϕb−ϕ′ )ei(κb− π
4 )

α + β cos (ϕb − ϕ′)

]
. (B5)

In Fig. 6 we compare a straightforward numerical calcula-
tion and the stationary phase approximation for the calculation

of the number of events for a single-atom target (48). We see
that the curves coincide everywhere except the regions where
the function becomes too small. The accuracy of the method
can be roughly estimated as (κb)−1. To obtain higher accuracy
we can take the next terms in approximation series, see, for
example, [28].

If n ∼ κb, then einφ also oscillates fast, so we should take
the following relations instead:

S(x) = n

κb
− cos (φ + ϕ′ − ϕb), (B6)

f (x) = 1

2π

1

α − β cos φ
. (B7)

The next steps are obvious. Note, however, the points
where S′′(x) = 0 in which another formula for the method of
stationary phase should be used (see [28,29]).

APPENDIX C: FORMULAS ON THE MESOSCOPIC TARGET SCATTERING

We present below calculations of mesoscopic scattering amplitude and number of events. The full representation of (51) is

∣∣F (meso)
m,λ,λ′ (p, p′, b0)

∣∣2 =
∫

d2b |F (p, p′, b)|2 e
− 1

2

(
b−b0

σb

)2

2πσ 2
b

=
∫

d2k⊥
(2π )2

d2 p⊥
(2π )2

d2b fλ,λ′ (p, p′) f ∗
λ,λ′ (k, p′)aκm(p⊥)a∗

κm(k⊥)ei(k⊥−p⊥ )b e
− 1

2

(
b−b0

σ

)2

2πσ 2
b

. (C1)

The twisted amplitude (19) can be inserted here straightforwardly, but it is more instructive to expand the equation above as
follows:∫ ∣∣F (m)

λ,λ′ (p, p′, b)
∣∣2 1

2πσ 2
b

e
− 1

2

(
b−b0

σb

)2

d2b = κ

2π

∫
dϕk

2π

dϕp

2π
eim(ϕp−ϕk ) fλ,λ′ (pκ , p′) f ∗

λ,λ′ (kκ , p′)e−σ 2κ2(1−cos (ϕk−ϕp))eiκ|b0| cos (ϕk−ϕb)

× e−iκ|b0| cos (ϕp−ϕb) = 2Z2e4

π
κ
(
ε2δλ,λ′ + m2

eδλ,−λ′
)

× e−σ 2
b κ2

∑
σ,σ ′=±1/2

d1/2
σ,λ (θp)d1/2

σ,λ′ (θ ′)d1/2
σ ′,λ(θp)d1/2

σ ′,λ′ (θ ′)Iσb
mσσ ′ (α, β, b0), (C2)

where we used the property that the Fourier transform of a Gaussian is a Gaussian itself and introduced

Iσb
mσσ ′ (α, β, b0) =

∫
dϕp

2π

eimϕpeiσ (ϕ′−ϕp)e−iκ|b0| cos (ϕp−ϕb)

α − β cos (ϕp − ϕ′)

(∫
dϕk

2π

eimϕk eiσ ′(ϕ′−ϕk )e−iκ|b0| cos (ϕk−ϕb)

α − β cos (ϕk − ϕ′)
eσ 2

b κ2 cos (ϕk−ϕp)

)∗
. (C3)

This integral has similar calculation issues to the integral of (20). Let us see how it behaves in the limit of small θp and β

while setting b0 = 0:

Iσb
mσσ ′ (α, 0, 0) =

∫
dϕp

2π

eimϕpeiσ (ϕ′−ϕp)

α

(∫
dϕk

2π

eimϕk eiσ ′(ϕ′−ϕk )eσ 2
b κ2 cos (ϕk−ϕp)

α

)∗

= 1

α2
δm−σ,m−σ ′ i−(m−σ ′ )Jm−σ ′

(
iσ 2

b κ2)
= 1

α2
δσ,σ ′ Im−σ

(
σ 2

b κ2), (C4)
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where Im−σ (σ 2
b κ2) is a modified Bessel function of the first kind. In this limit we find for the amplitude (C2)∫ ∣∣F (m)

