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Distributing entanglement among multiple users is a fundamental problem in quantum networks, requiring
an efficient solution. In this work, a protocol is proposed for extracting maximally entangled (|GHZn〉) states
for any number of parties in a quantum network. It is based on the graph-state formalism and requires minimal
assumptions on the network state. The protocol only requires local measurements at the network nodes and
just a single-qubit memory per user. Existing protocols on bipartite entanglement routing are also improved for
specific nearest-neighbor network architectures. To this end, the concept of majorization is utilized to establish a
hierarchy among different paths in a network based on their efficacy. This approach utilizes the symmetry of the
underlying graph state to obtain better-performing algorithms.
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I. INTRODUCTION

Point-to-point secure quantum communication has been
achieved quite successfully with optical fibers [1] and in free
space, [2]. However, direct quantum communication is lim-
ited by errors and losses incurred during transmission [3]. To
overcome these inherent limitations and to establish connec-
tions over long distances, approaches based on entanglement
swapping are employed [4,5]. Over recent years, a set of
such protocols have been experimentally implemented with
increasing distances and success rates [6–8]. In fact, with
the help of a satellite, intercontinental quantum communica-
tion has already been performed between China and Austria
[9]. Apart from pushing the boundaries of what is possible
regarding maximum distance [10] and communication rates
[11], a natural step forward would be to consider multiparty
scenarios. Naturally, the community hopes to develop more
complicated networks involving multiple nodes leading to a
quantum internet [12]. A fundamental requirement for realiz-
ing a quantum internet is to develop algorithms for managing
the entanglement present in the network and, thus, to dis-
tribute entangled states among two or more specific nodes
(users) [13–16]. This easy-to-state algorithm designing prob-
lem is fundamental and challenging, and under the chosen
condition, it leads to a set of related problems of interest. As-
suming that the future quantum network architectures might
only allow for nearest-neighbor interactions, it might not be
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feasible to directly distribute quantum states between distant
users. Nevertheless, such short-range interactions could be
used to establish some multipartite state among the entire
user network from which the useful states would have to be
then extracted, using local operations within the nodes and
classical communication among the nodes. Nodes could also
be assumed to have limited capabilities in applying arbitrary
operations on qubits. In general, it is not easy to determine
if a state can be transformed to another with a restricted
operation or measurement set. For example, in Ref. [17], the
authors investigated whether a given multipartite state can be
transformed into a set of Bell states between specific net-
work nodes using operations restricted to single-qubit Clifford
operations, single-qubit Pauli measurements, and classical
communication. They showed that this specific problem is
NP-complete. This result highlights the difficulty of the prob-
lem at hand and the crucial need to devise better-performing
protocols, at least for some specific instances relevant to mul-
tipartite schemes. Motivated by the importance and hardness
of this problem, here we aim to revisit the task in a more
general scenario. Specifically, we wish to devise an efficient
scheme for transforming a given network state into a multi-
partite Greenberger-Horne-Zeilinger (GHZ) state among the
specific nodes of the network using operations restricted to
single-qubit Pauli measurements.

Before we proceed further, it would be apt to note that the
effectiveness of quantum networks in performing tasks that
are unachievable in the classical world (in classical networks)
is not restricted to secure quantum communication only. Many
protocols in the multiparty scenario have been proposed for
tasks like quantum secret sharing [18–21], quantum voting
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[22–24], and quantum conference key agreement [25–28],
utilizing shared GHZ states. The study of such quantum net-
work protocols is an active field with promising applications.
Quantum networks are also helpful in distributed quantum
computing [29,30], clock synchronization [31–34], and many
other applications. Most of these applications require the abil-
ity to distribute entanglement among two or more network
nodes located far away. Motivated by this, a few schemes
for generating entanglement among specific network nodes
have been proposed in the recent past [35–38], and some
of them have been implemented experimentally [39–42]. In-
terestingly, the optimal or maximally efficient protocol for
remote entanglement generation in a quantum network has yet
to be discovered. This motivated us to look at the possibility
of designing a more efficient algorithm for the entanglement
distribution among the nodes of a network.

A helpful tool used in the study of quantum networks is
the notion of graph states [43,44]. They have been employed
to realize several tasks in quantum information processing,
including quantum metrology [45], quantum error-correcting
codes [46], and one-way quantum computing [47]. Fur-
thermore, a strong interplay between the graph theory and
quantum entanglement is known, and the same has been in-
vestigated from various perspectives [44,48,49]. Graph states
can be generated in a network when the nodes, sharing max-
imally entangled pairs with nearby nodes, perform suitable
entanglement-generating operations locally. Alternatively, a
graph state could be prepared at one node and subsequently
the qubits may be distributed with the other nodes of the
network in a manner that each node receives a qubit. Graph
states have been studied extensively in the context of quantum
networks [50,51], with much of the research focused on gen-
erating them in a quantum network with varying assumptions
[14,52–54].

A general method for extracting maximally entangled
states with two or three parties in connected networks was
presented in Ref. [53]. They consider manipulating an already
generated graph state to accommodate future communication
requests. Compared to other methods, such as the algorithm
described in Ref. [55], which requires large amounts of
quantum memories, this approach was more advantageous
regarding the memory required for the repeater stations. In the
graph-state formalism, the maximally entangled states shared
by two (three) parties are represented by line graphs, with
two (three) vertices, up to some local operations. Hence, to
establish a maximally entangled state between two (three)
nodes, we could perform a sequential entanglement swap-
ping protocol on a path connecting all two (three) nodes.
The protocol proposed in Ref. [53] is quite similar to such
repeater-based protocols, albeit more efficient. However, this
simple approach will not work for four or more nodes since
the corresponding graphs are not line graphs [44]. Moreover,
two nodes, in general, can be connected by a number of
different paths; the protocol in Ref. [53] does not provide a
way to evaluate these different possibilities and pick the right
one.

