
PHYSICAL REVIEW A 108, 062616 (2023)

Efficient two-qutrit gates in superconducting circuits using parametric coupling
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Recently, significant progress has been made in the demonstration of single-qutrit and coupled-qutrit gates
with superconducting circuits. Coupled-qutrit gates have significantly lower fidelity than single-qutrit gates,
owing to long implementation times. We present a protocol to implement the CZ universal gate for two qutrits
based on a decomposition involving two partial-state swaps and local operations. The partial-state swaps can be
implemented effectively using parametric coupling, which is fast and has the advantage of frequency selectivity.
We perform a detailed analysis of this protocol in a system consisting of two fixed-frequency transmons coupled
by a flux-tunable transmon. The application of an AC flux in the tunable transmon controls the parametric
gates. This protocol has the potential to lead to fast and scalable two-qutrit gates in superconducting circuit
architectures.
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I. INTRODUCTION

The framework for the theoretical exploration and appli-
cations of quantum information is usually focused on the
use of two-state systems, or qubits [1]. Encoding quantum
information using a multilevel system, or qudits, is motivated
by potential advantages in expanding the capacity of quantum
information processors [2], improved quantum error correc-
tion [3,4], and effective compilation of gates [5]. Besides
applications in quantum computing, the use of qudits im-
proves quantum communication [6] and quantum sensing [7]
and has applications in quantum simulation [8,9]. Currently
explored physical implementations of qudits include ion traps
[10], molecular devices [11], solid-state defects [12,13], and
superconducting devices [8,14].

Superconducting systems are a particularly favorable im-
plementation of qudits, due to the ability to engineer quantum
properties and control relevant transitions. In recent years,
significant progress has been made in this field, with achieve-
ments including advanced control on single [14–17] and
coupled [18–20] qutrits. In a manner similar to qubit-based
computing, two-qudit gates have significantly larger errors
than single-qutrit gates [21], owing to the inherently longer
execution time in currently used approaches. We explore a
method for qutrit-qutrit gates focused on the implementation
of the universal CZ gate using an effective decomposition into
swap-type gates based on parametric coupling. Parametric
coupling has been used extensively for coupled qubit gates
and has been applied in recent works to qutrit-qutrit gates
[20,22]. We identify optimal decompositions of a CZ gate
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into parametric gates, and we perform a detailed analysis for
transmon-based qutrits.

The content of this paper is divided as follows. In Sec. II,
we develop and discuss the theory and explain the working
principle of swap-type gates using parametric coupling. In
Sec. III, we perform a numerical analysis of parametric gates
based on simulations of the dynamics while also discussing
the challenges involved in choosing appropriate parameters
for these simulations. Finally, in Sec. IV we show how qutrit
gates can be compiled using the two entangling gates we
implement using parametric coupling, including a way to
decompose the qutrit CZ gate.

II. IMPLEMENTATION OF SWAP-TYPE GATES USING
PARAMETRIC COUPLING

Parametric gates are enabled by modulating the couplings
or energy levels of a circuit at a specific frequency so as to
enable a sideband transition between certain energy levels
[23–32]. Parametric coupling shows great promise in de-
signing scalable superconducting circuits [23,26] by allowing
desired specific transitions to be activated based on frequency
selectivity. A commonly explored setup involves transmons
coupled through a tunable transmon [23]. Alternate circuit
configurations which use transmons as well [29,33,34] and
flux qubits or DC-SQUIDs instead of transmons [25,30] have
been explored as well. Our theoretical analysis of parametric
coupling, while focused on two transmons coupled via a flux
tunable transmon, can be straightforwardly extended to alter-
native superconducting circuits.

A. Circuit Hamiltonian

The circuit that we analyze (see Fig. 1) consists of
two fixed frequency transmons, Q1 and Q2, and a coupler
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FIG. 1. (a) Schematic depicting the circuit diagram of a super-
conducting circuit formed of two fixed-frequency transmons Q1 and
Q2 and a tunable coupler transmon C, coupled via capacitors. (b) The
dependence of the flux derivative of the coupling between levels
|01〉, |10〉 (J|01〉,|10〉) and |12〉, |21〉 (J|12〉,|21〉) on the coupler frequency
ωc.

implemented as a flux-tunable transmon, C. This architecture
is directly based on the use of a tunable bus [23] and similar
architectures have been used for two-qubit gates [35,36]. All
the transmons are capacitively coupled to each other, which
results in the coupled-system Hamiltonian

Ĥlab(t ) = Ĥ0(t ) + Ĥm + Ĥd , (1)

with

Ĥ0 =
∑

i=1,2,c

(
ECi n̂

2
i − EJi cos φ̂i

)
, (2)

