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Synchronizing clocks via satellites using entangled photons: Effect of relative velocity on precision
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A satellite-based scheme to perform clock synchronization between ground stations spread across the globe
using quantum resources was proposed in [Phys. Rev. A 107, 022615 (2023).] based on a quantum clock
synchronization (QCS) protocol. Such a scheme could achieve synchronization up to the picosecond level
over distances of thousands of kilometers. Nonetheless, the implementation of this QCS protocol has yet to
be demonstrated experimentally in situations where the satellite velocities cannot be neglected, as is the case
in many realistic scenarios. In this work, we develop analytical and numerical tools to study the effect of the
relative velocity between the satellite and ground stations on the success of the QCS protocol. We conclude that
the protocol can still run successfully if the data-acquisition window is chosen appropriately. As a demonstration,
we simulate the synchronization outcomes for cities across the continental United States using a single satellite in
a low earth orbit, low-cost entanglement sources, portable atomic clocks, and avalanche detectors. We conclude
that, after including the effect of relative motion, subnanosecond- to picosecond-level precision can still be
achieved over distance scales of ≈4000 km. Such high-precision synchronization is currently not achievable over
long distances (�100 km) with standard classical techniques including the GPS. The simulation tools developed
in this work are in principle applicable to other means of synchronizing clocks using entangled photons, which
are expected to form the basis of future quantum networks like the quantum internet, distributed quantum sensing,
and the quantum GPS.
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I. INTRODUCTION

A satellite-based quantum clock synchronization (QCS)
scheme for time distribution among a network of ground
based clocks was introduced in Ref. [1]. We concluded that
such a QCS scheme could achieve subnanosecond precision
at the global scale utilizing modest optical sources, modestly
stable clocks, and a small constellation of low earth orbit
(LEO) satellites. In this scheme, establishment of elemen-
tary links between satellite and individual ground stations is
achieved via the exchange of entangled photons and, subse-
quently, the satellites act as intermediaries for synchronizing
different ground stations. This scheme is based on the QCS
protocol introduced in Ref. [2], which has been experimen-
tally demonstrated to achieve picosecond sync level precision
between stationary clocks on Earth with as few as 20 detected
entangled photon pairs [3] (for a more recent demonstration
also see Ref. [4]).

Given the large number of variables involved when moving
satellites are considered, our previous analysis in Ref. [1] was
performed under some simplifying assumptions. The main
one was to use the rate of exchange of entangled photons
between satellites and ground stations as a proxy for the
precision at which they can synchronize—rather than a de-
tailed calculation of the correlation functions involved in the
protocol, which ultimately determine the sync precision. This

*hstav1@lsu.edu

assumption was backed by numerical simulations and allowed
us to focus attention on kinematic aspects involving losses,
beam spreading, sync area coverage, etc. In this work, we
go a step beyond and quantitatively analyze the effects of
the relative instantaneous velocities on the performance of
the protocol, quantifying the way relative motion limits the
sync precision and determining the optimal data-acquisition
time. The main assumption was that if the rate of exchange
of entangled photons in the elementary link is greater than
a cutoff, the QCS protocol succeeds at a certain precision.
This assumption, although backed by static simulations, fails
to hold in the dynamic picture, where the precision of the QCS
protocol is effected by the relative motion between the satellite
and the ground station (gs). The present work determines the
degree at which the QCS protocol, which has successfully
tested to synchronize stationary clocks, can be generalized to
moving clocks and hence to space-based applications, which
have shown great promise in extending the scale and effi-
ciency of quantum networks [5,6].

The main goal of this paper is thus to assess the feasibility
of a QCS network by determining the achievable precision,
network scale, and connectivity, primarily in terms of the
performance of the elementary links.

Our analysis has applicability beyond the concrete QCS
protocol analyzed in this article, in particular to the protocols
based on distributing entanglement from moving satellites
[5,6], an application that we explore in a separate presentation.

Before describing our methods and results, it is important
to briefly motivate (a) the need for a QCS network and (b) the
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advantages of using entangled photons and a constellation of
satellites to establish such a network of synchronized clocks.

