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Testing the nonclassicality of gravity with the field of a single delocalized mass
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Most of the existing proposals for laboratory tests of a quantum nature of gravity are based on the use of two
delocalized masses or harmonically bound masses prepared in pure quantum states with large enough spatial
extent. Here a setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test
mass (undergoing first expansion and then compression) that moves under the action of gravity. We investigate
the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame
Casimir-Polder forces. We thus proceed with a design aimed at achieving this, trying at the same time to take
advantage of these forces rather than only fighting them.
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I. INTRODUCTION

No direct proof exists so far of the quantum nature of
the gravitational field. The smallness of the Planck length
lP, at whose scale the quantum aspects of gravity should
unavoidably appear, has always been a formidable obstacle to
any attempt to check for such quantum features at laboratory
scales. This might be about to change, however, due to the
prodigious progress accumulated over the years in sensing and
controlling quantum systems, as well as to some new twists
[1,2].

The basic idea, which dates back at least to an observation
by Feynman [3], is to look at the gravitational field sourced by
a quantum system in a superposition of states, prototypically
corresponding to spatially separated states. The effects on a
test mass at a distance from the source should depend on the
nature of the field. If the gravitational field is quantum, the test
mass should experience a superposition of field states, each
state leading to a different time evolution of the test mass, with
a building up of entanglement between test and source masses
during this evolution. If the field is classical, it is single valued
and no entangling with the source mass is possible. This is,
e.g., the case of gravity in the semiclassical approximation
[4,5], in which the source is quantum and the field is classical,
with the field experienced by the test mass corresponding to
the expectation value of the energy-momentum tensor over the
quantum state of the source.

Two contrasting requirements apply in general to quantum
gravity experiments. On one hand, large masses are desired to
produce large gravitational fields and thus amplify the signal
to be measured. On the other hand, the larger the mass is,
the more difficult it is to control quantum decoherence by the
environment [6]. As a matter of fact, there is still a huge gap
[7] between the largest masses for which an exquisite quantum
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control of the position has been attained (approximately equal
to 10−16 kg [8]) and the smallest masses whose gravitational
fields have been directly measured (approximately equal to
10−4 kg [9]). As a consequence, even just revealing the quan-
tum nature of the source by the classical gravitational field
it produces, as in the semiclassical approximation, is still
something far in the future (see [7] for an explicit proposal
in this respect).

In view of this situation, many configurations have been
proposed that allow for an increase in the sensitivity to
possible quantum gravitational effects [10–13], invariably
involving, however, masses somewhat larger than what is
granted by present limitations on quantum control. Recently,
a very promising new twist has been given by methods in
which the information on the effects of the gravitational field
is encoded in the variations of the quantum-mechanical phase
of two quantum systems coupled only by gravity, each system
being in a superposition of states (an early description of these
methods was given in [14] and subsequently published in
[15]). These ideas have been applied to pairs of delocalized
particles, as in [15,16], or to pairs of quantum harmonic oscil-
lators, as in [8,17,18].) The evolution of the quantum phase,
driven by the gravitational field sourced by the masses, would
lead to the creation of detectable entanglement if the field is
treated as quantum. This is an example of a general strategy
for any realistic attempt at evidencing the quantum nature
of gravity in a laboratory: Focus on verifying features that
cannot be explained in a classical setting rather than search-
ing for O(h̄) corrections to classical results (which would
be invariably too small, given the smallness of the Planck
length lP) [19]. In the above proposals, masses greater than
approximately 10−15–10−14 kg have been considered.

In addition, methods that do not require the occurrence
of entanglement have been proposed. One example is based
on the detection of non-Gaussianity in Bose-Einstein con-
densates [20]. A second recent proposal is instead based on
the measurement of a properly defined classical simulation
fidelity between the actual state of a gravitationally interacting
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FIG. 1. Basic conceptual scheme for the investigation of the
quantum nature of the gravitational field. A test particle B probes the
field sourced by a particle A that is in a state delocalized between L
and R, assuming the field is entangled with the superposed locations.

system undergoing a time evolution and the expected time-
evolved state if the gravitational field were quantum [21].

A difficulty in most of these methods [8,15–18] is the
need to have complete control of the evolution of two spa-
tially delocalized or spatially extended wave packets against
environmental decoherence [6]. Furthermore, a general issue
in essentially all proposals [8,15–18,21] is the presence of
Casimir-Polder forces [22–24] which become dominant over
gravitational effects at small distances, severely constraining
how close to the source one can probe the field, thus limiting
the intensity of the gravitational effects one is looking for.
Taking advantage of some recent ideas [9,25,26] on how to
attenuate Casimir-Polder effects, the aim of the present paper
is to reconsider the case of a single delocalized particle and
propose a configuration that seems in principle able to dis-
criminate between a classical and a quantum description of
the gravitational field.