Ĥm = g1n̂1n̂c + g2n̂2n̂c, (3)

and

Ĥd = g12n̂1n̂2. (4)

Here we consider the tunable transmon C junction to
have zero asymmetry and so the Josephson energy EJc =
EJc0

| cos(�(t ))|. The constants g1, g2, and g12 are dependent
on the capacitance values and are explicitly calculated in
Ref. [35] to be

gi = 8
Cic√
CiCc

√
ECi ECC and

g12 = 8

(
1 + C1cC2c

C12Cc

)
C12√
C1C2

√
EC1 EC2 . (5)

The values of these parameters are chosen such that g12 �
g1, g2 and g1, g2 � �. Here � is a scaling parameter which
is of the same order as the difference between the energies of
the first excited state and of the ground state of Ĥ0. The flux

being a function of time is taken to be of the form

�(t ) = �0 + e(t )δ cos(ωt ), (6)

where �0 is an offset and e(t ) is an envelope function that
is nonvanishing for times 0 � t � T and fulfills e(t = 0) =
e(t = T ) = 0. This flux pulse offers an AC control to the
circuit. The value of ω can be chosen such that transitions
are induced between certain levels of the three-body system
formed by Q1, Q2, and C. The values of δ and �0 adjust the
value of the effective coupling for this transition as discussed
in detail in the following subsections.

B. Effective Hamiltonian

In this subsection we discuss the derivation of an effective
Hamiltonian for the system. Obtaining the effective Hamilto-
nian requires performing an appropriate frame transformation
involving the time-dependent Schrieffer-Wolf transformation
[31,37]. The Schrieffer-Wolff transformation [38] leads to a
new frame, where the Hamiltonian is block diagonal with
respect to certain subsystems to a good approximation. Here
coupling terms involving the transmon C are eliminated,
hence capturing the effective dynamics of Q1 and Q2.

We use the frame transformation exp[S(t )], where S(t ) is
an anti-Hermitian operator. Applying this transformation to
the Hamiltonian in Eq. (1) leads to a Hamiltonian in the new
frame given by

ĤSW(t ) = eS(t )(Ĥlab − i∂t )e
−S(t )

= eS(t ){Ĥlab + i[∂t S(t )]}e−S(t ). (7)

This frame is referred to as the SWT frame. The operator
S(t ) must result in an appropriate transformation such that at
any time ĤSW(t ) is block diagonal over Q1 and Q2 without
any interactions with C. Exact analytical solutions for S(t )
can be obtained in some cases by the use of an ansatz-based
approach [39]. A more general approach is to expand S(t )
as a series S = ∑∞

i=1 S(i). This series is such that S(i) scales
as λi, where λ is a small parameter, characteristic of the
coupling. In our case, we can expand the Hamiltonian as three
terms: Ĥlab = Ĥ0 + Ĥm + Ĥd. We wish to eliminate all terms
coming from Ĥm, and since we already have g1, g2 � ω0, we
define the order parameter to be λ = g1/ω0 (it is assumed that
g1 ∼ g2). Using the Baker-Campbell Hausdorff expansion, we
obtain

ĤSW(t ) =
∞∑

i=0

Ĥ (i)
SW(t ), (8)

with
Ĥ (0)

SW(t ) = Ĥ0(t ), (9)

Ĥ (1)
SW(t ) = Ĥm + [S(1)(t ), Ĥ0(t )] + iṠ(1)(t ), (10)

and

Ĥ (2)
SW(t ) = Ĥd + 1

2 {S(1)(t ), [S(1)(t ), Ĥ0(t )]} + [S(1)(t ), Ĥm]

+ [S(1)(t ), iṠ(1)(t )] + [S(2)(t ), Ĥ0(t )] + iṠ(2)(t ).
(11)

By imposing the condition that each of the terms Ĥ (i)
SW(t )

has zero coupling terms involving transmon C, we obtain
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FIG. 2. (a) Envelope of the pulse used for the iSWAP01,10(2π/3)
gate. (b) Envelope of the pulse used for the iSWAP12,21(2π/3) gate.
(c) The value of the coupling between levels |01〉 and |10〉 during the
application of the control pulse for iSWAP01,10(2π/3) which shows
slight displacement from a mean point of zero depicting the value of
effective coupling (the mean value is shown as the dashed orange
line). (c) The value of the coupling between levels |12〉 and |21〉
during the application of the control pulse for iSWAP12,21(2π/3),
with the mean value as the dashed orange line.

differential equations for each of the time-dependent S(i)

terms. For simplification we represent the Hamiltonian as
ĤSW(t ) = ĤSW,0(t ) + ĤSW,c(t ). Here ĤSW,0(t ) represents the
diagonal part of ĤSW(t ) and ĤSW,c(t ) represents the off-
diagonal part when expressed in the basis which diagonalizes
the laboratory Hamiltonian not including coupling terms,
which is given by Ĥ0(t = 0).