The ability to measure, hold and distribute time at high
precision determines the limits of our scientific explorations.
From a technological point of view, precise time measurement
and synchronization is an indispensable feature of commu-
nication and networking protocols, navigation and ranging,
astronomical, geological and meteorological measurements,
among others [5,7–10]. It must be further stressed that most
realizations of quantum protocols such as teleportation and
quantum key distribution have an inherent requirement for
continuous, high-accuracy clock synchronization at the sub-
nanosecond level [11,12]. Tremendous advances have been
made in classical techniques for clock synchronization [13],
for example, using radiofrequency pulses [14] and optical
frequency combs [15]. Although these techniques can provide
synchronization in the picosecond to femtosecond range, con-
siderable challenges exist in their long distance (>100 km)
implementations, such as large computational overhead and
transfer of technology to satellite payloads [13,15]. It is thus
important to look at QCS networks from the perspective
of complementing these state-of-the-art synchronization and
time distribution protocols for long-distance applications. At
the same time, we also point out new application spaces for
QCS networks, given the inherent advantages of quantum
communication over classical communication [16–29].

Quantum state transfer protocols such as teleportation and
key distribution have been carried out over continental dis-
tances of more than 1000 km [16,30–32]. To contrast with
the limits of fiber-optic-based quantum communication, we
note that the quantum repeater-less fiber-optic-based secret
key rate bound is surpassed beyond 215 km for a satellite at
an altitude of 530 km [5,16]. A key role in developing feasible
long-distance quantum communication implementations has
thus been played by the transition to hybrid space-terrestrial
quantum communication network architectures [32–34]. This
combines satellites and ground stations equipped with opti-
cal telescopes with metropolitan-scale fiber-optic networks.
This is because large-scale realizations of fully terres-
trial quantum networks are hindered by the exponential
losses associated with ground-based communication channels
(primarily fiber-optic cables) [6]. Large numbers of high-
fidelity quantum repeaters and/or quantum memories could
improve the situation to some extent, but their current perfor-
mance levels are below those needed for mature applications
[5], and furthermore, it would very likely be impractical
to place such devices in difficult terrain, e.g., mountains
or oceans.

Finally, we justify the use of incoherent optical commu-
nication (single-photon detection) via entangled photons for
distributing time, when the same can be achieved classi-
cally. Subnanosecond synchronization is currently not easily
achievable over long distances because GPS only allows syn-
chronization with a precision of >40 nanoseconds (95% of
the time). Furthermore, for very long optical links with high
loss, e.g., those between LEO satellites and ground stations,
high-precision synchronization will have to be achieved with
a relatively small number of received photons. In this re-
gard, it is important to point out that optical communication
techniques that use single-photon detection (noncoherent or

quantum measurement) have a provable advantage in terms of
power efficiency (bits per photon) over the coherent optical
communication techniques which are generally used in high-
precision, classical-optics-based clock synchronization, e.g.,
classical O-TWTFT [35]. As mentioned earlier, picosecond-
level QCS was demonstrated in a ground based setting to work
with as few as 20 detected entangled photons. This makes
it an ideal candidate for high-loss satellite-based quantum
communication channels.

The structure of the paper is as follows: In Sec. II, we
describe the QCS protocol and find analytical results for the
achievable precision and network scale. We consider the ef-
fects of relative motion between clocks (range-rate change),
channel loss, and background noise. In Sec. IV, we provide
details about the simulation techniques used, and in Secs. V
and VI, we present the results of these simulations, developing
tools to assess and describe the QCS network outcomes. More
specifically, in Sec. VI we show that, for a QCS network of
four cities—New York, Atlanta, Los Angeles, and Seattle—
subnanosecond- to picosecond-level clock sync precision can
be achieved by using modest resources. We present our con-
clusions and directions for future work in Sec. VII.

II. DESCRIPTION OF THE PROTOCOL

We briefly describe a QCS protocol to remotely synchro-
nize a network of clocks located on the Earth using satellites
in Earth orbits as intermediaries. The main resource used in
the protocol is time-correlated photons generated out of a
spontaneous parametric down conversion (SPDC) source. As
an added advantage, the entanglement or quantum correla-
tions in the polarization degree of freedom can be utilized
to enhance the security of the protocol. For more details on
the security analysis and experimental implementation, we
point the reader to foundational work on this protocol [2,3]. To
begin the discussion, we describe a simpler scenario which is
entirely ground based and involves stationary clocks, to famil-
iarize ourselves with the cogs and wheels of the protocol. This
would make the subsequent discussion of the satellite-based
version involving moving clocks cogent.

