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Atoms, dimers, and nanoparticles from orbital-free density-potential-functional theory

Martin-Isbjörn Trappe ,1,* William C. Witt ,2,† and Sergei Manzhos 3,‡

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom

3School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

(Received 19 April 2023; revised 18 October 2023; accepted 14 November 2023; published 1 December 2023)

Density-potential-functional theory (DPFT) is an alternative formulation of orbital-free density functional
theory that may be suitable for modeling the electronic structure of large systems. To date, DPFT has been applied
mainly to quantum gases in one- and two-dimensional settings. In this work, we study the performance of DPFT
when applied to real-life systems: atoms, dimers, and nanoparticles. We build on systematic Suzuki-Trotter
factorizations of the quantum-mechanical propagator and on the Wigner function formalism, respectively, to
derive nonlocal as well as semilocal functional approximations in complete analogy to their well-established
lower-dimensional versions, without resorting to system-specific approximations or ad hoc measures of any kind.
The cost for computing the associated semiclassical ground-state single-particle density scales (quasi)linearly
with particle number. We illustrate that the developed density formulas become relatively more accurate for
larger particle numbers, can be improved systematically, are quite universally applicable, and, hence, may offer
alternatives to existing orbital-free methods for mesoscopic quantum systems.
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I. INTRODUCTION

Electronic structure calculations form the theoretical basis
of today’s materials science and chemistry, where demand
for reliable predictions of electronic energies and electron
distributions has been growing steadily for decades [1–6]. The
majority of applications rely on Kohn-Sham density func-
tional theory (KS-DFT) [2], which self-consistently builds
the spatial electron density distribution n and the associ-
ated energy E [n] from orbitals of an auxiliary, effectively
noninteracting system. Since these orbitals have to be mutu-
ally orthogonal, the computational cost of standard KS-DFT
scales cubically with the electron number N . Consequently,
high-throughput KS calculations are typically limited to a
few hundred atoms, although linear-scaling implementations
can target much larger particle numbers, commonly achieved
through localized orbitals and massive parallelization [7–12].
However, these computationally efficient approaches rely on
known or presupposed properties of the target systems and
are not easily transferable beyond the class of systems they
are designed for [13].

A tradeoff among scalability, accuracy, and transferabil-
ity is unavoidable. With emphasis on efficiency for large
N , orbital-free density functional theory (OF-DFT) natu-
rally becomes the electronic structure method of choice for
routinely investigating thousands to millions of interacting
particles [14,15], without relying on particular approxima-
tions from the outset like, for example, in the density
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functional tight-binding method [16]. OF-DFT is the original
(Hohenberg-Kohn) formulation of DFT, which has been in the
shadows for decades due to the absence of accurate enough
functionals for the kinetic energy. Today, however, the field
of OF-DFT is enjoying rapid growth due to a constellation
of factors that include advanced computational tools, such as
modern optimizers and machine learning [17–21], as well as
new theoretical developments [22–29].

OF-DFT primarily aims at utilizing efficient and accurate
functionals for the kinetic energy Ekin since (i) other major
contributions to the total energy, such as the electron-ion
or Hartree energy, are known and (ii) a generic exchange-
correlation energy functional such as PBE [30,31] can be
accurate enough for many OF-DFT studies of electronic sys-
tems in three dimensions (3D). Importantly, we note that DFT
implementations are less developed for lower-dimensional
settings and non-Coulombic interactions, not least due to
the focus on 3D electronic systems ultimately required for
chemistry and materials applications. For example, exchange-
correlation functionals for two-dimensional (2D) electronic
systems have been rigorously derived only in recent history
[32]. Moreover, some highly accurate approximations can-
not be extended beyond one-dimensional (1D) geometries
[33,34], and the interactions in ultracold Fermi gases demand
DFT techniques that deviate markedly from traditional routes
[35–38]. While functionals for 3D are needed in the vast
majority of use cases, we speculate that the most transfer-
able functionals will extend seamlessly into low-dimensional
settings, and that the development of functionals for 3D will
benefit from lessons learned with tractable systems in 1D and
2D.

Much of scholarly material on OF-DFT features approx-
imations of the kinetic energy density functional Ekin[n]
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(KEDF), for which even the general noninteracting version
is not known explicitly (in position-space representation).
The following selection of OF-DFT approaches provides an
overview pertinent to this work, but is by no means com-
plete; see Refs. [15,39] and references therein for broader
surveys. Practical implementations of OF-DFT are accessible
through software packages like GPAW [40], PROFESS [41,42],
ATLAS [39,43,44], CONUNDRUM [45], and DFTPY [25], which
build on nonlocal and semilocal KEDFs that prove appropri-
ate for certain classes of systems. In contrast to rudimentary
approximations such as the prototypical Thomas-Fermi (TF)
model, nonlocal KEDFs are capable of producing the typ-
ical oscillations of quantum-mechanical densities that can
be viewed as aggregations of many KS-type single-particle
densities. But these accurate functionals are limited mainly
to main group metals with inroads into bulk semiconductors
[46–49]. Moreover, their application commonly depends on
the average density in the unit cell, such that addressing iso-
lated systems remains problematic [50], although efforts are
made to overcome these shortcomings, for example, through
a KEDF [39] that is inspired by the local density approxima-
tion (LDA). Alternatively, rigorous expansions in terms of the
density gradient have been considered [51–53], but technical
difficulties in adequately resumming higher-order terms of
this asymptotic series for obtaining systematic and, hence,
maximally transferable KEDFs have impeded widespread ap-
plication, though very accurate gradient expansions can be
constructed for special cases in 1D [54]. The truncation of
the gradient expansion renders corresponding KEDFs valid
only in regions of slowly varying density, a feature shared
with modern semilocal KEDFs that incorporates the gradient
and Laplacian of the density [50,55–57]. But some of these
functionals, which specifically target electronic systems in
3D, are of limited use for regions of highly variable density.
Furthermore, gradient-expanded KEDFs that improve upon
the TF and von-Weizsäcker (vW) KEDFs [53] are commonly
(i) parametrized in an ad hoc fashion and fitted to existing data
like in [58] or (ii) take into account constraints that only apply
to 3D electronic matter [59,60]. Specific combinations of non-
local and semilocal terms have been explored, for example,
such that a number of exact constraints are met upon optimiz-
ing free parameters [61,62]. KEDFs can also be constructed
directly from models of the one-body reduced density matrix
for electronic systems [63]. Some OF-DFT variants achieve
accuracy and efficiency through electron densities restricted
to families of functions for the constituting atoms, partitioning
of the target system, and other ad hoc measures. Applications
of OF-DFT can also benefit from problem-specific machine-
learned functionals, some of which deliver chemical accuracy,
though general-purpose functionals have yet to materialize
[17,18,64–66]. The kinetic as well as total energy can also
be expressed in terms of the external potential, which is
bijectively related to the particle density. In the resulting po-
tential functional theories [67,68], both the kinetic energy in
general and gradient expansions in particular are accessible
more naturally than in DFT. However, the according OF-DFT
implementations have so far improved upon TF-type models
only for selected systems, and extensions to 3D prove difficult
[68–70].

In summary, the fundamental importance of the quantum
many-body problem across scientific branches and the diffi-
culty in finding general-purpose solutions have motivated a
multitude of approaches to OF-DFT that predominantly tar-
get electronic structure calculations. Although each of these
methods presents a viable route to address specific sets of
issues, none offers a clear path of systematic and nonempirical
improvement toward the exact energy functional across vir-
tually all fermion systems, that is, across dimensions, type of
interactions, number of fermion species, boundary conditions,
and for observables in momentum as well as in position space.
Such a universal orbital-free methodology would allow us to
transfer lessons learned in studying very disparate systems
and would enjoy widespread application if demands on accu-
racy and computational efficiency are met. This work features
density-potential-functional theory (DPFT), which promises
to deliver such a unified, parameter-free framework for prac-
tically relevant applications.

The conception of DPFT by Schwinger and Englert dates
back to the early 1980s, with a series of works that developed
the semiclassical atom [71–80]; see Ref. [81] for a review
of these early developments, which relied on the properties
of the central nuclear potential and cannot easily be trans-
ferred to molecules and materials. The basis of DPFT is an
exact bifunctional for the total energy that depends on (i)
the particle density n and (ii) an effective potential V that
merges the external potential with the interaction effects. The
kinetic energy in DPFT is expressed through the Legendre
transform of the KEDF. In reformulating the Hohenberg-Kohn
energy functional, this procedure yields an explicit expression
for the noninteracting kinetic energy functional in terms of
V , permits systematic approximations, and thereby alleviates
the need of searching for approximations of the unknown
Ekin[n]. DPFT has been applied to (i) noninteracting sys-
tems for benchmarking purposes [36,37,82,83], (ii) systems
in one [83], two [36–38,84], and three [82] dimensions, (iii)
small [38,82,83] and large [37,38,83,84] particle numbers,
(iv) graphene heterostructures [84], (v) single atoms [71–80],
and (vi) interacting Fermi gases [36,38,85]. The unifying fea-
ture of all these applications is the systematic, parameter-free
methodology of the DPFT approximations. In fact, the core
principles of DPFT have permeated beyond physics: Ref. [86]
offers a unified theory for ecology based on the mathematical
structure of DPFT. Aside from DPFT implementations aimed
at periodic systems, an important missing element in this array
of applications is the calculation of electronic structure.