In our work, we define a protocol for extracting maximally
entangled states for any number of parties. The protocol only
requires local measurements performed by the network users
with access to a single-qubit memory. To achieve this, we

extensively use graph-theoretic tools in the graph-state for-
malism of quantum networks. Our protocol can be viewed as
a generalization of the results in Ref. [53], where a criterion
was laid out for the extraction of four partite GHZ states.
We improve upon their results and provide a criterion that
works for n-partite GHZ states. Moreover, we improve upon
the results of the authors of Ref. [53] by providing a more effi-
cient routine for establishing connections between two distant
nodes of a network. We use the concept of majorization [56] to
establish a hierarchy among different paths in a network based
on their efficiency. This concept utilizes the symmetry of the
underlying graph state to obtain better-performing algorithms.

The rest of the paper is organized as follows. In Sec. II, we
briefly introduce graph states and the graph theory tools that
we use. Then, in Sec. III, we state and prove the theorem con-
cerning multipartite state generation and demonstrate several
examples. In Sec. IV, we consider a class of nearest neighbor
graphs and improve upon the existing entanglement routing
protocols for those specific cases. In Sec. V we conclude with
our remarks and possible future research questions.

II. PRELIMINARIES

An undirected finite graph G = (V, E ) is defined by a set
of vertices V � N and a set E ⊆ V × V of edges. A simple
graph is a graph without any loop (an edge that connects a
vertex with itself) and without multiple edges connecting the
same pair of vertices. The set of all vertices having a shared
edge with a given vertex a is called the neighborhood of a and
is denoted by Na.

Definition II.1. (Vertex Deletion): Deleting a vertex v re-
sults in a graph where the vertex v and all the edges connected
to it are removed

G − v = (V \v, {e ∈ E : e ∩ v = ∅}).

.
Definition II.2. (Local complementation): A local comple-

mentation LCv is a graph operation specified by a vertex v,
taking a graph G to LCv (G) by replacing the neighborhood of
v by its complement

LCv (G) = (V, E�KNv
),

where KNv
is the set of edges of the complete graph on the

vertex set Nv and E�KNv
= (E ∪ KNv

) − (E ∩ KNv
) is the

symmetric difference.
Local complementation acts on the neighborhood of a ver-

tex by removing edges if they are present and adding missing
edges, if any.

Definition II.3. (Vertex-minor): A graph H is called a
vertex-minor of G if a sequence of local complementations
and vertex-deletions maps G to H .

The simple graph G defined so far is a mathematical entity,
but in the quantum world, we can associate a pure quantum
state |G〉 with it, called a graph state. A graph state is defined
on a Hilbert space HV = (C2)⊗V . Specifically, each vertex
in V is assigned a qubit in the state |+〉 = (|0〉 + |1〉)/

√
2.

Subsequently, a controlled-Z operation is applied to a pair
of qubits sharing an edge to construct the graph state |G〉
associated with the graph G [44]. Thus, a graph state is defined
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as follows:

|G〉 :=
∏

(i, j)∈E

CZi, j |+〉⊗V .

Local Clifford operations on graph states defined above
can be represented using local complementations on the corre-
sponding graph [57]. Local Pauli measurements on the graph
states can be represented using local complementations and
vertex deletions [44]. We can visualize the role played by the
Pauli measurements as follows.

Proposition 1. (Z measurement): Measurement of a qubit,
corresponding to the vertex v, in the Z basis is represented by
the vertex deletion of v,

Zv (G) = G − v.

Proposition 2. (Y measurement): Measurement of a qubit,
corresponding to the vertex v, in the Y basis is represented by

Yv (G) = ZvLCv (G).

Proposition 3. (X measurement): Measurement of a qubit,
corresponding to the vertex v, in the X basis is represented by

Xv (G) = LCwZvLCvLCw(G),

where w ∈ Nv .
Note that the state represented by the graph obtained under

the application of Pauli measurement transformations defined
above and the actual state are only equivalent under some local
Clifford rotations (Sec. III [44]). We omit this distinction for
the rest of the paper.

Definition II.4. (Repeater Line): A path for which
E (V,V ) = {(v1, v2), . . . , (vn−1, vn)} for V = {v1, . . . , vn}
is called a repeater line.

Definition II.5. (Neighborhood): The set of all vertices
sharing an edge with vertex v, is called the neighborhood of
v. Neighborhood of a path is defined as the union of neighbor-
hoods of all vertices in the path.