A. Ground-based protocol

Consider two clocks at A and B with Alice and Bob, which
are assumed to have the same frequency within the precision
of the synchronization task and are stable enough to maintain
this frequency during the time in which the sync protocol is
executed—we discuss below how to relax this assumption.
Now, consider that they have a constant offset of �. The task
of the protocol is to find the value of �. Say B is ahead of
A. Consider that both Alice and Bob have an SPDC source
to generate entangled photon pairs. Alice generates a pair at a
random time ta; one photon from the pair is locally detected
and timestamped by Alice; the other photon travels to Bob and
is detected and timestamped at time tb, using a single-photon
detector. If tab is the travel time for the photon between A and
B then,

t ′
b = ta + tab + �. (1)
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Similarly, for a photon pair generated at Bob’s end and de-
tected at A:

ta = t ′
b + tba − �. (2)

Consider the distributions A(t ) and B(t ) which count the pho-
ton detection events at A and B, respectively,

A(t ) = �iδ
(
t − t i

a

)
. (3)

Similarly, for photons detected by Bob

B
(
t ′) = � jδ

(
t ′ − t ′ j

b

)
. (4)

Finally, consider the time-stamp cross-correlation function for
these detection events, CAB(τ ), defined as

CAB(τ ) =
∫ tAcq

0
A(t )B(t + τ )dt . (5)

Here, the acquisition time tAcq is the total time for which
the protocol runs, i.e., photon detection timestamps collected
over a time window tAcq are used to find the cross-correlation
functions. We later show that the choice of tAcq plays an
important role in the success of the QCS protocol. Using
Equations (1)–(4), it is easy to see that CAB(τ ) has a peak at

τ ab
max = tab + �. (6)

A similarly defined correlation function

CBA(τ ) =
∫ tAcq

0
B(t ′)A(t ′ + τ )dt ′ (7)

has a peak at

τ ba
max = tba − �. (8)

If we assume reciprocity of the time of travel [2,36], i.e., tab =
tba, adding and subtracting Eqs. (6) and (8) we get the time of
travel and the offset as

� = τ ab
max − τ ba

max

2
, (9)

tab = tba = τ ab
max + τ ba

max

2
. (10)

So, looking at the peaks of these two-way correlation func-
tions, both the time of travel (9) and the offset (10) can
be evaluated (see Fig. 1 for an example). It is noteworthy
that, although an entanglement source is used to produce the
photons that are then timestamped for the QCS protocol, the
polarization degree of freedom which has the quantum corre-
lations is never invoked. The protocol only relies on the tight
time-correlations between such photons. Therefore, the quan-
tumness of the protocol comes from the use of single-photon
sources and detectors and the randomness of the time of birth
of the SPDC photon pairs. The entanglement between photons
is not explicitly used, although it can play an important role in
adding an extra layer of security to the protocol.

Some effects which can deteriorate the success rate and
precision of this protocol include channel loss, dark counts,
and background noise. Furthermore, since here we limit our-
selves to determining a fixed offset between the two clocks,
any relative frequency differences and/or drifts lead to spread-
ing of the cross-correlation function peaks. This effect is very
similar to relative motion between the clocks changing the

FIG. 1. Here, we show the timestamp cross-correlation functions
obtained via a Monte Carlo simulation of the QCS protocol. The
effects of channel loss, noise, and dark counts have been included.
The average noise level shown is a rough guide to eye to show the
height the genuine peaks must surpass in order for the protocol to
be successful (signal-to-noise ratio). The background noise + dark
count combined rate is assumed to be 107 photons/s, the source
rate is also 107 ebits/s. The channel loss is 20 dB (representative
of an uplink between a ground station and a polar satellite when the
satellite is overhead the ground station). We have chosen tAcq = 1 ms
in this plot. The offset between the clocks has been chosen to be
6 μs; this number can be correctly obtained from the figure as the gap
between the two peaks. The least count of the timestamps is 0.5 ns.
Since we have two unique peaks in this case, the offset can thus be
determined at this precision (0.5 ns).

time of travel between the two. This is the main challenge we
seek to address in this work and we begin a detailed discussion
in the next section. For effects of frequency differences and
drifts see also Refs. [3,4,37].