This work establishes an avenue for electronic structure
calculations of isolated systems based on semiclassical ap-
proximations for DPFT. We employ two disjunct schemes that
feature nonlocal and semilocal approximations, respectively.
First, we (i) utilize the formulas for quantum-corrected densi-
ties derived in Ref. [82], where Suzuki-Trotter factorizations
of the time-evolution operator produce a hierarchy of sys-
tematic improvements upon the TF approximation without a
gradient expansion, and (ii) derive the kinetic energy through
an accordingly approximated one-body density matrix. In
extending this approach to finite temperature, we reduce
the computational cost of the quantum-corrected densities to
quasilinear scaling. The second approximation scheme builds

062802-2



ATOMS, DIMERS, AND NANOPARTICLES FROM … PHYSICAL REVIEW A 108, 062802 (2023)

on the Wigner function formalism and delivers semilocal,
linearly scaling formulas for densities and energies through
“Airy-averaged” gradient expansions that address evanescent
regions accurately and efficiently across dimensions. Here,
we derive the expressions for densities and energies for 3D
systems, in complete analogy to the 1D and 2D settings that
are covered in Refs. [38,83] and [36–38], respectively. Our
primary objective is the proof-of-principle applicability of
these two DPFT approximation schemes to electronic struc-
ture problems. We show that even the next-to-leading-order
semiclassical DPFT densities improve significantly upon their
lowest order (the TF density) and approach the quality of KS
densities as the particle number becomes large. Unfortunately,
while some modern KS exchange-correlation functionals sac-
rifice accuracy of densities in favor of accurate total energies
[87], the reverse seems to hold for the DPFT approximations
used in this work: We find the improvements of total energies
(as well as energy differences, which matter ultimately) over
the TF energies to be minor in practice, although the improve-
ments are sufficient to bind H2, an outcome that cannot be
obtained from a self-consistent TF calculation.

In this work we study the applicability of DPFT ap-
proximation schemes to real-life electronic structure. The
test cases range from single atoms to relatively large (by
ab initio standards) nanoparticles. Although the semiclassi-
cal DPFT approximations are expected to become relatively
accurate only for large particle numbers, we will calculate
atomic densities and dimer properties. These preparatory
calculations will help establish the reliability of our ap-
proximation schemes for mesoscopic nanoparticles. Metal
nanoparticles composed of ∼10–106 atoms, are an impor-
tant active area of research that fuels modern technologies,
including photovoltaics, catalysis, and drug delivery [39,88–
92], in particular because the large ratio between surface and
bulk atoms in metal nanoparticles yields unique and useful
mechanical, chemical, optical, and electrical properties that
differ markedly from their solid-state versions. In isolated
systems like metal nanoparticles, the electron density eas-
ily drops 10 orders of magnitude within angstroms when
crossing the evanescent region from the bulk on the way to
vacuum. Such inhomogeneities require special care, as dis-
cussed, for example, in Ref. [93], where accurate OF-DFT
densities and energies are reported based on an LDA-inspired
KEDF. Comprehensive KS analyses of more exotic metal
nanoparticles have only recently become possible and are
commonly combined with advanced global optimization tech-
niques that deliver the low-energy nanoparticle configurations
[91,94,95]. For example, geometries of a gold-copper nanoal-
loy composed of just over 300 atoms are found with a genetic
algorithm in Ref. [96]. Disregarding stringent demands on
accuracy and transferability, the issue of computational cost
can likely be resolved with modern OF-DFT implementations
[97]: A refined periodic code that can process any KEDFs
recently produced the electronic structure of a (1 × 106)-atom
Al-nanoparticle on a single CPU [25], but, of course, such im-
pressive outcomes inherit the shortcomings of the underlying
KEDFs.

This work is organized as follows. In Sec. II we introduce
the method of orbital-free DPFT. Section II A recapitulates
the general DPFT formalism, subsequently supplemented

with systematic semiclassical approximations that derive from
Suzuki-Trotter factorizations (Sec. II B) and approximate
Wigner functions (Sec. II C), respectively. In Sec. III we detail
our numerics, such as the pseudopotentials we use for valence-
and all-electron calculations. In Sec. IV, we present our
main results for the electronic structure of atoms (Sec. IV A),
dimers (Sec. IV B), and nanoparticles (Sec. IV C). We con-
clude in Sec. V with the wider implications of this work and its
potentially fruitful extensions. In the Appendixes we collect
details on our numerical procedures and on the derivations of
the approximate DPFT functionals of energy and density for
three-dimensional settings as introduced in Secs. II B and II C.

II. DENSITY-POTENTIAL-FUNCTIONAL THEORY FOR
ELECTRONIC STRUCTURE

The computational cost of OF-DFT is not explicitly depen-
dent on the particle number. But in practice, and in particular
for electronic structure, an N dependence is introduced via
numerical integration grids that have to be large enough for
sufficiently converging densities and energies. A moderate
grid size can be adequate even for millions of particles, for
example, for some interacting ultracold atomic gases, whereas
electronic structure calculations demand an adequate sam-
pling of the electron distribution around each nucleus, which
makes the OF-DFT approach scale with the number of atoms
or number N of electrons, with the proviso that the employed
KEDFs are efficient enough, comparable to the TF-KEDF
in the best case. The latter holds for many semilocal func-
tionals, while nonlocal KEDFs incur costs that scale at least
like N lnN . Furthermore, all that holds only if the cost of
the interaction functional is small enough; a lower bound is
usually put in place by the Hartree energy that scales like
N lnN . The main purpose of this work is to introduce two
disjunct semiclassical DPFT approximations whose compu-
tational costs for electronic structure calculations scale like N
and N lnN , respectively.

A. General formalism of density-potential-functional theory

Orbital-free density functional theory (OF-DFT) seeks the
extremum of the constrained density functional of the total
energy

E = E [n, μ] = Ekin[n] + Eext[n] + Eint[n]

+μ

(
N −

∫
(dr) n(r)

)
, (1)

which sums the kinetic energy, the energy due to the single-
particle external potential, and the interaction energy for a
quantum system of N particles, associated with the chemical
potential μ. DPFT introduces the effective potential energy

V (r) = μ − δEkin[n]

δn(r)
, (2)

such that the Legendre transform

E1[V − μ] = Ekin[n] +
∫

(dr)
(
V (r) − μ

)
n(r) (3)

062802-3



TRAPPE, WITT, AND MANZHOS PHYSICAL REVIEW A 108, 062802 (2023)

of the kinetic energy functional Ekin[n] yields

E = E [V, n, μ] = E1[V − μ] −
∫

(dr) n(r) (V (r) − Vext (r))

+ Eint[n] + μN. (4)

The V and n variations at the stationary point of E [V, n, μ]
obey

δV : n[V − μ](r) = δE1[V − μ]

δV (r)
(5)

and

δn : V [n](r) = Vext (r) + δEint[n]

δn(r)
, (6)

respectively. The μ variation, combined with Eq. (5), repro-
duces the particle-number constraint∫

(dr) n(r) = N. (7)

Equation (5) yields the particle density for any given μ

and effective potential, e.g., the noninteracting density in
the noninteracting case (V = Vext). We find candidates of
the ground-state density from the self-consistent solution of
Eqs. (5)–(7) for a given interaction functional Eint[n]. The
fundamental variables of DPFT are V and n, in contrast
both to the standard Hohenberg-Kohn DFT and to potential
functional theory [68,69], although the optimized effective
potential approach to OF-DFT is related in spirit to DPFT
(see Ref. [69] and references therein). In the following, we
reiterate only the most important features and formulas of
DPFT pertinent to this work; details on DPFT can be found
in Refs. [36–38,77,79,83].

The main advantage of orbital-free DPFT is to avoid the
not explicitly known density functional Ekin[n] of the kinetic
energy in favor of its Legendre transform

E1[V − μ] = tr{ET (H − μ)}. (8)

Here, H = H (R, P) is the Hamiltonian of a system (at finite or
zero temperature T ), for which we may neglect couplings be-
tween the position operator R and the momentum operator P,
for example, of spin-orbit type [37,38,79]. The single-particle
trace in Eq. (8) includes a degeneracy factor g, which can, for
example, encode spin multiplicity. We will use the explicitly
known noninteracting version

E (0)
T (A = H − μ) = (−kBT ) ln (1 + e−A/kBT ) (9)

of ET , which has a strong track record also for interacting sys-
tems [36–38,77,79,82,83], akin to neglecting the interacting
part of the kinetic energy in constructions of the KS exchange-
correlation functionals. Here and in the following we omit
arguments of functions for brevity whenever expedient.

Equations (8) and (9) permit explicit systematic approx-
imations. In the following, we introduce two independent
semiclassical schemes for DPFT. They can be benchmarked
unambiguously for noninteracting systems or if the interaction
functional is known or prescribed.