III. GHZ STATES

We already stated a set of definitions and propositions
which allow us to initiate the discussion on the solution of
a problem stated as follows: Given a graph state, how can we
efficiently share entangled states between multiple parties that
are not connected via physical channels? To answer this ques-
tion, let us first look at the simplest example of connecting two
distant nodes through a shared Bell pair. The straightforward
solution would be to find the shortest path connecting the two
nodes with the smallest combined neighborhood, performing
Z measurements on the nodes that do not lie on the path and
sequential X measurement on all the intermediate nodes on
the path [see Figs. 1(a) to 1(c) for an illustrative example].
Here, the initial Z measurements would isolate a repeater
line between the initial vertices, and the X measurement on
a vertex has the simple action of connecting its neighbours
and deleting the vertex itself. It is easy to see then how this
protocol gives the desired result. Since a |GHZ3〉 state can
also be represented using a line graph, the same protocol as
above can also be applied there. First, we find a path con-
necting all three nodes between which the |GHZ3〉 state is
to be distributed, isolate it from the rest of the graph using

FIG. 1. Repeater protocol and X protocol [53] (a) 3 × 3 square
grid. The objective is to establish a Bell pair between the vertices 1,9.
(b), (c) Repeater protocol. First, we isolate a repeater line 1,4,5,8,9
with Z measurements on the neighborhood vertices 7,2,6. Then inter-
mediate vertices along the repeater line are measured in the X basis
sequentially, resulting in a Bell pair. (c),d) X protocol. Instead of
isolating the repeater lines, we directly X measure the vertices 4,5,8.
The next step would be the Z-measurement of all neighborhood
vertices of 1,9, but it is not necessary in this specific case. Thus, the
X protocol requires fewer measurements compared to the repeater
protocol and yields an additional four-node state, along with the
required Bell pair.

Z measurements and remove intermediate vertices using X
measurements. Since generating a repeater line is an essential
step of these protocols, we will call them as repeater protocol
from now onward.

An improvement over the repeater protocol described
above was provided in Ref. [53]. The authors provided a
more efficient method for establishing entangled states, where
the efficiency of a protocol refers to the total number of
measurements required to enact the protocol. The lesser the
number of measurements needed, the greater the connections
left in the graph, which could be used in subsequent rounds
for further generation of specific entangled states. This pro-
tocol leverages the properties of X measurements on graph
states and is aptly called the X protocol [see Figs. 1(a) and
1(d)]. For the Bell pair generation between two nodes, the
protocol proceeds as follows: find the shortest path between
two nodes with the minimum combined neighborhood path
with the minimum number of neighbours), perform X mea-
surements on all the intermediate vertices, and subsequent
Z measurement of all the neighboring vertices of the two
vertices. The X measurements connect the two nodes, as in the
repeater protocol. The difference here is that the two nodes ac-
quire additional neighbours during the X -measurement step,
which increases the number of Z measurements required in
the next step. The authors proved [53] that the total number
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of measurements required for the X protocol was neverthe-
less lesser than the repeater protocol. They also applied the
X protocol to generate |GHZ3〉 states among three specific
vertices.

Now let us consider the problem of establishing GHZ states
shared among more than three parties. As explained before,
the above-mentioned methods cannot be generalized easily
to the multiparty case. We now prove that one can extract
|GHZn〉 from a connected graph, given the graph satisfies a
vertex minor condition. The protocol will then be analyzed
using specific examples to showcase their benefits and to
compare with previously known results.

Theorem III.1. (Extraction of |GHZn〉 states): It is possible
to extract an n-partite GHZ state from a graph state |G〉 when
the underlying graph has a repeater line as vertex-minor, con-
necting all n nodes of the final GHZ state with an extra node
in between every pair of n − 2 intermediate nodes.

Given such a repeater line, the GHZ state can be ob-
tained by performing sequential local complementations on
all vertices except the two at both ends and subsequent Z
measurement of all the neighboring vertices not part of the
final state.

Proof. The proof is obtained by keeping track of the neigh-
borhood of the nodes throughout the measurement process.
For simplicity, let us assume the case where the required
repeater line is isolated from the rest of the graph through
some Z measurements. Let us denote vertices along the path
as vi, vertices at even positions as ei and at odd positions by
oi(except those at both ends). We have ei = v2i and oi = v2i+1.

Lemma III.2. After performing LC on every vertex up to vi

in an isolated repeater line, the neighborhood of vi+1 is given
by Nvi+1 = {v1, . . . , vi, vi+2}.

Proof. This can be easily proved through induction. After
LC on v2, Nv3 = {v1, v2, v4}. Assume lemma to be true for
n; after LC on vn, Nvn+1 = {v1, . . . , vn, vn+2}. At this point
Nvn+2 = {vn+1, vn+3}. LC on vn+1 gives us

Nvn+2 = Nvn+1 ∪ {vn+1, vn+3}\vn+2

= {v1, . . . , vn+1, vn+3}, (1)

proving the lemma. This implies that LC on vi connects vi+1

to every vertex before it in the repeater line. �
Take any two vertices ei, e j ; i < j. Since the choice of i, j

is arbitrary, it suffices to prove that they remain connected at
the end of the protocol. We can now look at how the edge
connection between these vertices develops throughout the
protocol. Note that, initially, ei and e j are not connected.
There exists at least one odd vertex in between them. The two
vertices are connected for the first time when one performs
LC on the odd vertex o j−1 (Lemma III.2). Next LC is to
be performed on e j ; which does not affect the connection.
However, this operation connects o j to ei. Thus, the next LC,
performed on o j removes the edge between ei and e j . Since
now e j+1 is connected to ei and e j and ei, e j are not connected
to each other, LC on e j+1 rebuilds the edge between ei and
e j . This pattern is followed by the rest of the protocol, where
LC on odd vertices removes the edge and LC on even ver-
tices adds the edge. Since the sequence of LC’s ends with an
even vertex, owing to the specific construction of the repeater
line, ei, e j remains connected at the end of LC operation. Z

measurements on odd vertices will not affect the connectivity
of even vertices. Since this applies for any i, j with i < j, all n
vertices are connected at the end of this protocol and we have
the desired GHZ state. �

Lemma III.3. (Generalized X protocol): Assuming the re-
peater line required by Theorem III.1 exists, performing X
measurement on the odd vertices and subsequent Z measure-
ment of all the neighboring vertices not part of the final state
yields the desired GHZ state.

