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The building blocks of quantum algorithms and software are quantum gates, with the appropriate combination
of quantum gates leading to a desired quantum circuit. Deep expert knowledge is necessary to discover effective
combinations of quantum gates to achieve a desired quantum algorithm for solving a specific task. This is
especially challenging for quantum machine learning and signal processing. For example, it is not trivial to design
a quantum Fourier transform from scratch. This work proposes a quantum architecture search algorithm which is
based on a Monte Carlo graph search and measures of importance sampling. It is applicable to the optimization
of gate order for both discrete gates and gates containing continuous variables. Several numerical experiments
demonstrate the applicability of the proposed method for the automatic discovery of quantum circuits.
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I. INTRODUCTION

Quantum computing has brought about a paradigm shift
in information processing and promises breakthroughs in the
solution of industrial use cases [1–3], physics [4,5], medicine
[6], chemistry [7], biology [8], robotics [9], general pattern
recognition [10], machine learning [11–13], and much more.
These opportunities are tempered, however, by the significant
challenges arising in the discovery and application of quantum
software. This is because the design of quantum algorithms
still requires expert knowledge. Further, since quantum de-
vices are still small and costly, it is essential to optimize
resources, in particular, gate counts. Thus, the discovery and
optimization of quantum circuits are of significant near-term
relevance.

Methods for the automated search for optimal quantum
circuits have been investigated in the literature, and the term
quantum architecture search (QAS) has been adopted to de-
scribe this body of research. The name is borrowed and
adapted from neural architecture search [14,15], which is
devoted to the study and hyperparameter tuning of neural
networks. Recent works on QAS are often specific to a
problem setup; for example, it has been applied to quantum
circuit structure learning [16] for finding the ground states
of lithium hydride and the Heisenberg model in simulation,
as well as for finding the ground state of a hydrogen gas.
Many QAS variants are focused on discrete optimization and
exploit optimization strategies for nondifferentiable optimiza-
tion criteria. Here variants of Gibbs sampling [17], evolutional
approaches [18], genetic algorithms [19,20], neural-network-
based predictors [21], variants with noise-aware circuit
learning [22], and the optimization of approximate solu-
tions [23] have been suggested. A recent survey on QAS
can be found in [24]. Going beyond discrete optimiza-
tion, it is also possible to exploit gradient-descent-based

optimization schemes [25,26] or reinforcement learning [27]
for QAS.

A recent work [28] proposed a Monte Carlo tree search
(MCTS) based on a multiarmed-bandit formulation. That
paper is closest in spirit to our present work, and the
promising results and challenges identified there inform and
inspire our investigation. Traditional tree search does not
share information between different trajectories, although an
identical state may occur. Therefore, a MCTS algorithm
does not merge duplicate states. Thus, if a state x can be
reached via two different trajectories, it will be represented
two times in the look-ahead tree. Thus, the rollout pro-
cess (sometimes called simulation) can generate nodes and
branches which are already part of the tree, leading to mul-
tiple identical circuits in the search. Since quantum gates
act locally, many of them commute, automatically leading to
circles in a quantum circuit graph (see Fig. 2 below for an
illustration).

We overcome the challenges presented by cycles in the
quantum circuit graph by proposing the use of a Monte Carlo
graph search (MCGS) [29] to optimize a combination of
mixed discrete and continuous variables. This is possible since
most gates containing continuous variables are smooth (e.g.,
consisting of rotation coefficients), and thus, it is possible to
automatically extract the Jacobians for a fast gradient descent
while optimizing the quantum computation graph. Our contri-
butions can be summarized as follows:

(1) We propose a Monte Carlo graph search algorithm for
quantum architecture optimization.

(2) Our model allows for a joint discrete and continuous
optimization of the quantum gate ordering and parameters.

(3) Several applications demonstrate its applicability, e.g.,
for the optimization of the quantum Fourier transform, diverse
quantum cellular automatons, and simple quantum machine
learning tasks.
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FIG. 1. Example graph of quantum circuits. The edges are la-
beled by possible elementary gates. The vertices are identified with
the unitary operator built by taking the product of the gates along
the shortest path. A trajectory on this graph directly corresponds to a
quantum circuit.