B. Densities and energies from Suzuki-Trotter factorizations

As derived in Refs. [38,82], Eqs. (5) and (8) at T = 0 yield

(10)

Here, we make use of the Fourier transform of the step
function η( . . . ), and the integration path from t = −∞ to
t = ∞ crosses the imaginary t axis in the lower half-plane.
Application-specific versions of Eq. (10) can be derived.
For example, linear dispersion [instead of the single-particle
kinetic-energy operator T = P2/(2m)] in Ref. [84] accounts
for the Dirac cone in graphene, and momental densities
are immediately accessible through the momentum-space
version n(p) = g〈p|η(μ − H )|p〉 of Eq. (10). In any case,
the time-evolution operator U (t ) = e− it

h̄ H with Hamiltonian
H = T + V in Eq. (10) can be systematically approximated
by tailored Suzuki-Trotter factorizations. The crudest approx-
imation of that sort is U ≈ e− it

h̄ T e− it
h̄ V , which yields the TF

density

nTF(r) = g�D

D (2π h̄)D
[2m (μ − V (r))]D/2

+

= g�D

D (2πU2)D
[2 (μ − V (r))]D/2

+ , (11)

with [z]+ = z η(z) and the solid angle �D in D dimen-
sions. Equation (11) exposes the units of energy (E) and
length (L) via the dimensionless (mass-dependent) constant
U = h̄2/(mL2 E ). In all formulas of this work that exhibit U ,
the quantities of energy are given in units of E and those of
length in units of L. For example, μ in Eq. (11) is implicit
for μ/E , and nTF(r) comes in units of L−D. For the con-
crete examples in the sections below we use units of E = eV
and L = Å and choose the electron mass for m, such that
U ≈ 7.619 96. Harmonic oscillator units, for instance, are im-
plemented by U = 1.

In this work, we transform the approximation

n3′ (r) = g
∫

(da)

(
k3′

2πa

)D

JD(2a k3′ ) (12)

for the single-particle density into computationally more
feasible expressions. Equation (12) is the quantum-corrected
successor of nTF [38,82], with the Bessel function
JD(. . . ) of order D and the effective Fermi wave number
k3′ = 1

h̄ {2m[μ − V (r + a)]}1/2
+ . In contrast to the local TF

density, whose computational cost scales with size G of
the numerical grid, n3′ (r) is a fully nonlocal expression,
which samples the effective potential V in a neighborhood
of the position r, such that its computational cost scales
like G2. The accuracy of n3′ and its associated kinetic
energy

E (3′ )
kin = g�D

(2πU2)D (2D + 4)

∫
(dr) {2[μ − V (r)]}

D+2
2+ (13)

are sufficient for qualitative modeling of some basic chemistry
applications like bond making and breaking. While such a ca-
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pacity for small molecules is a clear improvement over the TF
approximation, n3′ should become quantitatively competitive
with KS only for larger particle numbers.

Equation (12) is efficient enough for the calculation of
isotropic densities. For anisotropic densities at zero temper-
ature, we provide

nF
3′ (r) = g�D

D (2π )D
F−1

{∫
(dr′) e−ikr′

[
2

U [μ − V (r′)
]− k2

4

]D/2

+

}
(r). (14)

In Appendix A (see also Ref. [38]), which expresses n3′ in
terms of Fourier transforms F{. . . } and is more efficient than
Eq. (12), although the computational cost of nF

3′ still scales
like G2. In Appendix A we also derive the finite-temperature
version

nT
3′ (r) = g

�[D/2]

(
kBT

2πU

)D/2

×
∫ ∞

0
dyF−1{F{ fy(r′)

}
(k) gD

y (k)}(r), (15)

whose cost scales like G ln G thanks to fast Fourier transforms
(see Appendix A), albeit with a (potentially) large prefac-
tor that tends to increase with decreasing temperature. Here,
�(. . . ) denotes the gamma function,

fy(r′) = exp{[μ − V (r′)]/(kBT )

− y exp{[μ − V (r′)]/(kBT )]}, (16)

and

gD
y (k) =

∫ ∞

0
dx xD/2−1 exp [−y exp (x + κ )] (17)

is easily tabulated for all required values of
κ = (h̄k)2/(8m kBT ) = U k2/(kBT ), where k is the
magnitude of the wave vector k in Fourier space. With
small enough temperature, nT

3′ can be used in lieu of the
ground-state density n3′ .

C. Airy-averaged densities and energies

From Refs. [36,37,83], we recapitulate the most important
expressions of our second approximation scheme, which de-
rives from representing the trace in Eq. (8) by the classical
phase space integral

tr{ET (A(R, P))} = g
∫

(dr)(dp)

(2π h̄)D
[ET (A)]W(r, p). (18)

The momentum integral over the Wigner function [ET (A)]W
of ET (A) can be approximated by∫

(dp) [ET (A)]W(r, p)

∼=
∫

(dp)

〈
ET (ÃW) − h̄2(∇2V )

12m
E ′′

T (ÃW)

〉
Ai

. (19)

Here, ÃW(r, p) = HW(r, p) − μ − x a(r), with the Wigner
function HW(r, p) = p2/(2m) + V (r) of the single-particle
Hamiltonian and a(r) = |h̄∇V (r)|2/3/(2m1/3). We also call
〈 f 〉Ai = ∫∞

−∞ dx Ai(x) f (x), with the Airy function Ai( . . . ),
the Airy average of the function f , and “∼=” stands for an
approximation that reproduces the leading gradient correction
exactly. Equation (19) holds not only for ET (A), but for any
function of A that has a Fourier transform. Equation (19)
is exact up to the leading gradient correction [O(∇2)], and
thus presents a systematic correction to the TF approximation,
which is recovered in the uniform limit [O(∇0)]. However, the
“Airy average” in Eq. (19) also contains higher-order gradient
corrections that enter through the Moyal products from the
power-series expansion of ET (A) in Eq. (18). These higher-
order corrections are responsible for the almost exact behavior
of particle densities across the boundary between classically
allowed and forbidden regions, where the TF approximation
can fail epically (even if supplemented with the leading gradi-
ent correction [37]). Eventually, we obtain the Airy-averaged
particle densities for one-, two-, and three-dimensional ge-
ometries by combining Eqs. (5), (8), (9), (18), and (19) and by
evaluating the momentum integral of Eq. (19). The 1D and 2D
situations are covered extensively in Refs. [83] and [36,37],
respectively. Here, we derive the explicit Airy-averaged ex-
pressions for energies and densities in 3D.

The Airy-averaged 2D ground-state densities nT =0
Ai of

Ref. [37] exhibit unphysical oscillations in the vicinity of po-
sitions r where ∇V (r) = 0. By introducing a small but finite
temperature T , we obtain densities that are well behaved ev-
erywhere. The analogous derivation of the finite-temperature
3D expression

nT
Ai(r) = u0 ×

⎧⎨
⎩

a(r)
kBT

∫
dx A(x) [u1 Li1/2(−e−νx (r) ) + u2(r) Li−3/2(−e−νx (r) )], a(r) > 0

u1 Li1/2(−e−ν0(r) ) + u2(r) Li−3/2(−e−ν0(r) ), a(r) = 0
(20)

and details of its numerical implementation are pro-
vided in Appendix A. We denote the polylogarithm
of order s by Lis(. . . ) and the negative antideriva-

tive of the Airy function by A(x) = ∫∞
x dy Ai(y). We

set A(x) = 0 for x > 100, use the asymptotic approxi-
mation A(x) ≈ 1 − cos[π/4 + (2/3) |x|3/2]/(

√
π |x|3/4) for
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x < −150, and tabulate A(x) for −150 � x � 100. We
have

u0 = − g

(2π )3/2
, (21)

u1 =
(

kBT

U

)3/2

, (22)

u2(r) = −	V (r)

12

(
kBT

U

)1/2

, (23)

and

νx(r) = 1

kBT
[V (r) − μ − x a(r)]. (24)

In Appendix A we also derive EAi,T
1 [V − μ] and the corre-

sponding value

EAi,T
kin = EAi,T

1 [V − μ] −
∫

(dr)V (r) nT
Ai(r) + μN (25)

of the Airy-averaged kinetic energy at the stationary point of
E . However, the ground-state kinetic energy

EAi
kin = g

(2π h̄)3

∫
(dr)

〈
4π

∫
dp

p4

2m

[
f (ÃW) − h̄2(∇2V )

18m
f ′′(ÃW

)]〉
Ai

= g

4π2U2

∫
(dr)

{∫∞
0 dx Ai

(
x + V −μ

a

) [√
U

5 (2 a x)5/2 − U3/2 (∇2V )
6 (2 a x)1/2

]
, a(r) > 0[√

U
5 [2 (μ − V )]5/2

+ − U3/2 (∇2V )
6 [2 (μ − V )]1/2

+
]
, a(r) = 0

(26)

is much better behaved numerically than EAi,T
kin , such that we

utilize EAi
kin for calculating the DPFT energies also for systems

at finite temperature as long as T is small enough. We obtain
Eq. (26) after suitable integrations by part and evaluation of
the momentum integral in

Ekin = tr{T η(μ − H )}

= g

(2π h̄)3

∫
(dr)

∫
(dp)

p2

2m
[ f (A)]W (r, p)

∼= EAi
kin = g

(2π h̄)3

∫
(dr)

∫
(dp)

p2

2m

×
∫

dx Ai(x)

[
f (ÃW ) − h̄2(∇2V )

12m

D − 1

D
f ′′(ÃW )

]
,

(27)

reported in Ref. [37], for f (A) = η(−A), f ′′(A) = δ′(−A),
and D = 3. For constant effective potential V (then, a = 0),
Eq. (26) recovers the TF kinetic energy [cf. Eq. (13)]. Like in
the 2D case, EAi

kin does not suffer from unphysical oscillations
as a → 0. The computational costs of nT

Ai, EAi
1 , and EAi,T

1 all
scale with grid size G (and thus linearly with particle number
N for electronic matter), just like the TF approximation, but
in the current implementation the prefactor due to the Airy
average usually comes in at about 103–105 for high-precision
calculations.