Proof. We will show how this generalized X protocol is
equivalent to the protocol used to prove Theorem III.1. As
before, we assume that the repeater line is isolated from the
rest of the graph. Such a repeater line requires, by Theorem
III.1, at least 2n − 3 vertices for constructing the |GHZn〉
state. Let’s number the vertices sequentially and represent LC,
Z , X measurements on vertex vi as LCi, Zi, Xi, respectively.
The protocol presented above can be then represented by

Z3Z5 · · · Z2n−7Z2n−5LC2n−4LC2n−5 · · · LC3LC2.

Note that Zi commutes with LCj , since a measurement re-
moves the node and all the edges connected to it. Rearranging,
we get

LC2n−4(Z2n−5LC2n−5LC2n−6) · · · (Z5LC5LC4)(Z3LC3LC2).

The terms in the bracket look similar to X measurement per-
formed on node vi, in addition a term corresponding to the
final LC of the neighbor node vi−1,

Xi ≡ LCi−1ZiLCiLCi−1.

A key observation here is that, after the Zi measurement, out
of all the n vertices to be included in the final GHZ state, vi−1

is only connected to vi+1. Even if we consider the case where
the repeater line is not isolated, local complementation on vi−1

will only change the edge connectivity of its neighbors, which
will be deleted anyway. So it does not matter if we perform
the local complementation or not. The final LC, LC2n−4 can
also be ignored since it is just a local operation on the final
GHZ state itself. Hence we can rewrite the protocol to be

X2n−5X2n−7 · · · X5X3.

In Fig. 2, we show an example of isolating the de-
sired repeater line from an underlying 3 × 4 grid-graph to
subsequently distill a GHZ5 state composed of the nodes
1,4,6,12,10. Note that depending on the underlying graph
and the distribution of vertices, such a repeater line may or
may not exist. In this case, the repeater line composed of
the vertices 1,4,5,6,9,12,11,10 satisfies the conditions laid out
in Theorem III.1, specifically, the existence of an extra node
between the intermediate nodes 4,6, and 12. Note that the
node 11 is unnecessary for the protocol and can be removed
after isolating the repeater line. After we isolate the repeater
line, there are two equivalent ways to generate the final GHZ
state. In Fig. 3, sequential LC’s are applied to the repeater line
vertices. This connects every vertex that’s supposed to be part
of the final state to each other. Removing all the unnecessary
vertices in the final step yields the required state. In Fig. 4, the
X measurements are carried out on the vertices that are not
part of the final state. Both methods are equivalent and result
in the same final state.
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FIG. 2. Isolating the desired repeater line. (a) A 3 × 4 grid network. The highlighted path connects the vertices 1,4,6,12,10, which are to
be part of the final GHZ state. Z measurement on the vertices 3,2,8,7 isolates this path from the rest of the graph. (b) The isolated path. The
vertex 11 is not required for the protocol and we can remove it using an X measurement. (c) The repeater line as required by Theorem III.1. It
contains the five nodes of the final GHZ state and extra nodes between the intermediate nodes 12,6,4.

In the above theorems and examples, we have presented a
case where the repeater line is first isolated from the graph
state to apply the protocol. This is unnecessary, and one can
perform the protocol directly on the repeater line while em-
bedded within the graph state and subsequently isolate the
final state from the rest of the graph. To see this, consider the
case where the repeater line is not isolated and we perform
the above-stated protocol. Let vi be an arbitrary vertex along
the repeater line. Suppose at some point in the protocol we
apply the LC operation on vi. For any two neighbors u,w of
v, the change in their edge relation due to LCi is independent
of other vertices in the graph (II.2). Combined with the fact
that all LC operations in our protocol are applied along the
vertices of the repeater line, this implies that the changes
in edge relations among the vertices of the repeater line by
applying the protocol is not influenced by how the repeater
line is connected to the rest of the graph. This is quite similar
to the contrast between the repeater protocol and X protocol.
The authors [53] showed that operating on the repeater line
before isolating the final state requires fewer measurements
than if we go the other way around. We can prove a similar
result for our generalized version. The proof of the following
lemma is given in the Appendix.

Lemma III.4. The generalized X protocol performed be-
fore isolating the repeater line requires, at most, many
measurements as the one where the repeater line is isolated
first.

Proof. Proof of this theorem is given in the Appendix. �
As an example, Fig. 5 shows an example where the X

protocol is applied prior to the isolation of the repeater line.
Extracting Bell pairs and |GHZ3〉 states with local operations
is always possible in a connected graph [53]. Our theorem
reflects this possibility since the requirement of “an extra node
in between every pair of n − 2 intermediate nodes” is trivially
satisfied for n = 2, 3. In Ref. [53], a sufficient criterion for
extracting |GHZ4〉 states was also provided. This special case
(n = 4) of our generalized protocol is presented in Fig. 6. A
crucial part of the protocol is the generation of the repeater
line connecting the final four vertices 10,1,6,12, with an extra
node between the two intermediate vertices 1,6 [Fig. 6(c)].
Thus, it satisfies the conditions of Theorem III.1, and the
protocol proceeds by performing sequential LC and Z mea-
surements, the same as in our protocol.