Finally, we make a short comment about classical com-
munication and computational times. Both these tasks can be
performed after the quantum part of the protocol is complete.
Say the satellite and ground station clocks share the required
number of ebits for the success of QCS. The sharing of the
timestamps by the two parties can be done later using classical
signals, as long as there is visibility. As will be shown in
Sec. IV, the required quantum data-acquisitions times are of
the order of a few milliseconds, or even less, and the visibility
periods for an LEO satellite over a given point on Earth
is roughly a few 100 seconds, providing more than ample
time for classical communication. In fact, multiple attempts
for quantum clock synchronization can be made within this
visibility period, even after accounting for classical commu-
nication times. Furthermore, the computation of correlation
functions can be performed (if needed using multiple cores in
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parallel and at the ground station) when the two parties are no
longer visible to each other.

B. Challenges for a satellite based version of the protocol: How
to synchronize clocks in relative motion?

Consider now that Alice and Bob are separated in a way
that makes it inefficient to exchange photons directly between
the two parties. A quantum network between different cities
is an example of such a scenario. The distances are large
enough (≈1000 km) to make direct communication through
standard optical fiber channels (even with repeaters) less ef-
ficient and resource consuming than communication through
a network of intermediary satellites in low Earth orbits. The
satellites are to be used as intermediaries in the sense that
ground station A can be synced to a satellite and then the
same satellite could be synced to the ground station B. If
all three clocks involved are relatively stable within the time
this protocol is executed then the clocks at A and B can be
successfully synced in this way. Consider now the elementary
link or task of this protocol, which is to sync a ground station
to a satellite. The roles of Alice and Bob are thus taken up
by the ground station and satellite, respectively. The main
difference between the task in the ground-based case and this
satellite-based case is the relative motion between the clocks
that need to be synchronized. Satellite velocities in LEOs can
be of the order of a few kilometers per second with respect
to the ground stations. Throughout this work we will assume
circular orbits for satellites (and ground stations). Therefore,
the link distance, which is now a function of time, changes by
�dab in time t , given by

�dab(t ) = vrad
rel t, (11)

where vrad
rel is the relative radial velocity of the satellite with

respect to the ground station and is given in terms of the
position vectors rsat, rgs (with respect to the center of the
Earth), and angular velocities ωsat, ωgs of the satellite and
ground station, respectively:

vrad
rel = (rsat × ωsat − rgs × ωgs).

(rsat − rgs)

|(rsat − rgs)| . (12)

Thus, the time of travel for a photon moving between A and
B also becomes a function of time given by

tab(t ) = dab(t )

c
, (13)

where c is the speed of light in vacuum (we are ignoring the
small variation in the speed of light when it enters the atmo-
sphere, since the thickness of the atmosphere is ≈10 km �
dab). Assuming a small enough acquisition time tAcq such that
the relative radial velocity does not change appreciably within
the precision levels of the protocol and also any relativistic
effects can be ignored, during the interval tAcq the time of

travel changes by �tab given by1

�tab = �dab(tAcq)

c
, (14)

When looked at in conjugation with Eqs. (6) and (8), this
tells us that the correlation function no longer has a single
sharp peak. New peaks keep on appearing adjacent to the
first peak as the time of travel changes with time, forming a
broad band. The correlation function has, therefore, multiple
adjacent peaks given by the modified form of Eq. (6):

τab(t ) = tab(t ) + �. (15)

Now, the pertinent question is how can a unique and accurate
value of the time offset � be evaluated, up to a certain preci-
sion, given these new features of the correlation function CAB?