III. NUCLEAR BACKGROUND, INTERACTION
ENERGIES, AND NUMERICS

For the nuclear Coulomb potential, n3′ diverges logarith-
mically, like ln(1/r) as r → 0, a stark improvement upon the
r−3/2 scaling of nTF. This observation and the scaling behavior
of nT

Ai will be covered in detail elsewhere. Our numerical
studies suggest that nT

Ai diverges like nTF at singularities of
the (effective) potential, which is not surprising since nT

Ai is
a gradient expansion built on nTF as the leading term. When
employing the semiclassical densities introduced here, we

therefore have to replace the nuclei’s Coulomb potentials by
pseudopotentials. Alternative DFT formulations that can cope
with unregularized singular potentials, for example, via proper
incorporation of the Scott correction [77,98] or suitable basis
function expansions are currently being developed [99,100].
For all-electron calculations we replace the bare Coulomb
potential of a nucleus of charge Z by the smooth function

Æ(Z )
α (r) = − Z W

(
(0.923 + 1.568 α) exp[−(0.241

+ 1.405 α)2 r2] + Erf(α r)

r

)
, (28)

which recovers the Coulomb potential for α → ∞ (see
Ref. [101]). Of course, other replacements of the ionic
Coulomb potential are possible [102], but Eq. (28) suf-
fices for the proof-of-principle calculations in this work. We
have W = U Å/a0 ≈ 14.399 65, with Bohr radius a0, dimen-
sionless upon expressing all quantities of length in Å and
all energies in eV. Erf(. . . ) denotes the error function. By
demanding Æ(Z )

α (0) = −2 Z W/	x, where 	x is the lattice
constant of the numerical grid, we determine an appropriate
value of α. This condition is implied by the most simple
regularization

C (Z )(r) = − Z W

max{r,	x/2} (29)

of the Coulomb potential, which coincides with −Z W/r (ex-
cept at the origin) and is smooth at r = 	x. For calculating
valence densities with two (three) electrons per Mg (Al) atom
we enlist the GGA pseudopotentials that accompany the OF-
DFT package PROFESS [41,42]. In all our calculations we treat
all electrons as unpolarized (also systems with an odd number
of electrons); hence, g = 2.

Approximations of the interaction functionals and their
derivatives in Eq.(6) can, in principle, be obtained consis-
tently within the same approximation schemes that yield the
semiclassical approximations of Eq. (5). This agenda is be-
yond the scope of this article, but the structural similarity
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between DPFT and KS-DFT invites the use of estab-
lished KS exchange-correlation functionals for calculating
Coulomb-interacting systems in 3D with DPFT. For the DPFT
calculations in this work we used the LDA [103] and PBE
[30,31] implementations from the LIBXC library [104]. We
emphasize that our DPFT results do not take as input any
results of KS calculations.

The KS-DFT calculations for comparing with the DPFT
results were performed in GAUSSIAN 16 [105] and in ABINIT

[106]. We used the 6-31g(d,p) basis set for atoms and dimers
and D95 for the 201-atom Al nanoparticle. Gaussian were
done with LSDA [103,107] and PBE functionals. All ABINIT

calculations were performed with PBE, a plane-wave cutoff of
500 eV, and local pseudopotentials from [108,109]. In ABINIT,
the systems were placed in a large vacuum box (e.g., 36 Å3

for the nanoparticle), and the calculations done at the gamma
point. Coupled-cluster calculations for atoms were performed
in GAUSSIAN 16 with singles, doubles, and perturbative triples
[CCSD(T)], using the aug-cc-pv5z basis set.

To compare with conventional OF-DFT approaches, we
calculated the valence densities of the atoms and dimers
with PROFESS based on (i) the standard second-order gra-
dient expansion of the kinetic energy functional [53] and
(ii) the Pauli-Gaussian kinetic energy functional PGSLβ [56]
with β = 0.25. We additionally attempted the nanoparticle
with both approaches, but only achieved a converged result
with the gradient expansion. We suspect the failure of the
PGSLβ functional in this case is attributable to the large
degree of vacuum (similar behavior was observed for the
Luo-Karasiev-Trickey (LKT) functional [55] and the revised
PGSL functional [50]), which could likely be ameliorated by
a regularization procedure, but we did not pursue this in depth.

IV. RESULTS FOR ATOMS, DIMERS, AND
NANOPARTICLES

We first establish the quality of the DPFT densities nT�0
3′

and nT >0
Ai for single atoms and dimers by benchmarking

against KS-DFT, OF-DFT, and coupled-cluster results. We
calculate the valence densities and the all-electron densities
as declared in Sec. III; all results shown are for the va-
lence density and are obtained with PBE, unless explicitly
stated otherwise; all-electron densities are labeled by “Æ”
throughout this work; the employed numerical integration
grids are declared in Table IV in Appendix B. All DPFT
results reported in this work are obtained self-consistently
through Eqs. (5)–(7), with the expression for the density on
the right-hand side of Eq. (5) approximated by the semi-
classical formulas in Eqs. (11), (12), (14), (15), and (20),
respectively.

A. Single atoms

First, we consider the hydrogen atom that hosts a single
electron, for which the explicit noninteracting kinetic energy
functional in Eq. (9) is exact. We can therefore unambiguously
benchmark the approximate semiclassical DPFT densities in
Eqs. (12), (15), and (20), while illustrating some of their
characteristics, albeit for N = 1. In Fig. 1 we find a markedly
improved density tail of n3′ compared with nTF, deep into

FIG. 1. Comparison of DPFT electron densities with the exact
density nex of the hydrogen atom (main plot, rescaled abscissa). We
show the quasiclassical TF density and its quantum-corrected succes-
sors, the semiclassical densities n3′ as well as nT

Ai at kBT1 = 0.1 eV
and kBT2 = 10−6 eV, respectively. The semiclassical densities reach
deep into the classically forbidden region, where n3′ approximates
the characteristic exponential decay (inset)

the classically forbidden region of the Coulomb potential, for
which we employ Eq. (28). There is no difference (to the
eye) when using the pseudopotential C (1) of Eq. (29) instead.
Deviations from the pure exponential decay of the exact den-
sity nex are expected since the semiclassical approximation n3′

generally performs better for larger N . The same holds for nT
Ai,

where we find kBT1 = 0.1 eV sufficiently small for targeting
the ground-state density, as we judge from comparing with
the density at kBT2 = 10−6 eV. Meaningful quality tests of
n3′ , especially against KS-DFT and OF-DFT calculations, are
discussed below with the aid of many-electron systems. As a
general strategy for selecting low enough temperatures that
yield density profiles close to the ground-state density, we
start with high temperatures that incur small computational
cost and decrease T until the change in density is negligible;
for different systems this happens at different temperatures.
As expected, the scaling behavior of nT

Ai near the singularity
of the Coulomb potential is similar to that of nTF.

While any semiclassical method can be expected to fail
for N = 1 particle, we find in Fig. 2 that n3′ and nT

3′ capture
the (N = 3)-electron valence density of an aluminum atom
adequately, especially in the regions of the atom that are im-
portant for determining bond properties. Both the KS densities
with (i) LSDA and (ii) PBE exchange-correlation functional
are reasonably close to the quasiexact result from a coupled-
cluster calculation [CCSD(T)]. The discontinuous derivative
of nTF makes convergence of the self-consistent DPFT loop
troublesome when using PBE (and we thus employ nTF with
LDA), but converging n3′ with PBE is unproblematic. A tem-
perature T corresponding to kBT = 0.1 eV brings nT

3′ close
enough to its ground-state version n3′ . We find n3′ to (i) give an
approximate average account of the quantum oscillations near
the nucleus and (ii) approach the quality of the KS(LSDA)
results in the valence region, with n3′ being superior to the KS
density in some parts of the evanescent region and inferior in
others. This is no small feat when bearing in mind that n3′ is
only the first step in a hierarchy of systematic improvements
upon the TF approximation. The quality of n3′ is further sub-

062802-7



TRAPPE, WITT, AND MANZHOS PHYSICAL REVIEW A 108, 062802 (2023)

FIG. 2. DPFT electron densities like in Fig. 1, but for the valence
electrons of aluminum (main plot, rescaled abscissa). We also com-
pare the DPFT densities with those from the second-order gradient
expansion [O(∇2)] (see, for example, Ref. [53]) and with those
obtained from using the Pauli-Gaussian functional (PGSLβ) from
Ref. [56]. The larger deviations of n3′ near the nucleus (inset) can
generally be considered benign when calculating electronic proper-
ties of atomic matter, for which the valence region is key.

stantiated by the comparison with two OF-DFT approaches:
In contrast to n3′ , both the second-order gradient expansion
[O(∇2)] and the Pauli-Gaussian functional (PGSLβ) deviate
markedly from the KS predictions in the valence region and
further toward vacuum.