To further simplify the analysis of the dynamics, we in-
troduce a new rotating frame. This rotating frame is defined,
relative to the laboratory frame, using the transformation
|ψrot (t )〉 = Urot (t )|ψlab(t )〉, where

Urot (t ) = exp

(
i

h̄

∫ t

0
ĤSW,0(t ′)dt ′

)
exp[S(t )]. (12)

This transformation essentially takes the state to the SWT
frame and then rotates it so as to eliminate the diagonal terms
in the Hamiltonian. The unitary operation in Eq. (12) is a
transformation from the laboratory frame to the final frame,
which is used for computation. The Hamiltonian in this final
frame is given by

Ĥrot (t ) = Urot (t )Hlab(t )U †
rot (t ) − ih̄Urot (t )∂tU

†
rot (t )

= eiI(t )ĤSW,c(t )e−iI(t ), (13)

where I (t ) = ∫ t
0 ĤSW,0(t ′)dt ′/h̄.

C. Parametrically activated entangled gates

We now study the dynamics when applying a time-
dependent flux, as described in Eq. (6). The envelope we use
has sinusoidal rising and falling shaped as seen in Figs. 2(a)

and 2(b). We define e(t ) as follows:

e(t ) =

⎧⎪⎪⎨
⎪⎪⎩

sin
(

πt
2Trise

)
, 0 � t � Trise,

1, Trise � t � T − Tfall,

sin
(

π (T −t )
2Tfall

)
, T − Tfall�t�T .

(14)

For the sake of simplification, we first examine the case
where the rise time Trise and the fall time Tfall are zero. Given
that ĤSW,c(�) is flux dependent, we can perform a Taylor
expansion, which leads to the following Hamiltonian:

ĤSW,c(�) = ĤSW,c(�0) + δ2

4

∂2ĤSW,c(�0)

∂�2

+ δ cos ωt

(
∂ĤSW,c(�0)

∂�

)

+ δ2 cos (2ωt )

4

(
∂2ĤSW,c(�0)

∂�2

)
+ O(δ3). (15)

We choose our computational basis to be the basis set {|i〉}
which diagonalizes Ĥ0(�0). The matrix elements of Ĥrot (t )
can be expressed as

〈i|Ĥrot (t )| j〉 =
∑
k,l

〈i|eiI(t )|k〉〈k|ĤSW,c(t )|l〉〈l|e−iI(t )| j〉.

(16)

Trivially, I (t ) is diagonal in this chosen basis and so we define

I (t )i,i = 〈i|I (t )|i〉. (17)

We can approximate I (t )i,i ≈ ωit , where ωi is the eigenvalue
of Ĥ0(�0) for the eigenvector |i〉 with a small added correction
of O(δ3) (see Appendix D). This is due to the integral of ĤSW,0

being dominated by the constant terms over large enough
time frames and additionally by the terms which bring a
time dependence having smaller magnitudes when the coupler
transmon is far detuned from the transmons Q1 and Q2. A de-
tailed discussion on this point can be found in Appendixes C
and D. This leads to the simplification of the expression of
the matrix element as 〈i|Ĥrot (t )| j〉 = 〈i|ĤSW,c(t )| j〉ei(ωi−ω j )t .
After elimination of the rotating terms, the condition ω =
ωi − ω j gives us the following equivalent Hamiltonian:

Ĥequiv =
(

∂〈i|ĤSW,c(�0)| j〉
∂�

)
(|i〉〈 j| + | j〉〈i|)

2
. (18)

It must be noted that this equivalent form of the Hamiltonian
works under an assumption that �(t ) = �0 + δ cos(ωt ) from
t = 0 to t = T . If we instead assume �(t ) = �0 + δ cos(ωt +
φ), where φ is the phase of the driving, a factor of eiφ arises
in the equivalent Hamiltonian as can be seen in the following
equation:

Ĥequiv,φ =
(

∂〈i|ĤSW,c(�0)| j〉
∂�

)
(e−iφ|i〉〈 j| + eiφ| j〉〈i|)

2
.

(19)

Due to the rise and fall times, even with a pulse which is hav-
ing φ = 0, the period where the envelope is held at e(t ) = 1
can be isolated to be an interaction with some nonzero φ

causing the final result to have a certain phase. This effect
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TABLE I. Simulation parameters.