We note here that there is an even more efficient way
of extracting the |GHZ4〉 state for this specific example. A
downside of using the protocol in Fig. 6 is that it removes the
possibility of extracting more entangled states from the same
graph. Here, we show how this protocol can be modified to
extract an extra Bell pair and the GHZ state from the same
graph state (Fig. 7). Instead of isolating the repeater line, we
perform a suitably chosen X measurement to modify the graph
state to enable simultaneous extraction of multiple states.
Essentially, it converts the original state, Fig. 7(a), to one of
its vertex-minors, Fig. 7(b), such that it enables us to distill
an extra Bell pair without disturbing the |GHZ4〉 extraction
protocol.

So far we have considered the case where each node has
just a single-qubit memory. We can extend the protocol to the
case where there is no such limitation. Consider nonadjacent
nodes {vi} for any i, with a suitable repeater line connecting
them, each containing mi qubit quantum memories. We now
show how our protocol can be used to share a |GHZM〉 state
where M = ∑

mi.
Assume that arbitrary operations are allowed within a

node. Using two-qubit gates and local rotations we can
construct a |GHZmi〉, or equivalently, a star graph with mi

vertices at vi. Let the central nodes of the star graphs be
denoted as ci. If there exists a repeater line connecting
ci, one can perform the X protocol to obtain the |GHZM〉
state.

Intuitively, we can see why this is the case the following
way. Remember that the X protocol applied on a line graph
(with a single-qubit memory per vertex) results in a star graph
(Fig. 4). Now for the case with multiple memories per node,
we can think of the star graph at every node as being gen-
erated from a separate X protocol. This is equivalent to a
case where some X measurements are already applied on a
line graph (with a single qubit per vertex) prior to applying
the X protocol on that graph. Note that the actual order of X
measurements does not matter if we are measuring nonadja-
cent qubits, each of which can be assigned a distnict neighbor
[44]. Each X measurement only updates the edge relations
among its local neighborhood and the local neighborhood of
one of its adjacent vertices. If we make sure that for every
nonadjacent vertex to be X measured we can choose a dis-
tinct neighbor, then the X measurements commute with each
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FIG. 3. Extracting GHZ5 state. (a) The isolated repeater line from Fig. 2. (b)–(f) Sequential LC on vertices 4,5,6,9,12.
(g), (h) Z measurement of vertices 5,9.

other. Figure 8 illustrates this concept. Finally, we compare
our results with the existing results on the size of the largest
GHZ state extractable from a graph state. If we denote the
number of vertices in the graph state as n, then for line graphs
a bound of n/2 was conjectured in Ref. [58]. In other words, in
Ref. [58], it was conjectured that to extract the |GHZn〉 state,
one would require a graph state with at least n vertices for
a line graph. The X protocol beats this bound narrowly with
a construction of the |GHZn〉 state with a graph state of size
(i.e., no of vertices) 
(n + 3)/2�. This is the optimal value for
line graphs [59].

For symmetric n × n grid graphs with n2 vertices a bound
of �n/22 was conjectured in [58]. We show in Fig. 9 that
X protocol can at least achieve a size of 
(n + 1)/4�(3
(n −

1)/2� + 4) − 2. The ratio of the sizes achieved by the X
protocol and the one in Ref. [58] is 3/2 as n tends to infinity.
We can see an advantage for n as low as 3. In Fig. 9, we can
see a best-case scenario where the ratio of the sizes is already
maximum for n = 7. It is an open question whether this is the
best possible result for grid graphs.

IV. GRID GRAPHS

Grid graphs belong to an important class of network
architecture known as nearest-neighbor networks. Such net-
works are relevant to practical quantum communication since
they connect nearest neighbors via physical links. Conse-
quently, the quantum information only has to travel a short
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FIG. 4. Extracting GHZ5 state. (a) The isolated repeater line from vertex 5. (b) X measurement on vertex 9. (c) X measurement on vertex
5. (d) The final state obtained by performing LC on vertex 12.

distance, thus minimizing transmission losses and errors.
Nearest neighbor networks like rings, lines, and grid graphs
have been studied under different scenarios, especially in
communication bottlenecks. In the simplest scenario, a bot-
tleneck arises in a network when two pairs of nodes intend
to share a Bell pair over a common edge. It was shown in
Ref. [60] that ring and line networks cannot overcome such
bottlenecks, whereas it has been shown to be possible in grid
graphs in the case of a “butterfly network” [53,61,62].

This section will show how symmetry in grid graphs can
be utilized in the entanglement routing problem. We will

explore the simplest routing task of establishing a Bell pair
between two distant nodes (with no direct physical link) in
a connected graph. A naive solution to this would be the
repeater protocol. We have already mentioned that a more
efficient approach was discussed in Ref. [53], which we re-
ferred to as the X protocol. The authors proved that for the
shortest with the minimum combined neighbourhood path,
the X protocol requires fewer measurements than the repeater
protocol.

However, there is still an ambiguity left on the choice of
the path to make, as the minimum-combined neighborhood

FIG. 5. (a) Network with graph corresponding to generalized Petersen graph P6,4. (b) X measurement on 1. (c) X measurement on 12. (d) Z
measurement on all the neighborhood vertices of the red nodes. (e) LC operation on 7.
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FIG. 6. Extracting |GHZ4〉 state; example given in Ref. [53]. (a) Identify a suitable path connecting the vertices 12,6,1,10 that are to be
part of the final state. (b) Isolate the path using Z measurements on vertices 5,8,11. (c) Appropriate measurements on vertices 9,3,4,7 to reach
this five vertex graph. (d)–(f) Sequential LC on 1,2,6. (g) Z measurement of 2 yields the desired |GHZ4〉 state.

path is not always unique. To illustrate this point, in Fig. 10,
we show all the different paths (with minimum length and
combined neighborhood) one can have given a graph and a
pair of nodes. The theorems in Ref. [53] just tell us that, given
any of these paths, the X protocol would perform better than
the repeater protocol; it does not provide any information on
the ideal path to choose. It is unclear whether all the paths
are equivalent or if one performs better. Thus, a set of open
questions remain, and in what follows, we will address these
questions.