II. ENTANGLING GRAVITATIONAL FIELD

The basic idea behind the investigation of the quantum
nature of the gravitational field can be illustrated as follows.
A particle A, with mass mA, is prepared with its center of mass
in a superposition of states spatially separated by a distance d .
The test particle B with mass mB is placed at a distance D from
A (see Fig. 1). At time t = 0 the trapping potential that keeps
the particle B localized is switched off so that B is free to move
in the field sourced by A. After a time T , the position of B is
measured. The outcome will be different if the gravitational
field is quantum or classical.

If the field is quantum, at t = 0 the system A�B, formed
by the two particles A and B and the field � sourced by A, is in
a product state between subsystems A� and B. It is however

entangled within the subsystem A�,

|ψ (0)〉 = 1√
2

(∣∣xA
L

〉|φL〉 + ∣∣xA
R

〉|φR〉)|xB(0)〉 (1)

(here the subscripts label the branch that sources the field).
Assuming no effects from the environment, at time t the

two branches evolve to∣∣xA
L

〉|φL〉|xB(0)〉 → ∣∣xA
L

〉|φL〉∣∣xB
φL

(t )
〉
,∣∣xA

R

〉|φR〉|xB(0)〉 → ∣∣xA
R

〉|φR〉∣∣xB
φR

(t )
〉
, (2)

with xB
φL

(t ) and xB
φR

(t ) the evolution of B in the fields φL and
φR, respectively. One thus has

|ψ (t )〉 = 1√
2

[∣∣xA
L

〉|φL〉∣∣xB
φL

(t )
〉 + ∣∣xA

R

〉|φR〉∣∣xB
φR

(t )
〉]
, (3)

with entanglement between A� and B and with |xB
φL

(0)〉 =
|xB

φR
(0)〉 = |xB(0)〉. After a certain time T , the states |xB

φL
(t )〉

and |xB
φR

(t )〉 will correspond to wave packets sufficiently apart
in space to be in practice orthogonal to each other.

If, on the contrary, the field is classical and is sourced by
the expectation value 〈Tab〉 of the energy-momentum tensor,
at t = 0 one has

|ψ (0)〉 = 1√
2

(∣∣xA
L

〉 + ∣∣xA
R

〉)|xB(0)〉. (4)

Now B is under the influence of the field φ = φ(〈Tab〉), yield-
ing

|ψ (t )〉 = 1√
2

(∣∣xA
L

〉 + ∣∣xA
R

〉)|xB(t )〉, (5)

with B not discriminating the branch of A, thus remaining
unentangled for all times t .

It is crucial to have some flavor of the displacements one
can have for the test particle in the two branches. An informal
estimate can be obtained as follows. First of all, we note that
the configuration displayed in Fig. 1 is not optimal since the
displacements at time T of B from the initial position xB(0) are
in the same direction (towards A) for both L and R branches
(and in the classical field case as well). The separation �x
between the displacements for the two branches is thus pro-
portional to the absolute value of the difference of the (nearly
equal and weak) fields in the two branches. A much better
configuration is obtained by placing B between the superposed
positions as in Fig. 2; in this case �x is proportional to the sum
of the absolute values of the fields.

As already mentioned, one has to fight against Casimir-
Polder forces (more on this later). A distance lCP ≈ 160 µm
guarantees (for silica masses, independently of their size) that
the ratio ECP/EG < 0.1, where ECP and EG are the Casimir-
Polder and gravity potential energies, respectively. Choosing
d/2 = lCP, one gets x̃ ≡ �x

2 = 1
2 axT 2 = 2 GmA

d2 T 2, where ax is
the acceleration of B and G is Newton’s constant. For the
(quite optimistic) values mA = 10−11 kg and T = 1 s one
obtains x̃ = 1.3 × 10−14 m.

Comparing this value of x̃ with the spread σx achievable
for masses cooled to the ground state in an optical tweezer
[27–29], σx ≈ 0.1–1 pm [8], one sees that we are far from the
required sensitivity. This is mainly due to the large distances
involved to reduce the importance of Casimir-Polder forces
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FIG. 2. Same as in Fig. 1 but with an improved configuration to
enhance the displacement of the test particle.