Parameters EJ1 EC1 EJ2 EC2 EJc ECc g1 g2 g12

Value (GHz) 13.5 0.28 20.5 0.24 39.5 0.220 0.146 0.164 0.015

can be fixed in experiment by choosing an appropriate φ to
effectively cancel out this effect or by making use of the
appropriate single-qutrit virtual Z [40] which can also directly
correct this.

We introduce two families of gates, denoted by
iSWAP01,10(θ ) and iSWAP12,21(θ ). These gates are the gates
obtained by a θ rotation when using the Hamiltonian Ĥequiv

with |i〉, | j〉 being |01〉, |10〉 and |12〉, |21〉, respectively. These
gates are iSWAP gates over the two states when θ = π . Shown
in Figs. 2(c) and 2(d) are the effective coupling terms between
levels |01〉, |10〉 and |12〉, |21〉 respectively. These are oscillat-
ing around some fixed mean value, and while the oscillations
will effectively cancel out, the mean value is nonvanishing and
it is due to the first-order term in the Taylor expansion becom-
ing nonrotating due to modulation at the correct frequency.
This is what results in an effective coupling between the two
levels.

III. NUMERICAL STUDIES OF PARAMETRIC GATES

In this section we analyze the qutrit-qutrit parametric gates
introduced in the previous section using numerical simula-
tions of the time dynamics for a realistic superconducting
circuit. The analysis considers ways to avoid the potential
spurious effects related to frequency crowding and leakage to
higher levels. Frequency crowding can greatly reduce fidelity
in parametric gates since it may result in unwanted interac-
tions being activated along with the intended transition.

For the |01〉 to |10〉 exchange, the difference between the
levels is given approximately by �01,10 ≈ ω2 − ω1, where
ω1 and ω2 are the frequencies of the transition from ground
state to the first excited state of the transmons Q1 and Q2,
respectively. The levels |12〉 and |21〉 have a frequency dif-
ference �12,21 ≈ ω1 − ω2 + α1 − α2. If α1 − α2 is not large
enough, choosing ω = �01,10 can result in slightly activating
the exchange between |12〉 and |21〉. Similarly an appropriate
anharmonicity must be chosen to avoid exchanges such as
those between |11〉 and |02〉 or |20〉 when using ω = �01,10.
Our analysis focuses on choosing an appropriate parameter set
which is realistic enough to be experimentally verified while
still offering as much high fidelity as possible.

Based on our analysis keeping in mind the abovementioned
constraints, we select the following parameters as shown in
Tables I and II for the Hamiltonian described in Eqs. (2) and
(3). The simulations are carried out using the QUTIP [41,42]
and SCQUBITS [43] packages.

TABLE II. Simulation parameters.

Capacitor

C1 C2 Cc C1c C1c C12

fF 69.055 80.564 87.888 5.728 7.597 0.045

Based on the final equivalent Hamiltonian we obtain in
Eq. (19), we expect that the rotation angle of a general SWAP
operation is directly proportional to the duration of the pulse.
However, deviations from a linear dependence are observed
which are related to the finite rising and falling times of
the pulses and to the phase of the pulse at each instance
resulting in a slightly nonlinear dependence. To implement
SWAP rotations with precise angles, a rotation time is cal-
culated assuming that the linear dependence holds, and then a
search in a range around this value is used to find pulse times
that correspond to the desired rotation angles. The obtained
unitary gates are depicted in Fig. 3 for iSWAP01,10(2π/3)
with 99.65% fidelity and in Fig. 4 for iSWAP12,21(2π/3) with
99.72% fidelity.

IV. COMPILATION OF QUTRIT GATES

Universal control in qudits is achieved by using a gate set
that includes arbitrary single-qudit rotations and one suitable
entangling two-qudit gate [44]. If there exists a product state
in (Cd)⊗2 which is mapped to an entangled state in (Cd)⊗2

by the use of a unitary V , that unitary is called imprimitive
or entangling [44]. Crucially, the conditions for universality
highlighted in Ref. [44] require only one kind of entangling
gate, but these do not place restrictions on the number of
gates. This is where we employ two kinds of entangling gates,
namely, the rotations iSWAP01,10 and iSWAP12,21, which can
cover a greater variety of two-qutrit gates with lower circuit
depths due to the additional degree of freedom.