In the rest of the paper we take a two-pronged approach.
First of all, we define and analytically calculate the signal-to-
noise ratio (SNR) of the timestamp correlation functions and
define from it the achievable precision. Second, we perform
Monte Carlo simulations of the QCS protocol, and, finally, we
combine the intuition gained by the Monte Carlo simulations
and analytical results to perform numerical simulations for a
full QCS network to calculate figures of merit, taking into
account the motion of multiple satellites and ground stations
and the dynamics of lossy channels between them.

III. BEHAVIOR OF THE CORRELATION FUNCTIONS

The success and precision of the protocol depends on the
sharpness of the correlation function peak. This sharpness can
be quantified through the signal-to-noise ratio (SNR), defined
as the quotient of the height of the peak above the average
noise level (spurious peaks) and the standard deviation of the
noise (see Appendix B). For simplicity of notation, we now
drop the indices A and B, since the analysis applies equally to
both correlation functions.

The height of the peak in C if the two parties were station-
ary is given by

C(τmax) = R η tAcq, (16)

where R is the source rate, at which the entangled photons are
produced, and η is the probability of detection at the receiver’s
end. η includes the efficiency of the detectors as well as the
effects of losses in the propagation. Hence, η depends on
the distance between the two parties. For more details on the
loss model, we refer the reader to Appendix A and Ref. [6].
Succinctly stated here, the transmissivity η has three factors:

i. Free-space transmittance: This includes effects of
beam broadening and finite apertures of the transmit-
ting and receiving telescopes.

ii. Atmospheric transmittance: we assume the atmosphere
to be a homogeneous absorptive medium following the
Beer-Lambert law (transmittance falls exponentially

1For the GPS, the combined special and general relativistic effects
are ≈0.5 ns/s [38]. We see in Sec. V that the optimal acquisition time
is in the submillisecond range, which means relativistic effects only
become important when the precision required is in the subpicosec-
ond range.
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with increasing distance that is traveled through the
medium).

iii. Detector inefficiencies: κsat and κgrd are efficiencies of
the detectors at the satellite and ground station, respec-
tively.

Thus, the total efficiency of the channel (uplink or down-
link) is given by η = ηatmηfsκsatκgrd. Finally, it is important
to note that, when relative motion is not considered, Eq. (16)
shows that the height C(τmax) keeps on increasing with the
acquisition time tAcq.

On the other hand, this is no longer true in the case with
relative motion (see Fig. 2). The height of a peak only rises
until the time of travel tab changes by unit precision. Let tbin be
the maximum achievable precision (least count or bin size for
timestamps in the simulation). In that case, the peak in C(τmax)
due to correlated photons rises only until the acquisition time
reaches the value topt

Acq given by the following condition:

�tab
(
topt
Acq

) = tbin. (17)

After topt
Acq, a new peak starts rising, adjacent to the first peak.

(The reason for referring to this as the optimal acquisition time
will become obvious later in this section.) Using Eqs. (11) and
(14) in (17), we can obtain the value of topt

Acq in terms of other
parameters:

topt
Acq = K tbin, (18)

where the geometrical factor K is given by K = c/vrad
rel ; K

depends, via vrel, on the distance between A and B; this will
be important shortly.

Therefore, topt
Acq quantifies the acquisition time at which

the position of the peak in the correlation function shifts by
one unit precision tbin, from τmax to τmax + tbin. In turn, this
determines the maximum height of any peak generated by true
correlations, which is given by

C(τmax) = R ηK tbin. (19)

Clearly, the SNR will have different behaviors for the two
regimes defined by tAcq < topt

Acq and tAcq > topt
Acq. We derive the

SNR for these two regimes in the Appendix B. Assuming
that photons from background noise appear at a rate Rbkg, we
obtain the following expressions for the SNR:

i. For tAcq < topt
Acq,

SNR ≈
√

η

tbin(1 + Rbkg/Rη)

√
tAcq. (20)

Therefore, for tAcq < topt
Acq the SNR increases with the

acquisition time as
√

tAcq. This is due to the fact that,
for tAcq < topt

Acq, the height of the peak grows faster than
the noise.

ii. For tAcq > topt
Acq,

SNR ≈ K
√

ηtbin√
(1 + Rbkg/Rη)

1√
tAcq

. (21)

Therefore, for tAcq > topt
Acq, the SNR decreases with in-

creasing tAcq. Again, this is expected because in this
regime the height of the peak no longer increases, while
noise keeps accumulating.