(for the assumed mass and evolution time). This is in spite of
having been very generous with our assumptions on technical
capabilities. We have indeed taken quite a large value for the
delocalized mass and the most convenient geometric config-
uration to enhance the displacement (this resulting, however,
in uncomfortably large separations between the two states of
the delocalized mass; cf. [6]). We have also assumed that
the state superposition can be kept even with the test particle
placed between L and R and for an evolution time T which is
very long compared to typical decoherence times (and which
requires a high control of the displacements due to free fall).

This indicates that in order to have any chance to probe
the quantum nature of gravity along the above lines, one
should first find a way to overcome the limitations imposed by
Casimir-Polder interactions. A description of how this might
be attempted is the aim of the following sections.

III. TAMING (AND EXPLOITING)
THE CASIMIR-POLDER FORCES

The aim of this section is to describe ways to circumvent
the issues posed by Casimir-Polder forces. We will see that
setups can be considered not only in which this looks possible,
but which also allow one to benefit from these forces rather
than simply fighting them (somewhat similarly to Ref. [30],
which contemplated the possibility to use the Casimir force to
strongly couple an ancillary system to gravitationally interact-
ing masses).

The first step in this direction is the observation that
Casimir-Polder forces can be conveniently screened by using
conducting plates. This was indeed used in [9] to allow masses
to be close enough to each other to make detection of their
gravitational field possible. Screening with conducting plates
was also proposed in [25,26] as a modification of the pro-
posal [15,16] aiming at revealing gravitational entanglement
between two delocalized particles close to each other. Indeed,
the insertion of a perfectly conducting plate between the delo-
calized particles allows one to screen the Casimir-Polder force
between the particles, replacing it with the force between each
particle and the plate, of the same nature but of lower strength.

FIG. 3. Configuration with a horizontal metallic plate shielding
the Casimir-Polder forces between test and source masses, help-
ing, at the same time, the levitation of the (heavier) delocalized
particle A.

This allows one to reach smaller distances between particles
(roughly from the 160 µm mentioned before to approximately
40–50 µm [25,26]), thus enhancing the gravitational effects
and allowing for milder requirements for the required separa-
tion d between the superposed positions.

In the setup of Fig. 1 one could benefit from this screening
by inserting a conducting plate between A and B. However, in
view of the drawbacks of this configuration discussed above,
only a marginal gain could be reached in this case.

It is not immediately clear how to use this screening for
the more promising setup of Fig. 2. Indeed, it looks that one
has to introduce two conducting plates, placed symmetrically
on the two sides of the test particle in order to separate it
from the two possible positions of the delocalized source
particle. This is clearly a problem, since it is not at all obvious
how a delocalized state could be prepared in the presence of
conducting plates between the two superposed positions.

A more convenient arrangement is shown in Fig. 3. In it,
a single conducting plate screens the Casimir-Polder forces
between the two particles. In addition, the Casimir-Polder
force between the plate and the delocalized particle acts in
the same way for the two superposed positions. In this way,
the coherence of the delocalized state is not affected. Finally,
the Casimir-Polder force by the plate on the test particle is in
the direction orthogonal to the plate and thus does not produce
displacements parallel to the plate, which are the ones relevant
to detect the gravitational effects we are after. The same con-
siderations apply to the gravitational forces between test and
source masses and the plate. As a matter of fact, irregularities
on the surfaces such as random patch potentials and density
fluctuations in the materials could possibly affect both the
coherence of the delocalized state and the displacements of
the test particle. We will return to this issue later on, when
focusing on Casimir-Polder effects.

Taking the x axis in the direction connecting the two super-
posed positions L and R, the displacement x̃ induced along x
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by A in branch |xR〉 can be estimated as x̃ = 1
2 axT 2, with

ax = GmA

(d/2)2 + y2
B

cos θ (6)

= GmA

(d/2)2 + y2
B

d/2[
(d/2)2 + y2

B

]1/2 (7)

= 2

3
√

3

GmA

y2
B

, (8)

where yB = rA + 2ε + s + rB (see Fig. 3). To get Eq. (8) we
used the most favorable geometric conditions for given yB,
namely, the value of d/2 that gives the largest x component Fx

of the gravitational force between A and B, corresponding to
d/2 = yB/

√
2.

By taking T = 1 s, mA = 10−11 kg, mB = 10−14 kg (cor-
responding to rA = 9.7 µm and rB = 0.97 µm, respectively,
for silica), ε = 1 µm, and s = 1 µm, the optimal separation
turns out to be just d ≈ 2rA = 19.4 µm, with a resulting value
for x̃ ≈ 0.7 pm that is right within the range we mentioned
above as reasonably reachable with optical tweezers. For
mA < 10−11 kg, the optimal separation d is within 2rA < d <

19.4 µm.
In the above estimate we have considered mB = 10−14 kg.