II. PRELIMINARIES

In this section we give a brief overview of the physical
systems we discuss in this paper and provide a description of
the architecture search optimization strategies that we com-
pare and contrast. In particular, reference methods frequently
used for discrete optimization are briefly introduced. They are
later used for a direct comparison with our proposed MCGS
algorithm.

We focus on the setting where our quantum information
processing device comprises a set of N logical qubits, ar-
ranged as a quantum register (see, e.g., [30,31] for further
details). Thus, the Hilbert space of our system is furnished by
H ≡ (C2)⊗N ∼= C2N

. In this way, e.g., a quantum state vector
of a five-qubit register is a unit vector in C32. We assume
throughout that the system is not subject to decoherence and
remains pure.

Quantum gates are the basic building blocks of quantum
circuits, similar to logic gates in digital circuits [32]. Ac-
cording to the axioms of quantum mechanics, quantum logic
gates are represented by unitary matrices so that a gate act-
ing on N qubits is represented by a 2N × 2N unitary matrix,
and the set of all such gates together with the group opera-
tion of matrix multiplication furnishes the symmetry group
U(2N ). In order to describe explicit matrix representations
we exploit the computational basis {|x1, x2, . . . , xN 〉 | x j ∈
{0, 1}, j = 1, 2, . . . , N} furnished by the eigenstates of the
Pauli Z operator on each qubit j.

Standard quantum gates include the Pauli (X , Y , Z) oper-
ations, as well as Hadamard, controlled NOT (CNOT), SWAP,
phase-shift, and Toffoli gates, all of which are expressible
as standardized unitary matrices with respect to the com-
putational basis. The action of a quantum gate is extended
to a register of any size exploiting the tensor product op-
eration in the standard way. Most gates do not involve
additional variables; however, a phase-shift gate RX (θ ) ap-
plies a complex rotation and involves the rotation angle θ

as a free parameter. This parameter should then be jointly
optimized together with the architecture of an overall quantum
circuit.

A quantum circuit of length L is then described by an
ordered tuple (O(1), O(2), . . . , O(L)) of quantum gates; the
resulting unitary operation U implemented by the circuit is

FIG. 2. Example graph of quantum circuits. The purpose of this
visualization is to demonstrate the high degree of connectivity and
the presence of multiple cycles in the generated quantum circuit
graph. A large number of the cycles emerge from commuting local
quantum gates. As products of gates are taken to build the unitary
matrix representing the quantum circuit, one encounters a graph
structure which is rapidly branching and merging. This branching
and cycle structure indicates that the MCGS will likely supply supe-
rior performance relative to MCTS.

the product

U = O(L)O(L − 1) · · · O(1). (1)

A. Genetic algorithms

A genetic algorithm (GA) belongs to the family of so-
called evolutionary algorithms. A GA is a population-based
metaheuristic inspired by biological evolution. It comprises
a fitness function to evaluate individuals of a population; a
selection process (driven by the fitness scores) to decide which
individuals are used for reproduction; and genetic operators,
such as crossovers, and mutations to generate new individuals.
These new individuals form a new generation which is further
evaluated in an ongoing evolution. Genetic algorithms are
commonly exploited in discrete optimization, and the inter-
ested reader is referred to [33] for further details.

For the numerical experiments carried out in this paper the
fitness function is directly given by the optimization task (a
loss or quality score). Each individual (quantum circuit) I1 is
represented by an ordered tuple of quantum gates, e.g., I1 =
(O1(1), . . . , O1(n)). For a crossover between two circuits I1

and I2, a point on both parents’ chromosomes is randomly
picked which is called the crossover point. Gates to the right of
that point are swapped between the two parent chromosomes.
This results in two children,

(O1(1), . . . , O1( j), O2( j + 1), . . . , O2(n))

and

(O2(1), . . . , O2( j), O1( j + 1), . . . , O1(n)),

each carrying some genetic information from both parents.
A mutation is then furnished by a random exchange of a
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quantum gate. A recent work on an evolutionary quantum
architecture search for parametrized quantum circuits was
presented in [34].