Figure 3 illustrates valence densities as well as all-electron
densities of a magnesium atom. Both of our semiclassical ap-
proaches capture the quasiexact CCSD(T) all-electron density
over about eight orders of magnitude, and in particular the
exponential decay in the valence region, where the valence
density nT

Ai follows its all-electron version and aligns with
both the all-electron density n3′ (Æ) and the valence density

FIG. 3. DPFT electron densities like in Fig. 2, but for magne-
sium (main plot, rescaled abscissa). The quasiexact density in the
bonding region is reasonably well matched over several orders of
magnitude (inset). The KS calculations are rather insensitive to dif-
ferent pseudopotentials: “PP1” labels the density obtained from the
GGA pseudopotential of Ref. [108] (deployed together with PBE)
and closely aligns with the result that stems from an alternative
pseudopotential (labeled “PP2,” deployed together with LDA) from
Ref. [109]. We used kBT = 0.05 eV for both the valence density nT

Ai

and the all-electron density nT
Ai(Æ). In the valence region, these Airy-

averaged DPFT densities align reasonably well with the OF-DFT
second-order gradient expansion [O(∇2)], and this includes the tail
into vacuum, which is overestimated by the OF-DFT Pauli-Gaussian
functional (PGSLβ).

from the second-order gradient expansion [O(∇2)]. In the
tail, both n3′ and n3′ (Æ) oscillate closely around the KS and
CCSD(T) densities, similar to what we observe for aluminum
in Fig. 2, but in contrast to the PGSLβ-based OF-DFT predic-
tion. We observe similar profiles for n3′ with LDA and PBE,
respectively, except deep in the classically forbidden region,
where n3′ can become negative, such that its derivatives make
the use of PBE unreliable. In summary, then, various reason-
able settings (LDA, PBE, different pseudopotentials, valence-
or all-electron density, box sizes, and resolution) all produce
a similar and coherent picture for single atoms, which invites
us to move on to dimers.

B. Dimers

Next, we benchmark dimer densities that include the ef-
fects of bonding. We begin with the ground-state valence
density of a magnesium dimer with nuclei separated by the
approximate equilibrium distance. This case reveals several
properties of our semiclassical density formulas, which, for
N = 4, do not yet operate in a truly semiclassical regime.
Significant differences to the KS density can therefore be
expected. Indeed, nT

3′ conjures up maxima at the nuclei instead
of minima, consistent with what we report for a single Al
atom in the inset of Fig. 2. This is usually unproblematic since
the valence region is of primary interest in most applications.
Furthermore, like for single atoms, the density tails of nT

3′
closely align with the KS predictions. To a lesser extent this
also holds for nT

Ai, which, on the other hand, proves superior
to n3′ in capturing the global pattern of the density distribu-
tion, heralded by the TF density, which is the leading term
of the gradient corrected nT

Ai. The stark differences between
nT

3′ and nT
Ai highlight the dissimilarity of their semiclassical

origins. Indeed, since nT
Ai is a particular gradient expansion

whose generic level of accuracy is comparable with that of
the standard second-order gradient expansion, it comes as no
surprise that both methods paint a similar picture. Our second
OF-DFT benchmark (PGSLβ) performs well in the interior
regions of the dimer and near the nuclei in particular, but less
so toward vacuum, where n3′ proves superior.

The valence-density profile from nT
3′ for the Al dimer in

Fig. 5 (inset) follows a pattern similar to that of the Mg dimer
in Fig. 4, but better performance can be expected from our
semiclassical densities for larger particle numbers. Indeed, as
we show in Fig. 5 (main plot), it is reassuring that the semi-
classical expression nT

Ai delivers a reasonable approximation
of the KS density of all 26 electrons of the Al dimer across
more than eight orders of magnitude.

C. Aluminum nanoparticle

Finally, we benchmark nT
Ai and nT

3′ against KS densities of a
Wulff-shaped nanoparticle composed of 201 aluminum atoms,
whose nearest-neighbor distance is fixed to the approximate
bulk equilibrium separation of 2.86 Å of the fcc structure. The
particle is shown in Fig. 6. Figures 6 and 7 show the valence
densities of the nanoparticle, analogous to the dimer densities
in Fig. 4 and the inset of Fig. 5. Overall, the patterns of the
DPFT densities are what we naively expect based on the dimer
simulations in Sec. IV B: nT

3′ captures the bonding (valence)
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FIG. 4. The valence densities from DPFT, KS-DFT, and OF-
DFT [O(∇2) and PGSLβ] calculations along the nuclear axis of
a magnesium dimer with nuclei positioned at x ≈ ±1.60 Å, i.e.,
separated by the approximate equilibrium distance of 3.21 Å. We
show the densities nT

3′ for a temperature T = 0.4 eV/kB, low enough
for matching nF

3′ almost exactly, and nT
Ai for kBT = 0.1 eV. For

anisotropic high-resolution setups like our Mg-dimer simulation
here, nT

3′ is computationally more efficient than n3′ and nF
3′ . Figure 11

in Appendix B displays contour plots of nT
3′ and nT

Ai for the Mg dimer.

regions and the region near the surface of the nanoparticle, but
exhibits unphysical oscillations into negative densities in the
far tails and fails to decrease toward the nuclei. In line with our
results for the Mg dimer, nT

Ai predicts the overall density of the
nanoparticle more accurately, especially deep into the evanes-
cent region, where nT

Ai outperforms the standard second-order
gradient expansion, but overestimates the amplitudes of the
density modulations in the bulk. Interestingly, when compar-
ing the bond regions in Figs. 5 and 6, we find nT

3′ to perform
much better for the nanoparticle than for the Al dimer. The
improved behavior of nT

3′ stems from its nonlocality, where
information is drawn from an extended region around the
focal point r. Given up to six nearest-neighbor atoms (i.e.,
21 valence electrons) in the vicinity of each bond region of
the nanoparticle, it is then not surprising that the averaging
effect of nT

3′ improves the electron densities relative to the

FIG. 5. All-electron densities (main plot) and valence densities
(inset) of the aluminum dimer with nuclei separated by the approx-
imate equilibrium distance of 2.86 Å. The behavior of the DPFT
valence density (nT

3′ for kBT = 0.3 eV) relative to the densities from
KS-DFT and OF-DFT [O(∇2) and PGSLβ] is consistent with our
findings for the magnesium dimer in Fig. 4. The all-electron DPFT
density nT

Ai(Æ) for kBT = 0.1 eV aligns well with the KS prediction.

bond region of the aluminum dimer, where only six valence
electrons contribute.

The Airy-averaged expression nT
Ai, on the other hand, per-

forms very well exactly where it is designed to do so, namely
in the evanescent region across the boundary of classically
allowed and forbidden regions. This is evident on the logarith-
mic scales of Figs. 7 and 8, where we compare KS results with
the Airy-averaged valence density and its all-electron version,
respectively. Given the variability of KS calculations across
different settings, like LDA vs PBE and valence vs all-electron
calculations, as exemplified in Figs. 7 and 8, we find nT

Ai(Æ)
in Fig. 8 to match the all-electron KS density reasonably well
over eight orders of magnitude, which encompass all parts of
the nanoparticle: the electronic structure close to the nuclei,
the bond regions, and the exponential decay of the density into
vacuum.

V. CONCLUSIONS AND PERSPECTIVES

In this work we extended the semiclassical machinery
of density-potential-functional theory (DPFT) from low-
dimensional settings to three dimensions. Specifically, we
developed semiclassical expressions for particle densities and
energies of isolated systems that scale (quasi)linearly with
particle number and thus enable, for example, electronic struc-
ture calculations of mesoscopic molecules and nanoparticles.
Most importantly, those expressions, which we derived in
complete analogy to their low-dimensional versions and with-
out relying on ad hoc measures or assumptions, are void of
free parameters and can be further improved in a system-
atic manner. These characteristics put the semiclassical DPFT
formalism that has been developed over the last decade in
stark contrast to many contemporary approaches to density
functional theory in general and to its orbital-free variants in
particular.