FIG. 2. Here, we show the timestamp cross-correlation functions
obtained via a Monte Carlo simulation of the QCS protocol between
two clocks in relative motion (one on a satellite and one on ground
station). As the acquisition time increases from 0.1 ms in the topmost
plot to 1 ms in the center, and finally 10 ms on the bottom plot,
multiple peaks start appearing due changes in the time of travel, i.e.,
the peak broadens. The gap between peaks and average noise level
(indicated by the red dotted line as a guide to the eye) reduces with
increasing tAcq, reducing the SNR of the true peaks. The background
noise rate is 106 photons/s and source rate is 107 ebits/s. The channel
loss is around 20 dB (uplink loss between a ground station and a polar
satellite at 500 km altitude varies slightly because the satellite and
ground station both move during the acquisition time). Least count is
0.5 ns.
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This analysis clearly indicates that the SNR is maximum
for tAcq = topt

Acq. Its maximum value is

SNRmax ≈
√

ηK
(1 + Rbkg/Rη)

. (22)

On the other hand, in order to get a clearly defined peak
recognizable out of the noise, the SNR must be greater than
a threshold SNRth. The higher our choice for this threshold
is, the lower is the probability of misidentifying a peak. For a
choice of SNRth, the condition for a peak to be identifiable is

SNRmax � SNRth, or, equivalently,√
ηK

(1 + Rbkg/Rη)
� SNRth. (23)

For a given level of background noise, Rbkg, the above con-
dition provides a constraint on the relative position of the
ground station with respect to the satellite, setting a scale
for the service area of the satellite (region on Earth where it
can provide synchronization). At the same time, it also puts
bounds on the levels of tolerable noise for the sync to be
successful for a given configuration of the satellite and ground
station positions. Note that this condition does not interfere
with sync precision of the protocol, since it is independent
of tbin. Furthermore, for simplicity, we have ignored here the
effect of detector jitter (which leads to loss of timestamp preci-
sion) on the sync precision. We refer the reader to Appendix D
for an analysis of these effects.

Apart from the SNR condition just discussed, for a peak in
the correlation function to be visible, we must impose an extra
requirement on the absolute of the peak’s height. This condi-
tion comes from the simple fact that one must collect at least
a few photons with the correct correlations within the acqui-
sition time; i.e., the peak must have a minimum height. Since
the ebit generation through an SPDC source and the losses
are both random processes, by setting a minimum threshold
for the mean number of ebits detected, we can ensure that at
least a few ebits get shared between the ground station and
satellite with high probability within the acquisition window.
Let Nmin be that photon number threshold; if R is the source
rate and η the probability of detection, we obtain the following
constraint:

R η topt
Acq � Nmin. (24)

Using Eq. (18), (24) can be rewritten as

tbin � Nmin

RηK . (25)

Unlike Eq. (23), this constraint involves the sync precision tbin.
For a required level of precision, this sets a constraint on the
product of geometrical factors η and K, and thus it also defines
a scale for the service area of the satellite via the equation:

η(|rgs − rsat|)K(rgs, rsat ) � Nmin

Rtbin
. (26)

For a reasonable value of SNRth and as long as Rbkg is not very
large (compared with R), Eq. (26) is a stronger condition than
Eq. (23) and hence determines the serviceable region (later we
call this the precision “shadow” of the satellite). This is the

FIG. 3. A simple configuration for the QCS protocol. A satellite
orbiting in the plane formed by the two lines joining the center of the
Earth to the ground station (zenith line) and to the satellite.

equation we will use later to determine the size of sync net-
works. Only for very high noise levels may the SNR condition
become the dominant constraint on the network size. Finally,
we stress that Eq. (25) puts a limit on the achievable precision
only when the acquisition time is set to its optimal values.
This assumes working at the maximum achievable SNR. The
working precision of the protocol could be higher if we loosen
this constraint. For more details and an operational view of the
protocol, see Appendix C.