B. Particle filter

Particle filtering uses a set of samples (which are then
called particles) to model a posterior distribution of a
stochastic process given some observations. A particle fil-
ter is also called a sequential Monte Carlo method [35].
These Monte Carlo algorithms are commonly used to find
approximate solutions for filtering problems of nonlinear
state-space systems. More recently, they have been applied
to quantum systems as quantum Monte Carlo methods [36].
In the controls literature, particle filters are exploited to
estimate the posterior distribution of the state xt of a dy-
namical system at time t conditioned on the data p(xt |zt , ut ).
This posterior is estimated via the following recursive
formula:

p(xt |zt , ut ) = ηt p(zt |xt )
∫

p(xt |ut , xt−1)

× p(xt−1|zt−1, ut−1) dxt−1, (2)

where ηt is a normalization constant.
Three probability distributions are required for such a par-

ticle filter: (1) a so-called measurement model, p(zt |xt ), which
gives the probability of measuring zt when the system is in
state xt ; (2) a control model, p(xt |ut , xt−1), which models the
effect of a control ut on the system state and provides the
probability that the system is in state xt after executing control
ut at state xt−1; and (3) an initial state distribution p(x0),
which is required to specify the user’s knowledge about the
initial system state (see also [37]). In computer vision, the
so-called condensation algorithm is a well-known example of
how to perform a conditional density propagation for visual
tracking [38].

The implementation of a particle filter can be very similar
to that of a genetic algorithm. It can be based on M indepen-
dent random variables ξ i

0 (i = 1, . . . , M ) with a probability
density p(x0). Based on the underlying distribution, e.g., rep-
resenting a fitness score, M of these variables are selected,
ξ i

k → ξ̂ i
k , and diffused using a mutationlike operation, yielding

a new set ξ i
k+1.

C. Simulated annealing

Simulated annealing (SA) is another probabilistic tech-
nique to approximate the optimum of a given function [39].
The name derives from annealing in metallurgy, in which
the process involves heating and a controlled cooling of a
material to change and control its physical properties. As
an optimization scheme the algorithm works iteratively with
respect to time t given a state xt . At each step, the simu-
lated annealing heuristic samples a neighboring state x̂t of
the current state xt . Then a probabilistic decision is made to
decide whether to move to the new state xt+1 = x̂t or to remain
in the former state xt+1 = xt . The probability of making the
transition from the current state xt to the new state x̂t is de-
fined by an acceptance probability function P(e(xt ), e(x̂t ), T ).
The function e(x) evaluates the energy of this state, which

is, in our case, the fitness score given by the optimization
task (e.g., the �2 loss). The parameter T is a time-dependent
variable dictating the behavior of the stochastic process ac-
cording to a cooling scheme or annealing schedule. The P
function is typically chosen in such a way that the proba-
bility of accepting an uphill move decreases with time and
it decreases as the difference e(x̂t ) − e(xt ) increases. Thus,
a small increase in error is likely to be accepted so that
local minima can be avoided, whereas a larger error increase
is not likely to be accepted. A typical function for P takes
the form

P(e(xt ), e(x̂t ), T ) ∝ exp

(
−e(x̂t ) − e(xt )

kT

)
, (3)

with k being a damping factor k > 0.

D. Monte Carlo tree search

MCTS is a heuristic search algorithm for decision pro-
cesses [29]. It makes use of random sampling and very
efficiently balances the well-known exploration-exploitation
dilemma in large search spaces. A typical example is provided
by game states in which nonpromising game configurations
are avoided, e.g., typical for board games such as chess and
tic-tac-toe. MCTS is a common approach in reinforcement
learning, typically in combination with deep reinforcement
learning [40]. As it visits more interesting nodes more fre-
quently, it grows asymmetrically and focuses the search time
on more relevant parts of the tree.