To understand the applicability of the gates we obtain
in this protocol, we apply them to the task of compiling

FIG. 3. iSWAP01,10(2π/3) with 99.65% fidelity with a length of
315 ns including 10 ns of both rise and fall time. Shown plotted
above are (a) the real part of the unitary and (b) the imaginary
part of the unitary. In both panels (a) and (b), the matrix element
shown is 〈y|U |x〉, where x and y are the states corresponding to the
respective labels on the x and y axes. These graphs visually depict
how the implemented unitary deviates from the ideal mainly by all
the nondiagonal matrix elements which are not between the 01 and
10 states. In this particular case one can clearly see the fidelity is
decreased due to exchange among 11-02, 11-20, and 12-21.

062616-4



EFFICIENT TWO-QUTRIT GATES IN SUPERCONDUCTING … PHYSICAL REVIEW A 108, 062616 (2023)

FIG. 4. iSWAP12,21(2π/3) with 99.72% fidelity with a length of
435 ns including 10 ns of both rise and fall time. Shown plotted
above are (a) the real part of the unitary and (b) the imaginary part of
the unitary. In both panels (a) and (b), the matrix element shown is
〈y|U |x〉, where x and y are the states corresponding to the respective
labels on the x and y axes. Again we can see how the implemented
unitary deviates from the ideal mainly e by all the nondiagonal matrix
elements which are not between the 12 and 21 states. Here the fidelity
can be seen to have been decreased due to exchange among 11-02,
11-20, and 10-01.

two-qutrit gates. We decompose a qutrit CZ gate defined as

CZ =
∑

j,k∈{0,1,2}
(exp(2iπ/3)) jk| jk〉〈 jk|, (20)

which is universal, into single-qutrit rotations and rotations of
iSWAP01,10 and iSWAP12,21. Making use of the parametrized
quantum circuit which is described in Fig. 5, we perform an
optimization over the fidelity of the achieved unitary and the
target unitary to find an optimal decomposition of the target
unitary.

The method uses a layered parametrized quantum circuit.
The cost function is defined as

C(θ) = 1 − 1

d2
|Tr[U †

targU (θ)]|, (21)

where the implemented unitary is U (θ), with θ being the set
of controllable parameters in the circuit, and d is the qudit
dimension. It is clear that C(θ) � 0 for all θ and it equals zero
iff U (θ) = U †

targ (up to a global phase).
Using two layers of such an ansatz, we obtain an exact

decomposition for the qutrit CZ gate. The entangling gates
this uses are iSWAP01,10(−2π/3) and iSWAP12,21(2π/3) in

FIG. 5. Circuit ansatz for gate compilation. We use a known
two-qudit gate V which takes two angles as input and we maximize
the fidelity F (Utarg,U ), where U is the unitary of the circuit. The
operators Ri are arbitrary SU(3) rotations which have the variables
to be optimized. For qutrits, m layers have optimization in over 18m
variables.

FIG. 6. CZ gate with 99.41% fidelity shown plotted above as
(a) the real part of the unitary and (b) the imaginary part of the
unitary. In both panels (a) and (b), the matrix element shown is
〈y|U |x〉, where x and y are the states corresponding to the respective
labels on the x and y axes. The nondiagonal terms give a visible
indication of the imperfections of this gate which is supposed to be
diagonal.

combination with single-qutrit rotations. The exact values
used in this decomposition for the single-qutrit rotations can
be found in Appendix E.

Using the gates obtained from simulations as shown in
Figs. 3 and 4, we obtain the CZ gate shown in Fig. 6 which
has 99.41% fidelity. This fidelity is calculated by assuming a
perfect fidelity for single-qutrit rotations, and we then proceed
to substitute the ideal entangling gate of the CZ decomposition
with an implemented version of it. In practice there could
be decreased fidelity due to nonideal single-qutrit rotations.
This obtained CZ gate stands as a proof of concept for how
high of a fidelity can be obtained using our parameter set in
simulation.

V. CONCLUSION

This work explores an efficient method for implementing
two-qutrit gates using transmons making use of parametric
coupling. Making use of a tunable transmon as a coupler,
we create entangling gates between two other fixed frequency
transmons. An important result we present is the exact de-
composition of the qutrit CZ gate using two specific kinds
of entangling rotations. Using the method of parametric cou-
pling, we show how we can implement a qubit iSWAP gate
involving a |01〉, |10〉 exchange [23] as well as an extension of
the same method to obtain a similar gate for exchange between
|12〉 and |21〉.

The exact decomposition of the qutrit CZ gate in terms of
the exchange interactions between |01〉 to |10〉 and |12〉 to |21〉
is obtained using a simple gate compilation technique yielding
an exact solution by having conducted an optimization over
rotation parameters for certain gates. Using this decompo-
sition in conjunction with the simulated gates, we show a
potential CZ gate which can be obtained assuming perfect
fidelity single-qutrit operations as a proof of concept.