In the following, we define a property to these paths, en-
abling us to define a “better” path qualitatively. We use the
concept of majorization, an ordering relation on real vectors.
Majorization has already seen extensive applications in quan-
tum information, including entanglement theory [63] and the
formulation of resource theories [64]. Here, we will use this

tool to judge the entanglement routing paths in a quantum
network qualitatively. We associate a vector to all the feasible
paths, referred to as the path vector. Given a set of such path
vectors, we can impose an ordering relation based on the
majorization relation. This would enable us to infer the best
path to choose for entanglement routing.

The first step towards defining the path vector is associat-
ing a sense of direction within the grid graph. This is done
easily by viewing the grid graph on a Cartesian plane and
locating every vertex on the coordinates (x, y); x, y ∈ N, with
adjacent vertices separated by unit distance on either of the
coordinates. Every edge in this setting will be parallel to the x
or the y axis. This implies that every path on a grid graph can
be represented using a sequence of edges along the x and y
directions. Since we are only concerned with the shortest path
between two nodes, without loss of generality, we can restrict
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FIG. 7. Extracting |GHZ4〉 state and a Bell pair. (a) The same underlying graph and vertices are to be connected, as in Fig. 6. (b) X
measurement on 2 converts the grid state to one of its vertex minors. (c) Z measurements on 7,8,5. (d) X measurement on 11. (e) X -measurement
on 9. (f) LC on 6.

ourselves to positive x and y. We now have the necessary
ingredients to define a path vector.

Suppose we have two vertices a and b, with the coor-
dinates (x, y) and (x′, y′). Define Dx = |x′ − x| and Dy =
|y′ − y|. D = Dx + Dy is the number of edges in the
shortest path connecting a, b. A path vector s given by
(sx1, sy1 , sx2 , sy2 , . . . , sxDx

, syDy
) defines a shortest path between

a and b iff sx1 + sx2 + · · · + sxDx
= Dx and sy1 + sy2 + · · · +

syDy
= Dy. Here, sxi is the number of consecutive edges the

path covers in the x direction, after which it changes direction
and covers syi number of edges in the y direction. Hence every
shortest path will have a unique vector. We will represent the
path with path vector s as S.

Definition IV.1. (Majorization): Given s, t ∈ Rd we say
that t is majorized by s (written as s � t) iff

k∑

i=1

s↓
i �

k∑

i=1

t↓
i for k = 1, . . . , d − 1 (2)

d∑

i=1

si =
d∑

i=1

ti, (3)

where s↓ ∈ Rd is the vector s with the same scalar compo-
nents, but sorted in descending order. For example, if s =
(2, 1, 3) then s↓ = (3, 2, 1). A similar definition holds for t↓.

Theorem IV.1. Given path vectors s, t and s � t, the X
protocol along T requires, at most, as many measurements as
the one along S.

Proof. Proof of this theorem is given in the Appendix. �
For example, in Fig. 10, we show three different paths

on a 4 × 4 grid graph to establish a Bell pair between the
vertices 1,16. The length and combined neighborhood of all
paths are the same. We show the end result of the X proto-
col and the corresponding path vector for each path. From
the figure, it is clear that, given any pair of paths, one with
the majorized path vector produces better results in the X
protocol.

V. DISCUSSIONS

This paper provides a protocol for extracting multipartite
entangled states from quantum networks using just local mea-
surements. This work extends the results found in Ref. [53]
in which the authors provided methods for extracting |GHZn〉
for n � 4. Here, we provided a general method that works
for any n. Our protocol is applicable on a shared network
state with a single qubit per location and is hence favor-
able in terms of the repeater memory required compared to
previous protocols [14]. It relies on constructing a repeater
line connecting the final vertices and local measurements on
the nodes in between. Another important contribution of this
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FIG. 8. X measurements on a repeater line need not be sequential. Every vertex to be measured can be assigned a unique neighbor. (a) A
repeater line with red nodes to be part of the final state. (b) X measurement on node 2 (with chosen neighbor 1). (c) X measurement on node 4
(with chosen neighbor 5). (d) X measurement on node 10 (with chosen neighbor 11). (e) X measurement on node 8 (with chosen neighbor 7).
(f) Final X measurement on node 6 (with chosen neighbor 3).

work is the key observation that the protocol does not man-
date the repeater line be removed from the underlying graph
state, which reduces the number of measurements required
for the overall protocol. Note that this protocol could still be
applied if we allow for multiple qubit memories per user. We
also analyzed nearest-neighbor networks and show how their
structure and symmetry can help us devise better protocols for
entanglement routing.