Saffidine et al. [41] presented a framework for testing
various algorithms that deal with transpositions in MCTS.
They called this framework the upper confidence bound for
Direct acyclic graphs and applied this formalism to overcome
the exploration-exploitation dilemma. Their search strategy in
the directed acyclic graph (DAG) follows the upper confi-
dence bounds for trees algorithm [42]. These predecessors
were more recently applied to Monte Carlo graph search to
optimize game play in AlphaZero-based reinforcement learn-
ing [43].

III. PROBABILISTIC GRAPHICAL MODELS

In this section we describe the graphical model we exploit
to characterize the search space of quantum circuits.

We assume throughout that we have a fixed set OP =
{O1, O2, . . .} of elementary quantum gates that we are allowed
to apply. Note that in OP the same unitary gate acting on
different qubits is considered to be a different elementary
gate. For example, the Pauli X operator acting on qubit 1,
written here as X (1), is considered to be a different elementary
gate from X (2), which is the Pauli X operator acting on
qubit 2. Starting with the identity operator I, we can build
quantum circuits by selecting elementary gates from OP and
multiplying from the left. (Thanks to the universality theorem
[31], we know that we can approximate an arbitrary unitary to
arbitrarily good accuracy with a sufficiently long product of
such gates.)

We associate a vertex from a vertex set V with each
quantum circuit built from a product of elementary gates
from OP . We connect with an edge two such vertices if
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FIG. 3. Basic steps of the MCGS quantum circuit optimization algorithm. The currently implemented gates and their invocations are
tabulated in the Appendix.

the corresponding quantum circuit differs (on the left) by
an elementary gate. In this way, a collection of quantum
circuits is endowed with a graph structure, with vertices
decorated by quantum circuits and edges weighted by ele-
mentary gates. In Fig. 1 a tiny example graph for differently
ordered quantum gates is depicted. The edges are labeled
by possible gates of the quantum circuit. The nodes are
decorated by the resulting unitary when concatenating the op-
erations along the shortest path. Thus, each node is identified
with a possible quantum circuit. It is important to note that
this graph contains cycles since identical quantum circuits
have multiple representations with different gates and gate
orders.

In Fig. 2 we illustrate a few steps of such a growing graph
model. As the depth of the graph grows exponentially with
the number of gates and nodes, it is computationally infeasi-
ble to precompute such a graph for all possible circuits. For
example, a tiny set of 20 elementary quantum gates can be
assembled to build 205 combinations for quantum circuits of
length 5. Thus, it is not possible to evaluate all configurations
in a feasible time to solve for a specific optimization task.
Figure 2 illustrates that the resulting graph contains many
cycles, which in return justifies the use of a MCGS approach.

Since the graph model generated by the evaluation of
quantum gates can have cycles, we apply a Monte Carlo
search on the graph model with quantum gates as transi-
tions. Thus, given a specific task, every node will receive
a quality score which is used to compute a probability for
the selection of this node. Based on the random selection
and already explored operations, a new operation is ran-
domly selected to grow the graph. Once a solution is found,
an efficient quantum circuit can be generated by computing

the shortest path in the graph from the start node to the
target node.

This strategy is formalized as follows: We have a set
of vertices V , associated with quantum circuits, of a graph
G = (V ; E ) with V = {v1, . . . , vn}, and we build a probabil-
ity function p(vi ),

∑
i p(vi ) = 1, which assigns to each node

of the graph a probability for selection. Poisson sampling
is then exploited as the underlying sampling process. It is
assumed that each vertex of the graph is an independent
Bernoulli trial. Following standard mathematical conventions,
the first-order inclusion probability of the ith element of
the graph is denoted by the symbol πi = p(vi ). We fur-
ther associate with each vertex of the graph an underlying
task specific quality score si � 0. (Here larger values of
si imply better quality.) Accordingly, we compute the first-
order inclusion probability via πi = si∑

j s j
. This paradigm of

Monte Carlo search [44] and adapted Gibbs sampling [45]
is used to iteratively grow a graph containing the effects
of ordered quantum operations as trajectories in this graph
(see Fig. 1).