This value is about 50 times the heaviest masses that at present
can be harmonically controlled and cooled to the ground state
(which are made of about 1011 nucleons [29,31], correspond-
ing to approximately 2 × 10−16 kg). The spread of xB in the
ground state is

σx =
√

h̄

2mBω
, (9)

with ω (∼2π × 100 kHz [29,31]) the angular frequency of
the trapping potential. For mB = 10−14 kg, Eq. (9) gives σx =
0.09 pm, and the x̃ we have just obtained appears definitely
detectable.

Here we are assuming that the spread σx(T ) in the position
of B after a time T is the same as the initial one, which is
determined by Eq. (9). One might wonder if this assump-
tion is justified. Indeed, the initial momentum spread σp(0)
implies that after a time t one has σ 2

x (t ) = σ 2
x (0) + σ 2

p (0) t2

m2

(see, e.g., [32]), with σp(0) � h̄
2σx (0) . For t > 0, this implies

σ 2
x (t ) > h̄t/m [33] (corresponding to the standard quantum

limit; see, e.g., [34]). Using t = 1 s and m = 10−14 kg, one
obtains σx(1 s) > 10−11 m, which is about two orders of mag-
nitude larger that the displacement x̃ one wishes to measure.
This apparently implies that our assumption is not justified.

The spread σx of the test particle’s wave function could
however be kept under control by using the loop protocol pro-
posed in [8]. Specifically, through an appropriate alternation
between an inverted harmonic potential and a harmonic one,
the spatial probability distribution of a levitated nanoparticle
is first expanded to scales much larger than the initial one and
then converted back to the original configuration. Such a loop
protocol works also in the presence of an external constant
force F [8], like gravity (along x) in our case. In this way, the
wave function of the test particle at t = T can have the same
spread as at t = 0, while being displaced by the gravitational

force F , as required to measure the effect we are after. We thus
assume that this or a similar protocol ensuring σx(T ) = σx(0)
is applied to the test particle B. This assumption is still quite
optimistic at present, since the value mB = 10−14 kg we are
assuming for the test mass is two orders of magnitude larger
than the masses for which full quantum control has been
achieved so far. We are however confident that progress will
grant full quantum control for masses as large as 10−14 kg in
the near future.

It should be noted, however, that ground-state cooling of
the test mass mB and preserving its spread during the ex-
periment are not the main difficulties to be addressed in a
practical implementation of our proposal. A major challenge
is the preparation of a delocalized state for the required large
values of the source mass mA (of the order of 10−14 kg, at
least) and separations d between the superposed locations (of
the order of 10 µm). The state of the art is that separations
of the order of a fraction of a micron have been achieved for
macromolecules of several thousand of atoms, corresponding
to masses of a fraction of 10−22 kg [35]. One sees that, for
what we are proposing, experiments are off at present by
several orders of magnitude in the mass and/or separation.
It is however worth mentioning that experimental schemes for
the preparation of masses approximately equal to 10−14 kg
in a spatial quantum superposition state with an extent of the
order of the micron have been proposed recently [36].

A further challenge is keeping quantum coherence for the
quite long evolution times we are requiring here (T ≈ 1 s).
Coherence times of the order of 1 s have been shown for
solid-state spin systems cooled down at 77 K [37] (coher-
ence times become of the order 1 ms at room temperature
[38]). For the kind of massive objects we are interested in,
coherence times of the order of 1 s have been considered in
the experimental scheme for the preparation of delocalized
states just mentioned [36]. On the other hand, Ref. [39] has
recently pointed out that, for massive objects, an intrinsic
decoherence channel, which adds to decoherence from the
environment, originates from the phonons within the object,
which are almost unavoidably excited during the creation of
the superposed state. A way to overcome this problem would
be to make the applied force used to create the superposed
state sufficiently homogeneous over the scale of the massive
object, in order to minimize the creation of phonons. It is thus
clear that both the preparation of the superposed state with
the desired parameters and maintaining its quantum coherence
for the required long times represent extremely difficult tasks,
which will require a technological leap to be successfully
addressed.