λ,λ′ (p, p′, b)
∣∣2 1

2πσ 2
b

e
− 1

2

(
b
σb

)2

d2b = 2Z2e4

π
κ
(
ε2δλ,λ′ + m2

eδλ,−λ′
)
e−σ 2

b κ2
∑

σ=±1/2

(
d1/2

σ,λ (θp)d1/2
σ,λ′ (θ ′)

)2 1

α2
Im−σ

(
σ 2

b κ2)

= 2Z2e4

π
κ
[
ε2 cos (θ ′/2)δλ,λ′ + m2

e sin (θ ′/2)δλ,−λ′
]
e−σ 2

b κ2 1

α2
Im−λ

(
σ 2

b κ2
)
. (C5)

In addition, for the number of events we have

(
dν

d


)(meso)

= Ne

16π2

|p|
ε

∣∣F (meso)
m,λ,λ′ (p, p′, b0)

∣∣2

= 2Z2e4 κ

R

Ne

cos θp

(
ε2δλ,λ′ + m2

eδλ,−λ′
)
e−σ 2

b κ2
∑

σ,σ ′=±1/2

d1/2
σ,λ (θp)d1/2

σ,λ′ (θ ′)d1/2
σ ′,λ(θp)d1/2

σ ′,λ′ (θ ′)Iσb
mσσ ′ (α, β, b0). (C6)

[1] J. Torres and L. Torner, Twisted Photons: Applications of Light
with Orbital Angular Momentum (John Wiley & Sons, New
Jersey, 2011).

[2] I. P. Ivanov and V. G. Serbo, Phys. Rev. A 84, 033804 (2011).
[3] K. Bliokh, I. Ivanov, G. Guzzinati, L. Clark, R. Van Boxem, A.

Béché, R. Juchtmans, M. Alonso, P. Schattschneider, F. Nori,
and J. Verbeeck, Phys. Rep. 690, 1 (2017).

[4] M. Uchida and A. Tonomura, Nature (London) 464, 737
(2010).

[5] J. Verbeeck, H. Tian, and P. Schattschneider, Nature (London)
467, 301 (2010).

[6] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing,
H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192
(2011).

[7] V. Grillo, G. C. Gazzadi, E. Mafakheri, S. Frabboni, E. Karimi,
and R. W. Boyd, Phys. Rev. Lett. 114, 034801 (2015).

[8] E. Mafakheri, A. H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi,
C. Menozzi, G. C. Gazzadi, S. Frabboni, A. Sit, R. E. Dunin-
Borkowski, E. Karimi, and V. Grillo, Appl. Phys. Lett. 110,
093113 (2017).

[9] B. McMorran, A. Agrawal, P. Ercius, V. Grillo, A. Herzing, T.
Harvey, and M. Linck, Phil. Trans. R. Soc. A 375, 20150434
(2017).

[10] A. Plumadore and A. L. Harris, J. Phys. B 53, 205205
(2020).

[11] A. L. Harris, A. Plumadore, and Z. Smozhanyk, J. Phys. B 52,
094001 (2019).

[12] N. Dhankhar, A. Mandal, and R. Choubisa, J. Phys. B 53,
155203 (2020).

[13] S. M. Lloyd, M. Babiker, and J. Yuan, Phys. Rev. A 86, 023816
(2012).

[14] S. Lloyd, M. Babiker, and J. Yuan, Phys. Rev. Lett. 108, 074802
(2012).

[15] V. Serbo, I. P. Ivanov, S. Fritzsche, D. Seipt, and A. Surzhykov,
Phys. Rev. A 92, 012705 (2015).

[16] V. P. Kosheleva, V. A. Zaytsev, A. Surzhykov, V. M. Shabaev,
and T. Stöhlker, Phys. Rev. A 98, 022706 (2018).

[17] D. V. Karlovets, G. L. Kotkin, and V. G. Serbo, Phys. Rev. A
92, 052703 (2015).

[18] D. V. Karlovets, G. L. Kotkin, V. G. Serbo, and A. Surzhykov,
Phys. Rev. A 95, 032703 (2017).