Our MCGS procedure is now as follows: Given a set of
vertices V = {v1, . . . , vn} and a probability function p(vi ),
Poisson sampling is used to select an existing node vi from the
graph. A quantum gate is then randomly selected from the set
OP of elementary gates according to a uniform distribution
and applied (from the left) to the quantum circuit associated
with vi. The result is a new circuit, which is associated with
either an existing node or a new one [46]. If the circuit at a
node already exists, e.g., v j , a new edge (vi, v j ) is added to
the graph, decorated with edge weight given by the applied
elementary gate. If the quantum circuit does not exist, the
graph is extended by adding a new node vN+1 and an edge
(vi, vN+1). Since the probabilities vary with respect to the
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FIG. 4. Simple example to visualize the basic steps for the optimization of quantum circuits involving continuous variables.

quality score of the nodes, the graph grows asymmetrically.
Once a node is reached which (sufficiently accurately) solves
the optimization task, the shortest path from v1 to the target
node gives the shortest available quantum circuit (see also
Fig. 1). The basic steps of the MCGS algorithm are summa-
rized in Fig. 3.

Note that such a graph can also be reused for different
kinds of optimizations, and it can be analyzed very generally
to identify cycles, clusters, and other structural properties of
the effect of quantum gates.

Optimization of continuous variables

Several gates can contain continuous variables for opti-
mization, e.g., phase-shift gates,

P(φ) =
(

1 0
0 exp(iφ)

)
, (4)

with the corresponding Jacobians

∂P(φ)

∂φ
=

(
0 0
0 i exp(iφ)

)
. (5)

Since the involved functions are smooth and differentiable,
the Jacobian of such a matrix and the Jacobian for a chain
of operations are easy to compute via the product rule. Thus,
given a quantum circuit of length L which is described by
an ordered tuple (O(1), O(2), . . . , O(L)) of quantum gates
and 	 = (φ1 . . . φk ) continuous variables within this chain,
the resulting unitary operation is then a function U (	) =
U (φ1, . . . , φk ). This function is typically used for the op-
timization of a loss function, for example, the distance
from a target matrix O, e.g., a density-functional-theory ma-
trix. For numerical and implementation convenience the loss
function was chosen to be the Frobenius norm between O
and U (	),

L(	) = ‖O − U (	)‖F

=
√

tr{[O − U (	)]†[O − U (	)]}. (6)

Although the Frobenius norm does not have a simple opera-
tional interpretation, it is easy to compute both numerically
and also experimentally via a SWAP test.

The Jacobian of the loss function is given by

∇	L(	) =
[
∂L(	)

∂φ1
, . . . ,

∂L(	)

∂φk

]
. (7)

This vector can be numerically computed and used for op-
timization by using automatic differentiation. Optimization
of the involved parameters can be then carried out with
a gradient-descent iteration using 	t+1 = 	t − η∇	L(	).
Here η denotes a damping factor which has been set to
0.2 for all our experiments. Figure 4 summarizes the ba-
sic steps for the optimization of continuous variables in
the MCGS.

IV. EXPERIMENTS

Since the MCGS algorithm we describe here is capable of
optimizing both discrete and mixed discrete and continuous
settings, the experiments are divided into two parts. In the first
part only results for discrete optimizations are presented. In
the second part we also describe some experiments involving
mixed discrete and continuous variables.

A. Discrete quantum architecture search

The first experiment we conducted targeted the optimiza-
tion of the quantum Fourier transform. It is well known that
the steps of the radix-2 fast Fourier transform (FFT) can be
realized as a quantum circuit using primarily phase-shift and
Hadamard gates. For example, for an eight-dimensional FFT,
three qubits are sufficient, and seven gates can be used to
compute the FFT matrix.