A. A simple example

To build some intuition, let us begin by looking at a simple
example. Consider a ground station at a random location on
Earth’s surface. For illustrative purposes, in this example we
assume that the line joining the center of the Earth to the
ground station (zenith line) lies in the plane defined by the
satellite’s orbit (Fig. 3). The satellite is at altitude h above
the Earth’s surface. We assume circular orbit for the satellite
and also for the ground station (ignoring any topographical
features and the nonspherical geometry of the Earth). Re is
Earth’s radius. Say the protocol starts when the satellite makes
an angle θ0 with the zenith. Expressions for K and SNR can
be calculated analytically for this case.

K = 2c
(
R2

e + (Re + h)2 − 2Re(Re + h) cos θ0
)1/2

2Re(Re + h)ω sin θ0
. (27)

In Eq. (25), on the RHS η and K depend on the geometrical
factors (h, θ0). Hence, Eq. (25) can be interpreted as the best
precision (smallest tbin) that can be achieved at a given relative
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FIG. 4. Two ways of looking at the achievable precision: (top)
Maximum achievable precision as a function of the ground station–
satellite angular separation, and (bottom) maximum separation
allowed (serviceable area) for a required level of precision. θ crit

0 ,
the critical angular separations for 1 ns precision, is given by the
intersection of the blue (solid) curve with the horizontal lines (dotted,
dashed) corresponding to different choices of Nmin.

position of the ground station and the satellite. At the same
time, from a different point of view, it can be considered as a
limit on the relative angular separation between the satellite
and ground station up to which a certain precision can be
achieved. For example, given a fixed satellite altitude h, the
protocol cannot be successfully conducted beyond an angle
θ crit

0 at a required precision of tbin, where θ crit
0 is determined

from

η
(
θ crit

0 , h
)
K

(
θ crit

0 , h
)

� Nmin

Rtbin
. (28)

Figure 4 illustrates these two viewpoints looking at the
precision. Also, Fig. 5 shows the dependence of SNR on
background rates, acquisition time, and angular separation.
As a quantitative example, for h = 500 km and Nmin = 5 a
precision of tbin = 1 ns can be achieved up to θ0 = θ crit

0 ≈ 3◦,
with a source rate of 107 ebits/s. This angle, when translated
to the coverage angle of the satellite, is θsat ≈ 34◦. That is, all
ground stations falling in this angular region will be able to
sync with the satellite at 1 ns precision.

As was mentioned in the previous section, even within
these limits set by Nmin, the background noise dictates the
SNR and hence it must be low enough such that Eq. (23) is

FIG. 5. (top) SNR vs acquisition time for different noise levels
(angular separation θ0 = 2◦), clearly maximum SNR is achieved at
tAcq = topt

Acq (black dotted line) as expected according to Eq. (22).
Also, at higher noise, background levels of the SNR drops below
the threshold of SNRth = 5. (bottom) SNR vs angular separation
for different background rates, clearly SNR > SNRmax for even very
large angular separations when Rbkg � R. On the other hand when
Rbkg ≈ R, SNR drops below the threshold of SNRth = 5 for a much
smaller angular separation between satellite and ground station.

also satisfied. We show in the subsequent section, using simu-
lation results and also from analytical results obtained in this
section, that Eq. (23) is comfortably satisfied for SNRth ≈ 5,
whenever the background rate is around two to five times
lower than the source rate. For details, see Figs. 5 (bottom)
and 8.

IV. SIMULATION METHODS: SYNCHRONIZATION OF A
SATELLITE AND A SINGLE GROUND STATION

The simulation of this scenario consists mainly of three
parts: (1) simulating the photon generation, (2) simulating
the dynamics of the satellite and ground station, and (3) sim-
ulating the lossy quantum communication channel between
the two parties. We use standard Monte Carlo techniques to
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randomly generate photon timestamps at the source, assum-
ing a constant rate R of entangled bits (e-bit) production.
We also generate background photons independently at the
ground station and satellite at constant rates given by Rgs