When compared to the existing qutrit CZ gates obtained
using tunable cross-Kerr entanglement [18,19], our method
has the potential to yield higher fidelities, as indicated by our
results in Fig. 6. Our method offers the advantage of giving
full control using a single tunable parameter, which is the
flux of the coupler transmon. This also helps avoid sources
of infidelity often associated with tunable circuit components
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since all the other transmons in the circuit can be made fixed
frequency. For our chosen parameter set, the total execution
time for realizing a CZ gate would be 750 ns, not including
the time taken by single-qutrit operations. However, we expect
that future work on pulse optimization may lead to faster
execution times. Our method for realizing the gates we refer
to as iSWAP01,10 and iSWAP12,21 perform similarly to the
iSWAP-like gates explored in Ref. [22]. However, our work
shows an explicit CZ decomposition which is very useful
in realization of the qutrit Clifford group. Our approach can
also be extended to entangling of higher-dimensional qudits
by adding gates of the form iSWAPd−1 d,d d−1. An important
property of these gates is that they can be independently
operated since these interactions are ideally limited within
independent subspaces
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APPENDIX A: HAMILTONIAN CALCULATION
FROM THE CIRCUIT

In this section we obtain the Hamiltonian for the circuit
geometry represented in Fig. 1(a). Using the generalized co-
ordinates φ1, φ2, and φc, which are the phases across each
of the junctions, and introducing for convenience the vector
φT = [φ1 φc φ2,], we can define the Lagrangian

L = 1

2
φ̇

T
Cφ̇ +

∑
i=1,2

EJi cos φi + EJc | cos(�)| cos φc, (A1)

with the capacitance matrix C given by

C =

⎛
⎜⎜⎝

C1 + C1c + C12 −C1c −C12

−C1c Cc + C1c + C2c −C2c

−C12 −C2c C2 + C2c + C12

⎞
⎟⎟⎠.

(A2)

The conjugate momenta q = ∂L
∂φ̇

are given by q = Cφ. The
Hamiltonian, obtained using a Legendre transformation, is
given by

H =
∑

i=1,2,c

qiφ̇i − L = 1

2
qT C−1q

−
∑
i=1,2

EJi cos φi − EJc | cos(�)| cos φc. (A3)

The capacitance matrix is the same as the one used in
Ref. [35]. Working in the limit of C12 � Cic � Ci ∼ Cc,
where i = 1 and 2, we obtain the following approximate in-
verse of the capacitance matrix:

C−1 ≈

⎛
⎜⎜⎝

1
C1

C1c
C1Cc

C12+(C1cC2c )/Cc

C1C2

C1c
C1Cc

1
Cc

C2c
C2Cc

C12+(C1cC2c )/Cc

C1C2

C2c
C2Cc

1
Cc

⎞
⎟⎟⎠. (A4)

We can see that the diagonal terms of this matrix simply
correspond to the capacitive energy ECi = e2/2Ci for a given
transmon with a capacitor of capacitance Ci. The Hamiltonian
parameters used for simulation can be achieved by the follow-
ing capacitor values.

APPENDIX B: THE SCHREIFFER-WOLFF FRAME

The Schreiffer-Wolff frame is a reference frame where the
Hamiltonian is block diagonalized over some subspace. In our
case, we define it as a frame where interactions caused due to
Ĥm have been eliminated up to some order in g1/�, where
� is the energy scale of Ĥ0 (the difference between the first
excited state energy of the Hamiltonian to its ground state).
The main approach we use for numerical methods is based on
Ref. [45]. We first examine the more commonly used time-
independent version of the Schreiffer-Wolff transformation,
induced by a transformation eS . The Hamiltonian in the new
frame is

ĤSW = eSĤlabe−S

= Ĥlab + [S, Ĥlab] + 1
2 [S, [S, Ĥlab]] + · · · . (B1)

The ideal transformation would make ĤSW block diagonal
over Q1 and Q2, removing interactions to C. This can be
calculated perturbatively by assuming Ĥm to be much smaller
in magnitude than Ĥ0. In this approach we take S = ∑∞

i=1 S(i).
If {|i〉} is the basis set which diagonalizes Ĥ0 with eigenvalues
{λi}, we can define the following first-order SWT as

〈i|S(1)| j〉 =
{ 〈i|H1| j〉

λi−λ j
, if and only if i �= j and λi �= λ j,

0, otherwise.
(B2)