To illustrate the generic semiclassical features as well as
the practical aspects of our DPFT implementation, we put
an emphasis on the calculation of particle densities, also be-
cause the improvements of the semiclassical energies upon the
Thomas-Fermi model are less convincing, at least for the cases
studied here. DPFT was used to simulate real-world com-
posite atomic systems, specifically, the electronic structure of
metal dimers and nanoparticles. As expected, the semiclas-
sical DPFT densities become more accurate as the particle
number increases. Indeed, for the 603 (2613) electrons of the
valence (all-electron) density of a nanoparticle composed of
201 aluminum atoms, their quality is competitive with that of
generic Kohn-Sham calculations.

Our two particle-density expressions nAi and n3′ deliver
accurate results in different regimes and for different reasons.
The semilocal Airy averaged nAi is exact for linear (effec-
tive) potentials and is therefore particularly accurate in the
evanescent tails toward vacuum. While we may speculate that
further systematic improvements are attainable by making a
successor of nAi exact also for quadratic or higher-order poly-
nomials, this route is unexplored at present. In contrast, the
common feature of n3′ (r) and its successors is their reliance
on the (effective) potential in an extended region around the
focal position r, which makes them particularly powerful in
the bulk. The split-operator based n3′ represents the first step
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FIG. 6. Cut through the valence densities along the x axis (left) of a Wulff-shaped 201-Al-atom nanoparticle (right), as predicted by the
semiclassical DPFT formulas nT

Ai and nT
3′ . The KS densities were computed on grids of 2563 and 3843 points, respectively. The discrepancies

between nT
3′ and the KS densities in the bond region are less pronounced if electrons of several atoms contribute to the electron density between

any two nuclei, rather than only two atoms like for the dimers in Figs. 4 and 5. The Airy-averaged DPFT density overestimates the density
variations in the bulk more than the second-order gradient expansion [O(∇2)] does.

in a ladder of explicit systematic approximations, and two
more rungs have already been derived and benchmarked. In
fact, the most accurate of these expressions has the same com-
putational complexity as n3′ , with the proviso that the special
function at its heart can eventually be computed efficiently,
just like the underlying Bessel function at the core of n3′ . Also,
the inaccurate semiclassical energies that are associated with
the two approximation schemes employed here are bound to
improve once suitable implementations of the higher-order
corrections are available.

The increase in accuracy through higher-order DPFT
approximations will generally decrease computational effi-
ciency, and problem-specific tradeoffs between accuracy and
efficiency will have to be made in future applications of
semiclassical DPFT. Transferability, however, does not need
to be sacrificed along this route. The systematic nature of
the here developed functional approximations makes them
universally applicable across external potentials and types of
interactions.

FIG. 7. The valence densities of nT =0.15
Ai and nT =1

3′ like in Fig. 6,
but on a logarithmic scale. Only the transitional region toward vac-
uum exhibits significant deviations between nT

3′ at kBT = 1 eV and
nT =0.5

3′ , respectively. There, n3′ generally becomes unreliable any-
way, while the performance of nT =0.15

Ai incidentally leaves nothing
to be desired and outperforms the OF-DFT result from the standard
second-order gradient expansion [O(∇2)].
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APPENDIX A: DERIVATION OF DPFT ENERGIES AND
DENSITIES IN 3D

In this Appendix we derive the semiclassical potential
functionals for the finite-temperature single-particle densities
presented in Eqs. (14), (15), and (20), together with the asso-
ciated kinetic energies.

1. Suzuki-Trotter-approximated densities and energies

Derivation of nT
3′ . We start with deriving Eq. (15) from the

finite-temperature version

nT (r) = g〈r|ηT (μ − H )|r〉 (A1)

FIG. 8. Comparison of the all-electron density nT =0.15
Ai (Æ) with

the all-electron KS density (LDA) along the x axis; see Fig. 11
in Appendix B for nT =0.15

Ai (Æ) in the z = 0 plane. The KS valence
density (PBE) is the same as that shown in Figs. 6 and 7.
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of Eq. (10). Upon approximating the time-evolution opera-
tor by U3′ and inverting the Fourier transform of ηT (. . . ) in
Eq. (10), we arrive at

nT
3′ (r) = g

∫
(dp1)(dp2)(dr1)

(2π h̄)2D
exp

(
i

h̄
r1 · (p1 − p2)

)
× ηT (μ − H3′ ), (A2)

where H3′ = (p2
1 + p2

2)/(4m) + V (r + r1). With p = h̄k we
write

nT
3′ (k) = F

{
nT

3′ (r′)
}
(k) =

∫
(dr′) e−ikr′

nT
3′ (r′)

= g

(2π )2D

∫
(dk1)(dk2)(dr1) ei r1·(k1−k2 )

×
∫

(dr′) e−ikr′
ηT

(
μ − k2

1 + k2
2

4m/h̄2 − V (r′ + r1)

)
(A3)

for the Fourier transform of nT
3′ (r), where we de-

note the Fourier transform of a function f (r) as
f (k) = F{ f (r)}(k) = ∫ (dr) e−ikr f (r) and implement F
as a fast Fourier transform using the FFTW library for C++
[110]. Defining r2 = r′ + r1, we express the last integral in
Eq. (A3) as

eikr1

∫
(dr2) e−ikr2ηT

(
μ − k2

1 + k2
2

4m/h̄2 − V (r2)

)
, (A4)

such that

nT
3′ (k) = g

(2π )D

∫
(dk1)(dk2)

∫
(dr1)

(2π )D
ei r1·(k+k1−k2 )

︸ ︷︷ ︸
δ(k+k1−k2 )

∫
(dr′) e−ikr′

ηT

(
μ − k2

1 + k2
2

4m/h̄2 − V (r′)
)

= g�D

(2π )D

∫
(dr′) e−ikr′

∫ ∞

0
dk1 kD−1

1 ηT

(
μ − V (r′) − h̄2k2

8m
− h̄2k2

1

2m

)
(A5)

identifies the Fourier transform of the polylogarithm LiD/2 of
order D/2 after evaluation of the k1 integral:

nT
3′ (k) = −g

(
m kBT

2π h̄2

)D/2 ∫
(dr′) e−ikr′

LiD/2(z). (A6)

Here, z = −tb, t (r′) = eσ , σ (r′) = [μ − V (r′)]/(kBT ), and
b(k) = exp [ − h̄2k2/(8m kBT )]. Since D/2 > 0 and z < 0,
we may use the integral representation

LiD/2(z) = −
∫ ∞

0
dx

tbc

d + tb

= −
∫ ∞

0
dx
∫ ∞

0
dy t (r′) e−yt (r′ ) c e−yd/b(k), (A7)

with c = xD/2−1/�[D/2] and d = ex, thereby disentangling
the r′ dependence of LiD/2(z) from its k dependence, which
allows us to obtain Eq. (15) from the inverse Fourier transform
of

nT
3′ (k) = g

�[D/2]

(
kBT

2πU

)D/2 ∫ ∞

0
dy

×
∫

(dr′) e−ikr′
eσ−y exp(σ )︸ ︷︷ ︸

fy (r′ )

∫ ∞

0
dx xD/2−1 e−y exp(x+κ )

︸ ︷︷ ︸
gD

y (k)

.

(A8)

Both fy and gD
y [cf. Eqs. (16) and (17)] are sufficiently

suppressed for y � 40. We may thus restrict the support of
the y integral to 0 < y < 40 and calculate it with an adap-
tive quadrature: we use the Boole rule. For each value of
y the inverse fast Fourier transform in Eq. (15) delivers all
values on the spatial grid of size G in one go, resulting in
a computational cost of nT

3′ (r) that scales like G ln G. This
contrasts with Eq. (12), where the density n3′ (r) at each of
the G grid points, indexed by r, requires a summation over

the whole grid. Naturally, there is a tradeoff between grid size
and accurate enough evaluation of the y integral, as a rule of
thumb, nT

3′ outperforms n3′ for G � 503 and nF
3′ (see below)

for G � 1003.
Since gD

y diverges for y → 0, we calculate the y integral
from 0 to ε � 1 separately from the rest of nT

3′ (r). For y � 1,
we have fy(r′) ≈ eσ (1 − y eσ ), such that∫ ε

0
dyF{ fy(r′)}(k) gD

y (k)

≈ F{eσ (r′ )}(k)

×
∫ ε

0
dy gD

y (k) − F{e2σ (r′ )}(k)
∫ ε

0
dy y gD

y (k). (A9)

Both
∫ ε

0 dy gD
y (k) and

∫ ε

0 dy y gD
y (k) are bounded from above

by e−κ�(D/2) (for any ε > 0), and the auxiliary functions
gD

y (k) can be evaluated numerically, tabulated, and interpo-
lated. Starting with any initial guess for ε, adequately small
values of ε are identified during the adaptive y integration.
Alternatively, we may replace the lower integration limit in
Eq. (A8) by a small value like y = 10−300.