In the first experiment we compare the optimization of
quantum circuits of length 1, 2, . . . , 7 for a given predefined
set of elementary quantum gates. Note that for a database of
elementary gates of size 32 and a circuit length of 7 there
are 327 ∼ 3.5 × 1010 different quantum circuits possible; the
search space grows exponentially and is already infeasibly
large (for exhaustive searches) for larger circuits. In Fig. 5
we present the comparison of four different baselines based
on a naive random sampling, a genetic algorithm (Sec. II A), a
particle filter (Sec. II B), and simulated annealing (Sec. II C),
along with our proposed Monte Carlo graph search. The x axis
records the circuit length required for a predefined quantum
circuit. The complexity of the optimization problem increas-
ing exponentially with circuit length. Note that the y axis is
scaled with the log function, so that a linear slope indicates an
exponential growth in complexity. The error bars depict the
standard deviation. For this experiment, the number of experi-
ments or observations was set to 10. In comparison to the four
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FIG. 5. Number of required samples for quantum circuit op-
timization for differing circuit lengths. Compared are random
sampling, a genetic algorithm, a particle filter, simulated annealing,
and the proposed MCGS model. The bars depict the standard devi-
ation. The diagram is illustrated with respect to a logarithmic y-axis
scale. One observes in this way that the MCGS already requires an
order of magnitude fewer samples than the four baselines. (Quantities
plotted are dimensionless.)

baselines, our proposed Monte Carlo graph search requires
far fewer samples to reach a solution. One explanation for this
is that unnecessary samples (e.g., leading to cycles, etc.) are
efficiently avoided.

In the next experiment we analyze the efficiency of the
generated quantum circuits in terms of the number of re-
quired gates. As the computation graph contains cycles, a
valid question is whether standard sampling-based approaches
for QAS can lead to solutions which require more gates than
necessary, resulting in inefficient circuits. The approaches
of Gibbs sampling, simulated annealing, and the proposed
MCGS model allow one to optimize quantum circuits where
the resulting code length is not fixed. Due to the diffu-
sion and crossover steps, it is not clear how one can do
this for the particle filter and the genetic algorithms, so
these approaches were omitted for this experiment. In Fig. 6
the mean and standard deviation of the random sampling,

FIG. 6. Optimal circuit length versus the circuit length of
different architecture search algorithms. (Quantities plotted are
dimensionless.)

TABLE I. Rule set for automatons 30, 90, 110, and 184.

Rule 111 110 101 100 011 010 001 000

30 (=00011110) 0 0 0 1 1 1 1 0
90 (=01011010) 0 1 0 1 1 0 1 0
110 (=01101110) 0 1 1 0 1 1 1 0
184 (=10111000) 1 0 1 1 1 0 0 0

simulated annealing, and MCGS for varying optimal-circuit-
length tasks is shown. The x axis is labeled by the optimal
circuit length, and the y axis is labeled by the required cir-
cuit lengths (including the standard deviation) of the different
optimizers. The optimal graph is a straight line, which was
achieved by our proposed MCGS. Thus, the MCGS always
finds the optimal length, whereas the sampling and annealing
schemes more often tend to find inefficient solutions. Thus,
the proposed MCGS jointly ensures efficient models during
optimization.

B. Quantum circuits for classical cellular automatons

A cellular automaton (CA) is a mapping on a set of states of
connected cells (e.g., arranged as a graph). Each cell has a cell
state (e.g., binary) which changes according to a predefined
set of rules given by the local neighbors of each cell. Simple
and nontrivial cellular automatons are furnished already for
one-dimensional graphs, with two possible states per cell.
The neighbors are defined as the direct adjacent cells on
either side of the cell. In this setting the rules for changing
the state of each cell can be defined as a mapping from a
three-dimensional binary state to a new binary state. Thus,
there are 23 = 8 patterns for a neighborhood. There are then
28 = 256 possible combinations for rules which describe 256
different cellular automatons. In general they are referred to
by their Wolfram code and are called R-X automatons, with
X being a number between 0 and 255. Several papers have
analyzed and compared these 256 cellular automatons. The
cellular automatons defined by rule 30, rule 90, rule 110,
and rule 184 are particularly interesting and are given by the
mappings