In the time-dependent case, discussed in Ref. [46], which
is suitable given that the system Hamiltonian Ĥlab is time
dependent, the effective Hamiltonian which evolves the state
|ψSW(t )〉 = eS(t )|ψlab(t )〉 is given by

ĤSW(t ) = eS(t )(Ĥlab − i∂t )e
−S(t )

= eS(t )(Ĥlab + i[∂t S(t )])e−S(t ). (B3)

To obtain a block diagonal form in this case, we need to
solve a differential equation for S(t ) which has dependence on
Ĥlab(t ). A complete description of all the terms up to higher
orders can be found in Ref. [46]. The expansion of ĤSW(t ) is
as follows (without terms involving orders of S(2) and higher):

ĤSW(t ) = Ĥ0(t ) + (Ĥm + [S(1), Ĥ0] + iṠ(1) )

+ Ĥd + 1
2 [S(1), Ĥm] + · · · . (B4)

The following equation needs to be solved for S(1)(t ):

Ṡ(1) = i(Ĥm + [S(1), Ĥ0]). (B5)

For simplicity we represent the Hamiltonian ĤSW(t ) =
ĤSW,0(t ) + ĤSW,c(t ). Here ĤSW,0(t ) represents the diagonal
part of ĤSW(t ) and ĤSW,c(t ) represents the off-diagonal part
when expressed in the basis which diagonalizes Ĥ0(t = 0).

062616-6



EFFICIENT TWO-QUTRIT GATES IN SUPERCONDUCTING … PHYSICAL REVIEW A 108, 062616 (2023)

APPENDIX C: THE ROTATING FRAME

As defined in Eq. (12), we make use of a rotating frame
for the computation. The state in this frame is defined as
|ψrot (t )〉 = Urot (t )|ψlab(t )〉. To capture the evolution in this
frame we first write the evolution in the laboratory frame:

ih̄∂t |ψlab(t )〉 = Ĥlab|ψlab(t )〉. (C1)

The evolution in the transformed frame defined by transfor-
mation in Eq. (12) is given as follows:

ih̄∂t |ψrot (t )〉 = Ĥrot (t )|ψrot (t )〉, (C2)

Ĥrot (t ) = Urot (t )Hlab(t )U †
rot (t ) − ih̄Urot (t )∂tU

†
rot (t ). (C3)

For shorthand notation, we refer to
∫ t

0 ĤSW,0(t ′)dt ′/h̄ as H(t ).
We have

ih̄Urot (t )∂tU
†
rot (t ) = ih̄eiH(t )eS (∂t S)e−Se−iH(t )

+ ih̄eiH(t )eSe−S[−i∂tH(t )]e−iH(t ), (C4)

which can be simplified to obtain

ih̄Urot (t )∂tU
†
rot (t ) = ih̄eiH(t )eS (∂t S)e−Se−iH(t )

+ eiH(t )ĤSW,0(t )e−iH(t ). (C5)

From Eq. (B1), we have Urot (t )Hlab(t )U †
rot (t ) =

eiH(t ){ĤSW(t ) + eS(t )[∂t S(t )]e−S(t )}e−iH(t ). This gives us
the following expression for Ĥrot (t ):

Ĥrot (t ) = eiH(t )ĤSW,c(t )e−iH(t ). (C6)

APPENDIX D: EQUIVALENT HAMILTONIAN
FOR AC DRIVE

Here we examine a flux drive from t = 0 to t = T of the
form

�(t ) = �0 + e(t )δ cos(ωt ). (D1)

Here e(t ) is some envelope for which e(0) = e(T ) = 0.
For sake of simplification we assume at first that e(t ) =
�(t )�(T − t ), where �(x) is the Heaviside step function.
Given that ĤSW,c(t ) has a dependence on flux and hence on
time, we can perform a Taylor expansion to obtain

ĤSW,c(�) = ĤSW,c(�0) + (� − �0)
∂ĤSW,c(�0)

∂�

+ (� − �0)2

2

∂2ĤSW,c(�0)

∂�2
+ · · · , (D2)

which can also be written as

ĤSW,c(�) = ĤSW,c(�0) + δ2

4

∂2ĤSW,c(�0)

∂�2

+ δ cos ωt

(
∂ĤSW,c(�0)

∂�

)

+ δ2 cos (2ωt )

4

(
∂2ĤSW,c(�0)

∂�2

)
+ O(δ3).

(D3)

The Hamiltonian ĤSW,0 can be expanded in a similar way. We
assume that we operate in the basis set {|i〉}, which diagonal-
izes Ĥ0(�0). In this case the matrix elements of Ĥrot (t ) can be
expressed as

〈i|Ĥrot (t )| j〉 =
∑
k,l

〈i|eiH(t )|k〉〈k|ĤSW,c(t )|l〉〈l|e−iH(t )| j〉.