This work is expected to open a window for an inves-
tigation into a plethora of new problems. For example, it
would be worthwhile to explore whether the protocol could
be adapted to incorporate all-photonic quantum repeaters [5].
Such memory-less repeaters were introduced to establish en-
tanglement between two distant nodes, where the repeaters
would use cluster states to connect neighboring stations. Mea-
surements on such cluster states would eventually connect

the distant nodes and establish entanglement between them.
Since our protocol also requires just local X measurements
along a repeater line, it would be interesting to see how the
all-photonic repeaters could be modified to fit our protocol.
Proof-of-principle experiments based on this concept have
been demonstrated successfully in recent years [7,65], and
its resource efficiency with matter memories has been char-
acterized [66]. This makes us optimistic about the practical
realization of our work in a broad domain.

Recently, Ref. [67] proposed a protocol for anonymous
conference key agreement among any three participants of a
linear network. The users need only to share Bell pairs with
their neighbors and avoid the necessity of a central server
sharing multipartite states. The network users perform local
measurements to extract the |GHZ3〉 state among the partic-
ipants, which can subsequently be used for key agreement.
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FIG. 9. (a) Protocol in Ref. [58] for extracting |GHZ16〉. (b) X protocol for extracting |GHZ24〉. The construction can be generalized to any
n × n grid graph with odd n. It involves constructing a repeater line with interleaved star graphs with three vertices horizontally and joining
them in the last column with star graphs of size two. If we denote by x = 
(n − 1)/2� the number of three vertex star graphs possible in a
row and y = 
(n + 1)/4� as the number of such graphs in a column, then the size of the final GHZ state is given by 3xy + 2y + 2(y − 1) =
y(3x + 4) − 2.

Interestingly, the protocol introduced in this work can be used
to generate |GHZn〉 states from a linear network. Further, It
would be interesting to see if we can extend the concepts laid
out in Ref. [67] to propose a similar protocol for n parties.

A major limitation of this work is that it assumes a static
network topology, i.e., the protocol assumes a global knowl-
edge of the state of the network. Keeping in mind the finite
coherence time of quantum memories and communication de-
lay between adjacent nodes, an ideal routing protocol should
only make use of the local link knowledge of nodes i.e.,
nodes are only aware if they were able to share an entangled
pair between its immediate neighbors. In the bipartite routing
scenario, the authors of Ref. [38] calculated the entanglement
generation rate under the constraint of local link knowledge in
a network. They showed that, by taking advantage of multiple
routing paths in a network, the rate of entanglement genera-
tion can supersede the same achievable using a linear repeater
chain. Note that their results also rely on generating a linear
chain of nodes connecting the final nodes. Since our protocol
also relies on such a linear chain, a natural line of research
would be to consider the multipartite entanglement generation
rates using our protocol with just the local link knowledge. We
leave that as a direction of future research.

Note added. Results similar to those presented in this work
were also independently discovered recently [59].
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APPENDIX A: PROOF OF LEMMA III.4

1. Lemma III.4

The generalized X protocol performed before isolating the
repeater line requires, at most, as many measurements as the
one where the repeater line is isolated first.

Proof. Let us count the number of measurements required
for the protocol in both cases, the case where the repeater line
is isolated from the graph before the X measurements and one
where it is not isolated. Assume that we are trying to generate
a |GHZn〉 state. By Theorem III.1, an appropriate repeater line
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FIG. 10. Entanglement routing paths and their end-products. (a), (b) X protocol is performed along the path 1,5,9,13,14,15,16. The path
is equivalently represented by the vector (3,3,0,0,0,0). In addition to the desired Bell pair between 1,16, we also obtain a 2 × 2 grid state.
(c), (d) A different path that requires a lesser amount of measurements than the previous path. This is evident from the higher number of
connected vertices left in the graph. (e), (f) The optimal path to perform the X protocol. The path vector (1,1,1,1,1,1) corresponding to this
path is majorized by every other path. By Theorem IV.1, this path maximizes the amount of entanglement left in the graph.

should contain at least 2n − 3 vertices. In the following, we
denote by N (t )

vi
the neighborhood of node vi after the t th Pauli

measurement is performed on the initially given graph state.

a. With isolation

In this case one requires |N0
v1

∪ · · · ∪ N0
v2n−3

| − (2n − 3)
measurements for isolating the repeater line. The first term
includes the neighborhood vertices of all the vertices on the
repeater line. However, this also includes the 2n − 3 vertices
themselves. Since we are not measuring them at this stage,
the second term accounts for this. After isolating, we need
to perform the protocol on the repeater line. This involves
(n − 3) X measurements of all the extra nodes. Thus, in total,
we require |N0

v1
∪ · · · ∪ N0

v2n−3
| − n measurements.

b. Without isolation

Here, we first perform the X measurements of all the inter-
mediate nodes. This step takes n − 3 measurements, the same
as before. After this step, we need to isolate the n-party state
from the rest of the graph. This requires |Nn−3

v1
∪ Nn−3

v2
∪ · · · ∪

Nn−3
v2n−4

∪ Nn−3
v2n−3

| − n measurements. The term in this expression
accounts for the updated neighborhood vertices of the n ver-

tices that are part of the final state after the X measurements
on the repeater line. Since this also includes the n vertices
themselves, we subtract it. Thus, the protocol requires a total
of |Nn−3

v1
∪ Nn−3

v2
∪ · · · ∪ Nn−3

v2n−4
∪ Nn−3

v2n−3
| − 3 measurements.