Rule 30 exhibits so-called class-3 behavior. This means
that even simple input patterns lead to chaotic, and seemingly
random, histories. When starting from a single live cell, rule
90 produces a space-time diagram resembling the Sierpin-
ski triangle. Rule 110, similar to the Game of Life, exhibits
what is called class-4 behavior, which means it is neither
completely random nor completely repetitive. Finally, rule
184 is notable for solving the majority problem as well as
for its ability to simultaneously describe several seemingly
quite different particle systems. For examples rule 184 can be
used as a simple model for traffic flow. Thus, several of these
transition rules exhibit interesting aspects for researchers in
mathematics and optimization, as well as biology and physics.
Due to the simple definition of these transition rules and their
consequent rich behavior, these CAs provide a diverse and
interesting class of targets for quantum circuits. The rule sets
for cellular automatons 30, 90, 110 and 184 are summarized
in Table I. In Fig. 7 we visualize the basic concept of the
application of the MCGS. Given an eight-dimensional one-hot

062615-6



MONTE CARLO GRAPH SEARCH FOR QUANTUM CIRCUIT … PHYSICAL REVIEW A 108, 062615 (2023)

FIG. 7. Concept for a classical cellular automaton as a target for
a quantum circuit. In this case the M30 automaton is targeted: The
binary eight-dimensional input vector encodes the three-dimensional
binary state using the one-hot encoding. A quantum circuit is
searched for that, when applied to |000〉, produces the corresponding
eight-dimensional vector according to the rule that if the probability
is larger than zero (or a small threshold), the bit is set to 1 and is
otherwise set to 0.

encoded input vector (encoding the three input binary ele-
ments), the quantum circuit is applied to the one-hot encoded
vector. The qubit |000〉 is finally used for readout. If the
probability is larger than zero (or above a small threshold),
the bit is set to 1; otherwise, it is set to 0. Figure 7 shows
the effect of all possible inputs (given as the reverse identity
matrix) and the resulting value of the first qubit. The resulting
row has to match the rule set of the cellular automatons, as in
Table I.

We used our method to optimize quantum circuits for all
possible eight-entry vectors corresponding to the 256 Wol-
fram Codes. The circuits for these optimized automatons are
accessible as CSV files [47]. The computational effort to
optimize the 256 CAs using the proposed methods are sum-
marized in Table II. In accordance with the earlier experiment
the proposed MCGS algorithm requires the fewest number of
samples. Here it is also advantageous that the graph can be
iteratively extended as the CA vectors are optimized.

C. Mixed discrete-continuous quantum architecture search

Our approach exploiting the Monte Carlo graph search can
also be easily extended to optimize circuits involving a combi-
nation of discrete and continuous variables, as outlined before.
In the following experiments we use quantum architectures to
solve simple machine learning tasks.

FIG. 8. Optimized quantum circuits for the wine, zoo, and
iris datasets. (Images have been generated using QUANTUM

COMPOSER [48].)

For the experiments, the classical wine, zoo, and iris
datasets were used. The datasets present multicriterial clas-
sification tasks, with three categories for the wine dataset,
seven categories for the zoo dataset, and three for the iris
dataset. The datasets are all available at the University of
California, Irvine, repository [49]. To model a classification
task using a quantum circuit, first, the data are encoded as a
higher-dimensional binary vector. Taking the iris dataset as
a toy example, it consists of four-dimensional data encoding
sepal length, sepal width, petal length, and petal width. After
separating training and test data, a kMeans clustering on each
dimension with k = 3 is used on the training data. Thus, ev-
ery data point can be encoded in a (4 × 3 = 12)-dimensional
binary vector which contains exactly four nonzero entries. For
the given cluster centers, the same can be done with the test
data. Thus, a binary encoding is used to represent the datasets.
Table III summarizes the datasets, the number of features (the
dimension of each sample), its binary dimensionality, and the
qubits used to represent the problem, as well as the amount
of training data, the amount of target classes, and the gained
accuracy with the optimized quantum model. Similar to Fig. 7,

TABLE II. The number of iterations and average circuit length for the optimization of all 256 CA Wolfram codes (lower values are better).
RS = random sampling, GA = genetic algorithm, PF = particle filter, SA = simulated annealing, and MCGS = Monte Carlo graph search.