[19] R. Van Boxem, B. Partoens, and J. Verbeeck, Phys. Rev. A 89,
032715 (2014).

[20] R. Van Boxem, B. Partoens, and J. Verbeeck, Phys. Rev. A 91,
032703 (2015).

[21] D. Karlovets, New J. Phys. 23, 033048 (2021).
[22] D. V. Karlovets, S. S. Baturin, G. Geloni, G. K. Sizykh, and

V. G. Serbo, Eur. Phys. J. C 82, 1008 (2022).
[23] I. P. Ivanov, Prog. Part. Nucl. Phys. 127, 103987 (2022).
[24] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrody-

namics, Interscience Monographs and Texts in Physics and
Astronomy, Vol. 11 (John Wiley & Sons, New Jersey, 1965).

[25] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum
Electrodynamics, Course of Theoretical Physics, Vol. 4 (Perga-
mon, Oxford, UK, 1982).

[26] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific, Sin-
gapore, 1988).

[27] Sometimes this kind of potential is called the Yukawa potential
because it has the same functional form.

[28] M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow,
1977).

[29] C. Bender and S. Orszag, Advanced Mathematical Methods for
Scientists and Engineers I: Asymptotic Methods and Pertur-
bation Theory, Advanced Mathematical Methods for Scientists
and Engineers (Springer, New York, 1999).

[30] D. V. Karlovets and V. G. Serbo, Phys. Rev. Lett. 119, 173601
(2017).

[31] U. D. Jentschura and V. G. Serbo, Eur. Phys. J. C 71, 1571
(2011).

[32] F. Salvat, J. D. Martinez, R. Mayol, and J. Parellada, Phys. Rev.
A 36, 467 (1987).

[33] D. V. Karlovets and V. G. Serbo, Phys. Rev. D 101, 076009
(2020).

062803-12

https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature09366
https://doi.org/10.1126/science.1198804
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1063/1.4977879
https://doi.org/10.1098/rsta.2015.0434
https://doi.org/10.1088/1361-6455/abb3ac
https://doi.org/10.1088/1361-6455/ab12f3
https://doi.org/10.1088/1361-6455/ab8718
https://doi.org/10.1103/PhysRevA.86.023816
https://doi.org/10.1103/PhysRevLett.108.074802
https://doi.org/10.1103/PhysRevA.92.012705
https://doi.org/10.1103/PhysRevA.98.022706
https://doi.org/10.1103/PhysRevA.92.052703
https://doi.org/10.1103/PhysRevA.95.032703
https://doi.org/10.1103/PhysRevA.89.032715
https://doi.org/10.1103/PhysRevA.91.032703
https://doi.org/10.1088/1367-2630/abeacc
https://doi.org/10.1140/epjc/s10052-022-10991-w
https://doi.org/10.1016/j.ppnp.2022.103987
https://doi.org/10.1103/PhysRevLett.119.173601
https://doi.org/10.1140/epjc/s10052-011-1571-z
https://doi.org/10.1103/PhysRevA.36.467
https://doi.org/10.1103/PhysRevD.101.076009


STUDYING HIGHLY RELATIVISTIC VORTEX-ELECTRON … PHYSICAL REVIEW A 108, 062803 (2023)

[34] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014).

[35] H. Ott, Rep. Prog. Phys. 79, 054401 (2016).
[36] J. Verbeeck, P. Schattschneider, S. Lazar, M. Stöger-Pollach, S.

Löffler, A. Steiger-Thirsfeld, and G. Van Tendeloo, Appl. Phys.
Lett. 99, 203109 (2011).

[37] P. Schattschneider, S. Löffler, M. Stöger-Pollach, and J.
Verbeeck, Ultramicroscopy 136, 81 (2014).

[38] https://rscf.ru/en/project/23-62-10026/.

Correction: Formatting errors were introduced during the
proof cycle in Eqs. (23), (25), (32), and (44) and have been
fixed.

062803-13

https://doi.org/10.1088/0034-4885/79/5/054401
https://doi.org/10.1063/1.3662012
https://doi.org/10.1016/j.ultramic.2013.07.012
https://rscf.ru/en/project/23-62-10026/