Returning to the discussion of Casimir-Polder effects, we
notice that with the chosen value ε = 1 µm for the distance
between the two masses and the plate, Casimir-Polder forces
by the plate on the two masses will be quite large, much
larger, in particular, than the gravitational interaction between
source and test masses. They will however have a vanishing
component along x and thus will not spoil the measurement
of the displacement along x of our interest. Actually, in the
configuration of Fig. 3, Casimir-Polder forces could even be
used to contrast the effects of earth’s gravity on particle A
(aiding, or altogether replacing, optical levitation). For par-
ticle B, a second plate could be arranged above it, parallel to
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the first one at a distance less than ε in order to partially (or
completely) balance earth’s gravity. In the case of a good bal-
ance of the forces along the vertical (which might be achieved
by adding also a third plate, this time below the delocalized
particle A, to regulate the overall Casimir-Polder force on
the latter) one would not have appreciable displacements �y
along y, even for times as large as T ∼ 1 s (which would lead
to �y ≈ 5 m for free fall). One could thus potentially perform
the experiment in an earth-based laboratory with no need to go
after free fall, use optical levitation, or envisage it as a space
experiment.

In order to estimate the Casimir-Polder force FCP between
particles and plates, we can use its expression when the dis-
tance of closest approach to the plate is l � rA,B,

FCP = 2πr

(
1

3

π2

240

h̄c

l3

)
, (10)

where c is the speed of light in vacuum and r is the radius of
the spherical masses [40]. Using this formula, one finds that,
with l = 0.3 µm, FCP alone is able to balance the weight of B,
with no need of optical levitation. Indeed, for a silica spherical
mass mB = 10−14 kg, one has rB = 0.97 µm, yielding FCP =
0.98 × 10−13 N ≈ mBg, where g is earth’s gravity.

In comparison, the gravitational force FG−AB between A
and B is extremely feeble. From (8), with the same con-
ditions discussed above (in particular, mA = 10−11 kg and
mB = 10−14 kg), one gets FG−AB ≈ 2.4 × 10−26 N, which is
about 13 orders of magnitude smaller than the Casimir-Polder
forces. Such a huge difference makes it clear that, for the
actual feasibility of the experiment, it is crucial to reach an
extreme accuracy in the preparation of the setup. In particular,
imperfections in the planarity of the metallic plate or in the
spherical shape of the particles could produce side effects in
the x direction that, even if much smaller than FCP, could pos-
sibly overwhelm FG−ABx or lead to variations of FCP in the two
superposed locations of the source particle that could spoil
its coherence. Effects of this kind, possibly also changing
with time, could originate from patch potentials and density
fluctuations, as well as from any kind of irregularities of the
surfaces.

Considering that our aim is to exploit Casimir-Polder
forces rather than finding ways to suppress them, it is impor-
tant to analyze this kind of effects, which could hinder the
feasibility of the proposed experiment. For the source mass,
the main issue could be a variation of the Casimir-Polder force
between the mass and the plate in the two superposed loca-
tions due to the above random fluctuations. Previous studies
[41,42] have shown that, for a sphere with radius R at an
(average) distance l from the plate, with random corrugations
of amplitude �z 	 l for both surfaces, the Casimir-Polder
force does not depend on the position on the plate provided
the characteristic lateral scales �p and �s for the surface
roughness of the plate and the sphere, respectively, are small
compared to

√
Rl (for l 	 R) or to l (for R 	 l; see [43]).

With our numbers for the source mass (R ≈ 10 µm and l �
0.1 µm), this would require keeping the amplitude �z of the
surface roughness within 10 nm and the lateral scales �s and
�p within 100 nm. Under these conditions, the effect of the
surface roughness would be just a correction by a multiplica-

tive factor [42] of the expression (10) for the force FCP, with
no variations between the two superposed positions and thus
no spoiling of the delocalized state of the source mass.

Concerning electrostatic patch potentials, which could pro-
duce an electrostatic force on top of the Casimir-Polder force,
a recent work [44] has shown that by applying an ion-blocking
layer on the surfaces of the sphere and plate, the force pro-
duced by patches can be reduced to 10−4FCP for distances
between the plate and the sphere of the same order as con-
sidered here. We speculate that such variations of the force,
which could lead to an imperfect balance between the weight
of the source mass and the Casimir-Polder force by the plate
on top of it (see in particular the final experimental configu-
ration described in the next section), could be eliminated by
an optical levitation system with an effective potential conve-
niently shaped to compensate for the residual force difference
(of order 10−4 the weight of the particle) between the two
superposed locations.

For the test mass, the main issue could be the occurrence
of lateral Casimir-Polder forces due to irregularities of the
surface, which could produce a lateral displacement on top of
the gravitational one. It should be pointed out, however, that
for the same random short-scale irregularities just discussed,
these forces cancel out altogether [42]. As a matter of fact,
only parallel uniaxial sinusoidal corrugations of the surfaces
with the same period can produce nonzero lateral Casimir-
Polder forces, as also shown in the seminal experiment [45].