Derivation of nF
3′ . For anisotropic situations at T = 0, it

is expedient to rephrase the density n3′ of Eq. (12) in terms
of fast Fourier transforms, as done in [38]. The resulting nF

3′
still scales like G2, but the computational cost is reduced
by a factor of ∼10–40 since only exponentials (not Bessel
functions) have to be evaluated: Retracing Eqs. (A1)–(A5)
with ηT →0( ) = η( ), we get

n3′ (k) = g�D

(2π )D

∫
(dr′) e−ikr′

∫ ∞

0
dk1 kD−1

1 η
(
Q2 − h̄2k2

1

)
= g�D

(2π )D

∫
(dr′) e−ikr′ QD

D
η(Q2), (A10)

where Q2 = 2m[μ − V (r′)] − h̄2k2

4 , which results in Eq. (14).
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Kinetic energy. We obtain approximations of the (ground-
state) kinetic energy

Ekin = − h̄2

2m

∫
(dr)

(∇2
r n(1)(r; r′)

)
r′=r (A11)

in terms of the effective potential V by deriving approximate
one-body reduced density matrices n(1)(r; r′). With the Hamil-
tonian H = T + V , Eq. (3) becomes

Ekin = E1[V − μ] −
∫

(dr) [V (r) − μ] n(r)

= tr{(T + V − μ) η(μ − H )} +
∫

(dr) [μ − V (r)] n(r)

= tr{T η(μ − H )}

= −g
∫

(dr)(dr′) 〈r|
(

− h̄2

2m
∇2

r

)
|r′〉〈r′|η(μ − H )|r〉

= −g
∫

(dr)(dr′) δ(r − r′)

(
− h̄2

2m
∇2

r

)
〈r′|η(μ − H )|r〉

= −g
h̄2

2m

∫
(dr)

[∇2
r〈r|η(μ − H )|r′〉]r′=r. (A12)

In the spirit of Eq. (10), we thus identify the approximate one-
body reduced density matrix

(A13)

which is consistent with the Suzuki-Trotter approximation inherent to n3′ . Equation (A13) follows the structure of Eq. (12) with
b =

√
a2 + (a + r − r′)2 and yields Eq. (13):

E (3′ )
kin = − h̄2

2m

∫
(dr)

[∇2
rn(1)

3′ (r; r′)
]

r′=r = g�D

(2π h̄)D (2D + 4) m

∫
(dr) {2m[μ − V (r)]}

D+2
2+ , (A14)

which can be calculated in lieu of the finite-temperature kinetic energy E (3′ ),T
kin for small enough T .

2. Airy-averaged density and energy

With the help of Eq. (19) and defining F (A = H − μ) = ET (H − μ) [cf. Eq. (9)], with derivative
F ′(A) = ∂F (A)

∂V = f (A) = ηT (H − μ), we write the functional E1[V − μ] from Eq. (8) and its functional derivative as

E1[V − μ] = tr{F (A)} = g
∫

(dr)(dp)

(2π h̄)3
[F (A)]W

∼= EAi,T
1 [V − μ] = g

(2π h̄)3

∫
(dr)

∫
(dp)

〈
F (ÃW) − h̄2(∇2V )

12m
F ′′(ÃW)

〉
Ai

(A15)

and

n[V − μ] = g
∫

(dp)

(2π h̄)3
[ f (A)]W

∼= nT
Ai[V − μ] = g

(2π h̄)3

∫
(dp)

〈
f (ÃW) − h̄2(∇2V )

12m
f ′′(ÃW)

〉
Ai

, (A16)

respectively. With ∫ ∞

0
dp 4π p2 f (ÃW) = −(2πmkBT )3/2 Li3/2(−e−νx (r) ) (A17)

and, in cylindrical coordinates {q =
√

p2
x + p2

y, φ, pz},∫
(dp) f ′′(ÃW) =

∫
dpz

2π

(kBT )2

∫ ∞

0
dq q f ′′(ÃW)

= 2

(kBT )2

∫ ∞

0
dpz

2πmkBT

4 cosh2
[
νx/2 + p2

z/(4mkBT )
]

= − (2πmkBT )3/2

(kBT )2
Li−1/2(−e−νx (r) ), (A18)
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we get

nT
Ai[V − μ] = −g

(2πmkBT )3/2

(2π h̄)3

∫
dx Ai(x)

{
Li3/2(−e−νx (r) ) − h̄2(∇2V )

12m(kBT )2
Li−1/2(−e−νx (r) )

}
(A19)

and, with ∂
∂V Lis(−e−νx (r) ) = − 1

kBT Lis−1(−e−νx (r) ),

EAi,T
1 [V − μ] = −g(mkBT )3/2

(2π )3/2h̄3

∫
(dr)

∫
dx Ai(x)

{
−(kBT )Li5/2(−e−νx (r) ) + h̄2(∇2V )

12m(kBT )
Li1/2(−e−νx (r) )

}
. (A20)

The TF density at finite temperature, which reads

nT
TF[V − μ] = −g

(
m

2π h̄2

)D/2

(kBT )D/2 LiD/2(−e−ν(r) ) (A21)

in D dimensions, is recovered from Eq. (A19) in the case of constant V . Analogously,

ETF,T
1 [V − μ] = g

(
m

2π h̄2

)D/2

(kBT )
D+2

2 Li D+2
2

(−e−ν(r) ). (A22)

We find Eq. (20) from integrating Eq. (A19) by parts and exhibiting the units of energy (E) and length (L). Analogously, we
reveal the computationally more feasible expression

EAi,T
1 [V − μ] = −u0 ×

{
a(r)

∫
(dr)

∫
dx A(x)

[
u1 Li3/2(−e−νx (r) ) + u2(r) Li−1/2(−e−νx (r) )

]
, a(r) > 0

(kBT )
∫

(dr)
[
u1 Li3/2(−e−ν0(r) ) + u2(r) Li−1/2(−e−ν0(r) )

]
, a(r) = 0

(A23)

for Eq. (A20) [see Eqs. (21)–(24)].

APPENDIX B: ADDITIONAL DETAILS ON THE NUMERICS AND MISCELLANEOUS RESULTS

In this Appendix, we spell out expedient procedures for the numerical evaluation of the DPFT densities and energies. We also
analyze the semiclassical density and energy formulas applied to harmonically confined fermion gases and to the dissociation of
hydrogen.

1. Hartree potential

We implement the Hartree potential as follows: With the Fourier transform n(k) of the spatial density n(r), we write the
Hartree energy as

EH[n] = W

2

∫
(dr)(dr′)

n(r) n(r′)
|r − r′| = W

2

∫
(dk)

(2π )3
4π

n(k) n(−k)

k2
, (B1)

TABLE I. An equidistantly spaced integration grid demands a high resolution for extracting high-precision energies. The exact kinetic
energy of hydrogen equals the binding energy of EB = 13.6057 eV, and can be obtained from the virial theorem since we can evaluate
the energy functionals with the known exact density: E vir

kin[nex] = −Eext[nex]/2. For comparison we report the kinetic energies based on
both the exact Coulomb potential and the all-electron pseudopotential of Eq. (28). Alternatively, we may enlist the von Weizsäcker kinetic
energy E vW

kin [nex] = 9 × E∇2

kin [nex], which is exact for single-orbital ground states, while the Thomas-Fermi kinetic energy functional ETF
kin [n] is

inadequate, even when supplemented with the leading gradient correction E∇2

kin [n]. All energies are given in eV.

Steps for integration grid

Functional 64 128 256 384 512 analytical energy

E vir
kin 13.2171 13.5073 13.5810 13.5947 13.5995 13.6057

E vir
kin [Eq. (28)] 13.4886 13.5891 13.6034 13.6050 13.6054 –

E vW
kin 13.0525 13.5403 13.5979 13.6034 13.6047 13.6057

ETF
kin + E∇2

kin 9.28932 9.37014 9.37831 9.37902 9.37918 9.37930
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TABLE II. The self-consistent kinetic and total energies of hy-
drogen from the DPFT densities (cf. Fig. 1) are of no use, although
the total energy EAi,T = EAi,T

kin + Eext[nT
Ai] for kBT = 10−6 eV is not

too far off the exact value E vW
kin [nex] + Eext[nex] = −13.6057 eV. All

energies are given in eV.

ETF
kin ETF E 3′

kin E 3′
EAi,T

kin EAi,T

26.46 −28.06 26.49 −0.9095 40.48 −12.05

whose discretized version is ill defined due to the divergent
summand at k = 0. We regularize this singularity by adding
and subtracting n(k = 0)2 e−k2 = N2 e−k2

in the numerator of
Eq. (B1):

EH[n] = W

4π2

[
lim
k→0

n(k) n(−k) − N2 e−k2

k2

+	k3

⎛
⎝∑

k �=0

n(k) n(−k) − N2 e−k2

k2

⎞
⎠

+
∫

(dk)
N2 e−k2

k2

]

= W

4π2

⎡
⎣N2 + 	k3

⎛
⎝∑

k �=0

n(k) n(−k) − N2 e−k2

k2

⎞
⎠

+ 2π3/2N2

⎤
⎦, (B2)

where 	k is the lattice spacing in Fourier space. For the equal-
ity in Eq. (B2) to hold, we assume that ∇k[n(k) n(−k)] decays
faster than 2k as |k| → 0. The same procedure regularizes the
Hartree potential

VH(r) = W
∫

(dr′)
n(r′)

|r − r′|

= 4πW

⎡
⎣F−1

⎧⎨
⎩ n(k) − N e−k2

k2

∣∣∣∣∣
k �=0

+ N |k=0

⎫⎬
⎭(r)

+ N

4π2

(
π

r
Erf(r/2)

∣∣∣
r �=0

+ √
π
∣∣
r=0

)]
. (B3)

FIG. 10. E vW
kin , evaluated with nF

3′ , yields a qualitatively correct
dissociation curve when benchmarked against the self-consistent
KS(PBE) energies. The self-consistent nF

3′ binds the two hydrogen
atoms, albeit weakly, and it is well known that the self-consistent
TF density does not. We thus echo the well-known insight that
an accurate kinetic energy is essential for getting the dissociation
right. Eventually, however, the self-consistent DPFT energies asso-
ciated with the DPFT density formulas deployed in this work are
not accurate enough, given today’s demands on electronic structure
calculations (see also Table II).