(D4)

Note that eiH(t ) is diagonal in the {|i〉} basis. This gives us the
following result:

〈i|Ĥrot (t )| j〉 = 〈i|ĤSW,c(t )| j〉 exp{i[H(t )i,i − H(t ) j, j]}.
(D5)

Here H(t )i,i = 〈i|H(t )|i〉. We can see from the form in
Eq. (D3) that

H(t )i,i = ωit + δ

(
∂ĤSW,0(�0)

∂�

)∫ t

0
cos ωt ′dt ′ + O(δ2),

(D6)

ωi = ĤSW,0(�0) + δ2

4

∂2ĤSW,0(�0)

∂�2
+ O

(
δ3

)
. (D7)

Here we can clearly see that the integrals of the rotating terms
can be very easily bounded by a constant value. On taking the
approximation that H(t )i,i ≈ ωit , we note that the following
holds with �i, j = ωi − ω j :

〈i|Ĥrot (t )| j〉 ≈ 〈i|ĤSW,c(t )| j〉ei�i, j t

= (e(�i, j−ω)t + e(�i, j+ω)t )

2

∂〈i|ĤSW,c(�0)| j〉
∂�

+ O(δ3). (D8)

The other terms in the above equation will be rotating terms;
however, we can note that, in the condition where �i j =
±ω, there will be a nonrotating term which can result in
an interaction between |i〉 and | j〉. Using the rotating-wave
approximation, we can note that the equivalent Hamiltonian
in the rotating frame is

Ĥequiv =
(

∂〈i|ĤSW,c(�0)| j〉
∂�

)
(|i〉〈 j| + | j〉〈i|)

2
. (D9)

APPENDIX E: QUTRIT CZ DECOMPOSTION

The following are the circuit parameters for an exact qutrit
CZ decomposition with angles rounded to four decimal places
as a fraction of π .

———————————————–
————–Initial rotation————–
On subspace |0〉, |1〉 of qudit 1
RX(0.3584π )
RZ(−0.0π )
RX(0.6416π )
On subspace |0〉, |1〉 of qudit 2
RX(−0.4014π )
RZ(−1.0π )
RX(−0.4014π )
On subspace |0〉, |2〉 of qudit 1
RX(0.5664π )
RZ(0.7678π )
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RX(0.088π )
On subspace |0〉, |2〉 of qudit 2
RX(−0.4999π )
RZ(−0.4992π )
RX(−0.0375π )
On subspace |1〉, |2〉 of qudit 1
RX(1.0π )
RZ(−0.4539π )
RX(0.0π )
On subspace |1〉, |2〉 of qudit 2
RX(0.7868π )
RZ(0.9999π )
RX(−0.2132π )
——————Layer 1——————
Apply iSWAP1(−0.6667π )
On subspace |0〉, |1〉 of qudit 1
RX(0.196π )
RZ(−0.6794π )
RX(1.1255π )
On subspace |0〉, |1〉 of qudit 2
RX(0.7722π )
RZ(−0.0264π )
RX(−0.232π )
On subspace |0〉, |2〉 of qudit 1
RX(−0.5699π )
RZ(0.0π )
RX(−0.4301π )
On subspace |0〉, |2〉 of qudit 2
RX(0.5671π )
RZ(−1.0π )
RX(−0.4329π )
On subspace |1〉, |2〉 of qudit 1
RX(−0.1632π )

RZ(−0.5265π )
RX(−0.0092π )
On subspace |1〉, |2〉 of qudit 2
RX(0.555π )
RZ(−0.7193π )
RX(0.0225π )
——————Layer 2——————
Apply iSWAP2(0.6667π )
On subspace |0〉, |1〉 of qudit 1
RX(−0.6542π )
RZ(−1.0π )
RX(−0.6542π )
On subspace |0〉, |1〉 of qudit 2
RX(0.0π )
RZ(0.3333π )
RX(−1.0001π )
On subspace |0〉, |2〉 of qudit 1
RX(−0.0001π )
RZ(0.8795π )
RX(−0.0001π )
On subspace |0〉, |2〉 of qudit 2
RX(−0.1243π )
RZ(−1.1π )
RX(−0.6188π )
On subspace |1〉, |2〉 of qudit 1
RX(1.1312π )
RZ(0.6862π )
RX(0.5754π )
On subspace |1〉, |2〉 of qudit 2
RX(0.0562π )
RZ(1.0π )
RX(0.0562π )
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