We notice here however that, even in the absence of such
irregularities, the strong Casimir-Polder forces FCP by the
masses on the plate will likely deform it, with ensuing side
effects possibly larger than those just mentioned. We thus
focus on discussing these effects, which are present even for
an ideal realization of the experimental setup.

Looking at Fig. 3, one can see that a deformation of the
plate produced by FCP when A is in one of the two branches,
for example, when A is in R, gives an effective distance
between B and the plate larger to the right than to the left
and thus a Casimir-Polder attraction stronger towards the left
than towards the right. One would thus have a Casimir-Polder
acceleration along x, induced by the deformation, that is oppo-
site to the one expected from gravitational interaction between
A and B, possibly overwhelming it and thus undermining the
experiment.

The deformation induced by a force FCP acting at the center
of a square plate of side � and thickness s, with clamps at the
ends at distance �, say, along x, can be estimated as [46] (see
also [25])

δdef = FCP�
3

192EI
, (11)

where E is the Young modulus (E = 137 GPa if the plate is
made of copper) and I = �

12 s3 is the area moment of the plate
with respect to the axis through its center, parallel to the plate
and orthogonal to the x direction. If FCP corresponds to the
weight of a particle of mass m (perfect balance), one has

δdef = mg
�2

16Es3
. (12)

For � = 1 mm, s = 1 µm, and m = 10−14 kg (m = 10−11 kg)
this gives δdef = 0.45 × 10−13 m (δdef = 0.45 × 10−10 m).
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Strictly speaking, these deformations add to the deformation
already present due the action of earth’s gravity on the plate
(which is symmetric about the plate center).

To estimate the effect of deformations of such an amount,
let us compare FCP corresponding to a given distance of clos-
est approach l ≈ 0.1–10 µm with the Casimir-Polder force
F ∗

CP one would get if this distance were larger by, say, η =
10−13 m, l ′ = l + η. One can roughly think that the left-right
imbalance in the total Casimir-Polder force induced by the de-
formation should not be larger than the difference FCP − F ∗

CP.
From Eq. (10) with η 	 l , one gets

FCP − F ∗
CP = 3

η

l
FCP. (13)

With η = 10−13 m and the value FCP = 0.98 × 10−13 N cal-
culated above (corresponding to l = 0.3 µm and r ≈ 1 µm),
one gets FCP − F ∗

CP ≈ 3 × 10−20 N, which is six orders of
magnitude larger than the gravity force FG−AB between mA =
10−11 kg and mB = 10−14 kg.

This shows that to proceed with our program one should
definitely address the issue of the induced deformations, in-
cluding also the deformation of the plate under its own weight.
The ideal solution would be keeping the deformations (at
least the dangerous ones, i.e., those able to induce a left-right
asymmetry along x at the actual position of B) small enough.
In particular, for deformations smaller than the zero-point
motion δ0 of the plate considered as a harmonic oscillator,
one expects the oscillator to relax to the ground state with no
significant effect from the (would be) deformation.

To estimate the zero-point motion of the center of the plate,
we describe it as a harmonic oscillator with mass M equal to
the mass of the plate, elastic constant k = 16Es3

�2 [in view of
Eq. (11) written as δdef = FCP

k ], and angular frequency ω =√
k
M [25]. Analogously to Eq. (9), the zero-point motion along

y of the center of the plate can be estimated as

δ0 =
√

h̄

2Mω
=

√
h̄

2
√

Mk
= 1

2
√

2s

√
h̄√
ρE

, (14)

where ρ is the density of the material the plate is made of.
For copper (ρ = 8.96 × 103 kg/m3) and taking s = 1 µm, one
gets δ0 = 0.61 × 10−15 m.

Actually, the ground-state oscillations of the plate alone
might in principle overwhelm the effects we are after. In-
deed, the zero-point motion deviation δ of the plate from its
equilibrium position varies along the distance connecting the
clamps, being δ = δ0 maximal in the middle and δ ≈ 0 at
the clamps, thus inducing a gradient along x of the Casimir
force. An upper bound for the effects of the possible ground-
state motion asymmetry is provided by replacing η with δ0 in
Eq. (13), yielding FCP − F ∗

CP ≈ 10−22 N, which is four orders
of magnitude larger than the gravity force FG−AB calculated
above. This means that the ground-state oscillations of the
plate alone might in principle overwhelm the effects we are
after.