Method RS GA PF SA MCGS

Iterations ↓ 3.342.348 3.409.430 1.274.757 1.852.016 380.670
Average circuit length ↓ 9.05 11 9.5 10.1 8.8
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TABLE III. QML datasets: Overview and performance.

Dataset Dim BDim Qubits No. of training data No. of classes Accuracy

Iris 4 12 4 100 3 95%
Wine 13 26 5 133 3 90%
Zoo 16 16 4 75 7 92%

part of the quantum register is used to encode the probability
of a classification label. The final decision is then based on the
highest probability.

Figure 8 shows example outcomes of the optimized
quantum codes for the wine and iris datasets. Note that the
results can vary considerably. This depends on the random
selection of training and test data and the random process of
the graph generation. Table III summarizes the three datasets
used and the overall performance. Note that the overall
quality is similar to the results obtained with decision trees or
shallow neural networks.

V. SUMMARY

In this paper we have proposed a quantum architecture
search algorithm based on Monte Carlo graph search and

measures of importance sampling. Each trajectory in this
graph leads to a quantum circuit which can be evaluated
according to whether it achieves a specific task. Our model
also allows for the optimization of mixed discrete and
continuous gates, and several experiments demonstrated the
applicability for different tasks, such as matrix factorization,
producing cellular automaton vectors, and simple machine
learning models. A comparison with classical approaches
such as greedy sampling, genetic algorithms, particle filter,
and simulated annealing was carried out and demonstrated
that the graph model performs more efficiently since cycles
and redundancies are explicitly avoided. The shortest path
from the start node to the target node provides efficient
algorithms in terms of circuit length. The complexity of all
investigated algorithms heavily increases with an increasing
number of qubits and an increasing number of operators which
can act on these qubits. We strongly believe that this makes

TABLE IV. List of (currently) implemented operators.

Name Function call Parameters Matrix (simple base form)

Id IdF(dim) dim
(

1 0
0 1

)

Pauli X XF(pos,dim) position, dim
(

0 1
1 0

)

Pauli Z ZF(pos,dim) position, dim
(

1 0
0 −1

)

Hadamard HF(pos,dim) position, dim 1√
2

(
1 1
1 −1

)

T TF(pos,dim) position, dim
(

1 0
0 exp ( −iπ

4 )

)

Controlled T (CT) CTF(pos,dim) position, dim
(

1 0
0 exp ( iπ

4 )

)

Rotation around X axis (RotX) RXF(pos, θ ,dim) position, angle, dim
(

cos(θ ) −i sin(θ )
−i sin(θ ) cos(θ )

)

Rotation around Y axis (RotY) RYF(pos, θ ,dim) position, angle, dim
(

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)

Rotation around Z axis (RotZ) RZZ(pos, θ ,dim) position, angle, dim
(

exp(−iθ/2) 0
0 exp(iθ/2)

)

Controlled NOT (CNOT) CNotF(cb,b,dim) control bit, controlled bit, dimension

⎛
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎠

Controlled U (CU) CUF(cb,U,dim) position, U matrix, dimension

⎛
⎝

1 0 0 0
0 1 0 0
0 0 U (1, 1) U (1, 2)
0 0 U (2, 1) U (2, 2)

⎞
⎠

SWAP XXF(a,b,dim) first and second bits to swap, dimension

⎛
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎠

Controlled Z CZ(cb,b,dim) control bit, controlled bit, dimension

⎛
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎠

Toffoli ToffF(c1,c2,cb,dim) two control bits, controlled bit, dimension see the literature
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highly efficient graph search algorithms unavoidable in the fu-
ture. Another future challenge is to overcome the computation
time required by the graph model as the number of nodes (and
with that the number of required comparisons) is increased.
One immediate and relevant next step is to generalize the
method described here to apply to mixed states and com-
pletely positive maps. Future investigations will also cover
the extension of the results presented here to the mixed-state
case.

Our source code for optimization is publicly available from
Leibniz Universität Hannover [47].
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APPENDIX

The currently implemented gates and their invocations are
given in Table IV.
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