The computational cost of both EH[n] and VH(r) scales like
G ln G.

2. Regularizations of the DPFT densities and energies

The approximate semiclassical densities do not possess
all the features of the exact density. In particular, n3′ , nF

3′ ,
and nT

3′ can exhibit oscillations around zero in the classically
forbidden region. We therefore evaluate exchange-correlation
functionals that demand non-negative densities with [n[V ]]+
instead of n[V ]. This procedure is only justified if negative
densities are small in magnitude, which is usually the case for
large enough N and (in case of nT

3′ or nT
Ai) temperatures that

are large enough while retaining the ground-state character of
the density profiles. Furthermore, the PBE functional requires
spatial derivatives of the densities, and both nT

Ai and EAi,T
1

require the gradient and the Laplacian of the effective poten-
tial V . If the numerical differentiation introduces instabilities
in the self-consistent DPFT loop for strong interactions and
if many iterations are required, we regularize the numerical
derivatives in a three-step process: The first and second par-
tial derivatives are obtained via fast Fourier transform after

FIG. 9. Unsurprisingly, the quality of the semiclassical densities improves with larger particle number N , here illustrated with the aid of
noninteracting unpolarized spin- 1

2 fermions in a harmonic trap for N = 1 (left), N = 4 (center), and N = 400 (right). The exact densities for
large particle numbers are generated with the (fractionally filled) shell densities reported in Ref. [114].
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TABLE III. The self-consistent DPFT energies E for spin-unpolarized spin- 1
2 fermions in a 3D harmonic trap reaffirm that the semiclassical

approximations improve as the particle number increases. The exact energies are Eex(N = 4) = 8 and Eex(N = 400) = 3210 in harmonic
oscillator units.

N Density Steps Ekin Eext E Relative error (%) Absolute error per particle (h̄ω)

4 nTF 104 3.434 3.437 6.872 14 0.282
nTF 384 3.434 3.434 6.868 14 0.283

nT =0.1
Ai 104 3.742 3.761 7.503 6 0.124

nT =0.1
Ai 384 3.740 3.762 7.503 6 0.124

400 nTF 104 and 384 1594 1594 3188 0.7 0.055
n3′ 104 and 384 1594 1636 3230 0.6 0.050

nT =1
3′ 104 1412 1722 3134 2.3 0.190

nT =0.1
3′ 104 1586 1634 3220 0.3 0.025

nT =0.1
Ai 104 1574 1615 3189 0.7 0.053

nT =0.01
Ai 104 1573 1615 3188 0.7 0.055

nT =0.001
Ai 104 1573 1615 3188 0.7 0.055

a smooth window-function trimming (of the function to be
differentiated) near the boundary (r > rB = 0.75 × B/2) of
the (large enough) numerical grid. This is already sufficient
for selected systems like the noninteracting hydrogen atom in
Fig. 1. We further regularize the partial derivatives at r via
convolution with a normal distribution centered at r (using a
standard deviation of 2a to 6a with lattice constant a). We
then apply the same regularization to the gradient and the

Laplacian assembled from the regularized partial derivatives.
This systematic approximation of the derivatives becomes
increasingly accurate with rising spatial resolution.

3. Details on precision, accuracy, efficiency

The evaluation of the energy requires a high enough res-
olution of the integration grid. We obtain an estimate of the

TABLE IV. Details of the numerics pertinent to all electronic structure results from KS-DFT and DPFT presented in this work: The number
G of grid points and the edge length L of the cubic numerical integration grid, as well as the corresponding resolution L/

3
√

G. For the OF-DFT
calculations with PROFESS, we chose 9000 eV (4000 eV) as the energy cutoff and an edge length of 15 Å (30 Å) with 2403 (3153) grid points
for the atoms and dimers (the nanoparticle).

Figure System Density expression Grid points Edge length (Å) Resolution (Å)

1 H all 3843 10 0.0260416
2 Al all 2563 12 0.046875
3 Mg all 2563 16 0.0625
4 Mg2 nTF 5123 10 0.0195312

nT
3′ 1283 15 0.1171875

nF
3′ 1283 15 0.1171875

nT
Ai 5123 16 0.03125

KS 1283 14.5 0.1132812
5 Al2 nT

Ai(Æ) & KS 1283 18 0.140625
KS(Æ) 1643 14.46421 0.0881964

nT
3′ 1923 18 0.09375

6 Al nanoparticle nT
Ai 3843 36 0.09375

nT
3′ 2563 36 0.140625

KS(384) 3843 36 0.09375
KS(256) 2563 36 0.140625

7 Al nanoparticle nT
Ai 3843 36 0.09375

nT
3′ 2563 36 0.140625

KS 3843 36 0.09375
8 Al nanoparticle nT

Ai(Æ) 3843 36 0.09375
KS(Æ) 3843 30 0.078125

11 Mg2 nT
3′ 1283 15 0.1171875

nT
Ai 5123 16 0.03125

Al nanoparticle nT
Ai(Æ) 3843 36 0.09375
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FIG. 11. The valence density contours nT =0.4
3′ (left) and nT =0.1

Ai (center) for the magnesium dimer of Fig. 4 and the all-electron density
contour nT =0.15

Ai (Æ) (right) for the aluminum nanoparticle of Fig. 8. We display cuts in the plane of z = 0.

required grid size with setups for which we have an exact
energy expression in terms of the particle density. In the
case of hydrogen, we find a grid of ∼4003 points spaced at
∼0.026 Å sufficient when evaluating the exact energy (in
terms of the ground-state density) with the exact density (see
Table I). Table II reports the self-consistent kinetic energies
based on the semiclassical approximations n3′ and nT

Ai for
3843 grid points. In Fig. 9 we benchmark our DPFT densi-
ties against exact results for the three-dimensional isotropic
harmonic oscillator. The TF densities capture the trend of the
bulk (reasonably well for N = 400), but are of no use in the
classically forbidden region. n3′ gives a rough average through
the oscillations of the exact density and generates a decay
into the classically forbidden region, albeit with too fat a tail
and unphysical oscillations around zero. nT

Ai performs best
and yields a reasonable density profile even for N = 1. The
exponential decay of its tail for N = 400 is close to the exact
behavior, an observation that also holds for smaller N .

While the density profiles in Fig. 9 based on n3′ and, es-
pecially, nT

Ai, present an enormous improvement over the TF
densities, we gain little over the TF energies, which deviate
by ∼1% from the exact values, even as the particle number
increases to N = 400 (see Table III). The high resolution
suggested by the single-hydrogen atom for obtaining a precise
semiclassical energy makes the energy evaluation for very
inhomogeneous systems like nanoparticles a tedious under-
taken. Indeed, our calculations do not indicate convergence of
energies even when exceeding resolutions of 10 grid points

per angstrom for the 201-atom aluminum nanoparticle. We
thus leave the precise and self-consistent determination of
DPFT energies of chemical systems for future study. The
integration grids for all computations presented in this work
are listed in Table IV. In addition to the challenges in con-
verging the DPFT energies, we also find them not accurate
enough for chemistry applications that involve only a few
electrons. We demonstrate this in the following by simulating
the dissociation of the hydrogen molecule.

An almost ideal scenario in OF-DFT, maybe second to
having the exact universal DFT functional, is to use a ki-
netic energy expression that is exact when evaluated with the
exact density. This is of little value for DPFT calculations,
whose defining feature is to avoid using the density functional
Ekin[n]. However, while we have to live with an approximate
interaction energy, we can evaluate the von Weizsäcker ki-
netic energy EvW

kin , which is exact for the H2 singlet ground
state, with the converged self-consistent DPFT densities. This
serves as a benchmarking exercise for the DPFT energies for
small particle numbers N . Indeed, in Fig. 10 we show that
n3′ delivers a qualitatively correct picture of the dissociation
curve of the hydrogen molecule, which has been troubling
generations of DFT practitioners [111–113]. While n3′ binds
the two atoms, which improves qualitatively upon the TF
model, the accuracy of the dissociation curve is lacking.

In Fig. 11 we show contour plots of electronic densities of
the Mg dimer and the Al nanoparticle illustrated in Figs. 4 and
8, respectively.
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