The aim of the following section is thus to modify the setup
of Fig. 3 and find a configuration that overcomes the problems
due to ground-state motion, to the deformations induced by

FIG. 4. Proposed experimental setup. The metallic plate S
screens the Casimir-Polder forces between the two particles and
partially or fully compensates the weight of B with Casimir-Polder
forces. The additional plate on top of A partially or fully compensates
the weight of A, while the optional plate below B can be used for
a fine-tuning of the levitation of B. The clamps for the plates are
separated by a distance � along z.

the test and source masses, and to the deformation of the plate
by its own weight.

IV. OUR PROPOSAL

Our proposal is based on adjusting the parameters and
the spatial arrangement of masses and plates and on taking
advantage as much as possible of symmetry considerations, in
order to minimize adverse effects.

First of all, the Casimir-Polder force balancing the weight
of the delocalized mass A should not act on the plate
separating A and B (as in Fig. 3). We saw indeed that
a deformation-induced left-right imbalance in the Casimir-
Polder force by the separating plate on B could overwhelm
the gravitational effects between A and B.

We thus propose to place A above the plate S separating the
two masses and add above A a second plate, as shown in Fig. 4.
This second plate, if sufficiently close to A, could balance the
weight of A through Casimir-Polder forces. At the same time,
deformations of this plate by the mass A will not affect the
superposition of states of A, since the effects of deformations
will be identical in the two branches. The separation between
A and S can then be chosen as large as required for keeping
the Casimir-Polder deformation of S below the ground-state
oscillation of the plate.

The test mass B can be placed close to S to compensate
its weight with the Casimir-Polder force of S (aiding, or even
completely replacing, optical levitation). The deformation in-
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duced by B on S, even if somehow larger than the ground-state
motion of the plate, is not an issue because it is completely
symmetric with respect to the position of B and thus expected
to have no Casimir-Polder effect on the motion of B along x.
One might however possibly expect some higher-order effects
if B is not exactly centered with respect to the clamps.

These potential effects, as well as the deformation of the
plate S under its own weight, and the effects due to its ground-
state motion can all be taken to be reasonably under control if
the clamps on S are put at a distance � along the direction z
(orthogonal to x, in the plane; see Fig. 4). Indeed, with this
choice, all of these deformations vary only along z and should
not produce any effect along x.

A third plate could finally be arranged below B (see Fig. 4)
to allow for fine adjustments to get an exact balance of the
weight of B (in the absence of optical levitation, in particular).

We now proceed to estimate the value of the distance εA

required to keep the deformation induced by A below the
ground-state motion of S. To this end, we notice that Eq. (14),
for a value s = 2 µm of the thickness of S, yields the value
δ0 ≈ 0.3 × 10−15 m for the ground-state motion of the center
of the plate (which is the same for of all points along x in the
middle of the plate). On the other hand, a choice of εA = 3 µm
yields for the deformation δdef (Casimir-Polder) induced by
A on S the value δdef ≈ 0.6 × 10−16 m, as obtained by in-
serting l = εA in Eq. (11), with FCP given by Eq. (10). Here
we are considering a square plate of copper with side length
� = 1 mm. This value of εA thus guarantees δdef 	 δ0, and no
effects are expected from possible deformations induced by A.

V. EXPECTED SIGNAL

We can now proceed to estimate the displacements x̃ of B
along x produced by the gravitational field sourced by A in
each of the two branches.

The displacement can be conveniently written as a function
of the mass mA of the delocalized particle and of the evolution
time T , x̃ = x̃(mA, T ), as

x̃ = 1

2
axT 2 (15)

= 1

3
√

3

GmA

y2
B

T 2 (16)

= 1

3
√

3

GmA[(
3

4π

)1/3(mA
ρ

)1/3 + ỹB
]2 T 2, (17)

where ρ = 2.6 × 103 kg/m3 for silica and ỹB ≡ rB + εB +
s + εA = 6.3 µm (for fixed mB = 10−14 kg). In Eq. (16) we
have assumed that d is optimal (namely, the choice that maxi-
mizes ax, as described above). For the above value ỹB ≈ 6 µm,
the geometrical constraint d/2 > rA is respected for masses
mA � 4 × 10−11 kg. The distance d/2 varies from 5.1 µm to
11.3 µm as mA changes from 10−14 kg to 10−11 kg (and rA

varies correspondingly from 0.97 µm to 9.7 µm).
Figure 5 shows the displacement x̃ as a function of the

mass mA of the delocalized particle assuming an evolution
time T = 1 s and a mass mB = 10−14 kg for the test particle
which, according to (9), gives a spatial resolution better than
0.1 pm. One sees from Fig. 5 that the displacement should in
principle be detectable for a source mass mA � 10−12 kg.