Now, all we need to prove is that

∣∣Nn−3
v1

∪ Nn−3
v2

· · · Nn−3
v2n−4

∪ Nn−3
v2n−3

∣∣

�
∣∣N0

v1
∪ · · · ∪ N0

v2n−3

∣∣ − (n − 3). (A1)

A crucial observation here is that X measurements on the
repeater line do not change the combined neighborhood of the
repeater line, except for the number of deleted vertices. This
implies that

Nn−3
v1

∪ Nn−3
v2

· · · Nn−3
v2n−4

∪ Nn−3
v2n−3

⊂ N0
v1

∪ · · · ∪ N0
v2n−3

.

The subset relation is proper since the left-hand side (LHS)
does not contain the n − 3 vertices in the right-hand side
(RHS) that were X measured. This proves Eq. (3) and hence
the lemma. �
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APPENDIX B: PROOF OF THEOREM IV.1

1. Theorem IV.1

Given path vectors s, t and s � t, the X protocol along T
requires, at most, as many measurements as the one along S.

Proof. Given two path vectors, one being majorized by the
other implies that the path contains fewer consecutive edges
along a particular direction. The majorized path thus involves
more changes in direction. A direct consequence is that a
higher number of alternating vertices along the path share
a common neighbor. We show how the expressions for the
total number of measurements derived in the supplementary
information found in Ref. [53] relate to the neighborhood
intersections of vertices along the path.

Briefly recalling, in the X protocol, we first measure all the
intermediate nodes along the path in X basis and subsequently
Z measure all the neighbors of the connected pair. If the
path contains l nodes, we require (l − 2) number of X mea-
surements and some number of Z measurements (depending
on the number of neighbors of the connected pair). In the
Supplementary Material of Ref. [53], the authors derived an
expression for the total number of Z measurements Eqs. (16)
and (17) of the Supplementary Material [53], given by

N (l−2)
v1

= (
N (0)

vl−1
∪ N (l−4)

v1

)\(N (0)
vl−1

∩ N (l−4)
v1

)
,

N (l−2)
vl

= {v1} ∪ (
N (0)

vl
∪ N (l−3)

v1

)∖(
N (0)

vl
∩ N (l−3)

v1

)
. (B1)

Since they only considered the shortest path while proving
this result, the path length is fixed, and the number of inter-
mediate measurements required is the same for the different
paths. Thus, we need to focus only on the number of measure-
ments required to isolate the endpoints v1 and vl . Let us first
consider the neighborhood of the first vertex v1 after all the X
measurements

N (l−2)
v1

= (
N (0)

vl−1
∪ N (l−4)

v1

)∖(
N (0)

vl−1
∩ N (l−4)

v1

)
.

It is clear that greater the intersection between the terms N (0)
vl−1

and N (l−4)
v1

, the lesser the cardinality of N (l−2)
v1

.
Expanding N (l−4)

v1
using Eq. (2), we obtain

N (l−2)
v1

= N (0)
vl−1

∪ [(
N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (l−6)

v1

)]∖

N (0)
vl−1

∩ [(
N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (l−6)

v1

)]
. (B2)

Consider the second half of the above expression

N (0)
vl−1

∩ [(
N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (l−6)

v1

)]
.

Using the recursive formula Eq. (2), one sees that N (l−6)
v1

, when
expanded, contains terms of the form N (0)

vl−5
, N (0)

vl−7
, . . .. Since

we are restricting ourselves to the shortest paths in a grid
graph, none of those terms will have nonempty intersections
with N (0)

vl−1
. Thus, the above expression reduces to

N (0)
vl−1

∩ N (0)
vl−3

. (B3)

Now, for the first half of Eq. (3)

N (0)
vl−1

∪ [(
N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (l−6)

v1

)]
.

Since N (0)
vl−1

has no intersection with the term (N (0)
vl−3

∩ N (l−6)
v1

),
we can rewrite the above expression as

(
N (0)

vl−1
∪ N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (l−6)

v1

)
.

Since N (0)
vl−3

only intersects with N (0)
vl−5

out of all the terms in the
expansion of N (l−6)

v1
, this becomes

(
N (0)

vl−1
∪ N (0)

vl−3
∪ N (l−6)

v1

)∖(
N (0)

vl−3
∩ N (0)

vl−5

)
.

One can keep applying the same type of argument to terms of
the form N (l �=0)

v1 , and together with Eq. (3), we get

N (l−2)
v1

= (
N (0)

vl−1
∪ N (0)

vl−3
∪ N (0)

vl−5
∪ · · · )∖

(
N (0)

vl−1
∩ N (0)

vl−3

)∖(
N (0)

vl−3
∩ N (0)

vl−5

) · · · . (B4)

Similiarly for N (l−2)
vl

,

N (l−2)
vl

= (
N (0)

vl
∪ N (0)

vl−2
∪ N (0)

vl−4
∪ · · · )∖

(
N (0)

vl
∩ N (0)

vl−2

)∖(
N (0)

vl−2
∩ N (0)

vl−4

) · · · . (B5)

Thus the total Z measurements required becomes
∣∣N (l−2)

v1
∪ N (l−2)

vl

∣∣ = ∣∣N (0)
vl

∪ N (0)
vl−1

∪ N (0)
vl−2

∪ · · · ∪ N (0)
v1

∣∣

− ∣∣(N (0)
vl

∩ N (0)
vl−2

) ∪ (
N (0)

vl−1
∩ N (0)

vl−3

)

× ∪ · · · ∪ (
N (0)

v1
∩ N (0)

v3

)∣∣. (B6)

The first term in the above expression is the combined
neighorhood of the path and the second term is the sum of
intersections between alternate vertices. For the shortest path
in a grid graph, the expression is minimized when the num-
ber of neighborhood intersections of vertices on the path is
maximized. �
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