FIG. 5. Displacement x̃ of the test mass mB = 10−14 kg, after a
time T = 1 s, as a function of the mass mA of the delocalized source
particle. The shaded area shows the displacement below the current
resolution limit (0.1 pm). Test and source masses are assumed to be
made of silica.

This lower bound for the source mass mA could be reduced
for evolution times longer than T = 1 s. This is shown in
Fig. 6, which displays the displacement x̃ as a function of the
evolution time for different values of the delocalized source
mass mA. Displacement would exceed the spatial resolution
of 0.1 pm and be detectable outside the shaded area in Fig. 6.

As already mentioned, maintaining coherence on
timescales T � 1 s for masses mA ≈ 10−14 is clearly not
an easy task. The system has to be cooled down to very low
temperatures since thermal photons alone are able to wash
out coherence very rapidly, no matter how good the vacuum
is in the experimental setup [34]. Experimental schemes able
to reach the above timescales for masses approximately equal
to 10−14 kg and separations of the order of their size have
been proposed in [36]. They require temperatures of a few

FIG. 6. Displacement x̃ of a silica test mass mB = 10−14 as a
function of the evolution time T , for different values of the delo-
calized source mass mA. The shaded area shows the displacement
below the current resolution limit (0.1 pm). Test and source masses
are assumed to be made of silica.
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tens of mK at most and pressures at the state-of-the art level
of P ≈ 10−20 bar.

VI. CONCLUSION

In summary, we have described a possible setup in a
laboratory setting to check for the quantum nature of the
gravitational field. This was done by exploiting the ability
of the gravitational field to become entangled with the super-
posed positions of a single delocalized particle, if the field is
quantum in nature.

In a way, our proposal can be regarded as an attempt to
turn part of the gedanken experiment of [47–53] (where a test
particle probes the gravitational field of a delocalized particle
while this recombines) into something real. Specifically, it is
an attempt for a practical implementation of the which-path
part of the gedanken experiment, consisting in the ability of
the test particle to discriminate which branch is taken in the
superposition, if the field requires a quantum description.

To turn the thought experiment into something real, we
have shown that the test particle should be placed very close
to the delocalized one, thus potentially clashing with Casimir-
Polder effects, which are expected to overwhelm the signal
we are after. We discussed a way to overcome this difficulty,
basically using electrical screening through metallic plates, as
conceived also, for different settings, in [9,25,26]. In the setup
we have considered, it turns out that Casimir-Polder forces
can actually be used, instead of simply be fought, to help
in balancing the weight of the particles (possibly eliminating
altogether the need of optical levitation).

The proposed setup requires a good enough sensitivity
to the displacement of the test particle, which, if gravity is
quantum, is differential in the two superposed branches. This
involves the use of delocalized particles with masses greater
than approximately 10−14 kg and separations approximately
equal to 10–20 µm, which should keep quantum coherence
for time intervals as long as 1–10 s. These requirements are

not so different from other proposals for gravity-induced en-
tanglement experiments [15,25], but, as mentioned, remain
extremely challenging at present. Innovative techniques to
prepare such large masses in a delocalized state with such
large separations have crucially to be envisaged [36], includ-
ing severe cooling of the system (T � 10 mK) and extremely
low pressures (P � 10−20 bar) to keep control on its evolu-
tion. As for the test particle, the needed spatial resolution
with optical tweezers through ground-state cooling requires
masses greater than approximately 10−14 kg, two orders of
magnitude larger than the largest mass controlled so far with
these techniques. Finally, even if our investigation has been
only at a proof-of-concept level, we have discussed that pos-
sible imperfections in the components of the experimental
apparatus, in particular concerning the accuracy of the pla-
narity of the metallic screens and random irregularities of the
surfaces could critically affect the feasibility of the experi-
ment and deserve careful consideration. In this respect, we
have argued that by keeping the lateral scale for the surface
roughness within 100 nm and the amplitude of fluctuations
within 10 nm, the effects of irregularities could be kept under
control. Ion-blocking layers applied to the surfaces and a
fine-tuning of the balance between the Casimir-Polder force
and the weight provided by an additional optical levitation
system could finally eliminate also disturbances originating
by electromagnetic patch potentials.

We hope that all of these challenges, apparently more
technical than fundamental in nature, might be successfully
addressed in future experiments.
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