bkg

and Rsat
bkg, respectively (it would be straightforward to add

random variability to these rates, mimicking fluctuations in
the noise). Furthermore, at every time step we update the
positions of the ground station and the satellite to evaluate
the link distance and time of travel for the photons that are
produced in that time step. The link distance enters as an
input into the efficiency η of the free-space communication
channel. Further, θ0, which is the angle between the ground
station zenith and the satellite, is calculated from the position
vectors. We take into account the various losses by calculating
effective efficiency factors both for the uplink (ground station
to satellite) and downlink (satellite to ground station) η(up)

and η(dwn), respectively. η(up) is the probability that a photon
generated out of the SPDC source at the ground station will
lead to a double-detection event, i.e., one partner will be
detected at A locally and the other at B after traveling through
space and the atmosphere. Similarly for η(down). For the sake
of brevity, the remaining details of the simulation methods are
provided in Appendix A.

Once the photons are generated and timestamped, the cor-
relation functions are calculated by counting the number of
photons that are generated a time interval τ apart from each
other. This is the value of the correlation function C(τ ).

For larger configurations involving multiple satellites and
ground stations, and for longer simulation periods (≈1 day),
it becomes computationally expensive to run the Monte Carlo
simulation at the subnanosecond time resolution. It is also not
necessary to do so, since all the information about the success
and quality of the time synchronization can be evaluated from
Eqs. (23) and (25). See Fig. 9 for an illustration.

V. SIMULATION RESULTS

Now we discuss the results obtained from the simulation
described in the preceding section. First, in Sec. V A, we look
at the simplest scenario of a single ground station located
within the orbital plane of the satellite (Fig. 3) in order to
quantitatively verify the analytical results obtained in Sec. III.
Next, in Sec. V B, we discuss the results for more generic
orbits, but restricting ourselves still to a single satellite and
ground station pair. We will then introduce the idea of the
precision shadow of the satellite, which will help us optimize
the satellite configuration and trajectories for the more com-
plicated multiple ground station scenario, which we pursue in
Sec. III A. For convenience, the operational parameters used
for all simulations are listed in Table I.

A. Single satellite and ground station in the same plane

First, let us study the peak spreading effect due to relative
motion. We choose θ0 = 2◦ [which is below θ crit

0 ≈ 3◦ given
by Eq. (28)]. From Eq. (18) and setting h = 500 km, we find
topt
Acq = 4.8 × 10−5s. Figure 6 below shows the results for two

different acquisition times, falling in the two regimes tAcq =
5 × 10−5 s ≈ topt

Acq and tAcq = 10−3 s � topt
Acq. In the first case,

it is clear that sharp peaks can be identified for both the

TABLE I. Various operational parameters for the simulation: no-
tation and choice of values.

Altitude of satellite h = 500 km
Operational wavelength λ = 810 nm
Radii of telescopes (rsat, rgs) = (10 cm, 60 cm)
Detector efficiencies (κsat, κgs) = (0.5, 0.5)
Source rate R = 107 entangled pairs/s
Simulation time-step (max precision) tbin = 0.5 ns

correlation functions CAB and CBA. This is quantitatively por-
trayed by the adjoining plot showing the SNR as a function
of τ . Clearly, only one value of τ shows an SNR significantly
higher than SNRth = 5. On the other hand, in the latter case
it is easy to see the peak broadening, as anticipated in the
discussion from Sec. III. The SNR values also highlight the
advent of multiple peaks, and the consequent decrease in
precision of synchronization.

Next, we investigate the effect of increasing angular sep-
aration on the time synchronization. Equation (28) gives an
estimate of the maximum critical angle for a given choice of
Nmin at a required level of precision. We choose tAcq ≈ topt

Acq
from now on, having shown that the protocol can work at
optimal precision only under that condition. From Fig. 7, it is
evident that, at angles greater than the critical angle, even with
no background noise, enough photons cannot be collected
within the acquisition time to achieve a clear peak. The SNR
values also indicate this effect. Obviously, collecting photons
for a longer time will not alleviate the situation since the SNR
is just going to fall for tAcq > topt

Acq due to the peak broadening
effects just discussed.

Let us now move on to show the effect of background
noise on the synchronization outcomes. To study the effect
of background noise, we run the simulations at different noise
rates. It can be seen from Fig. 8 that the SNR shows significant
decrease with increasing Rbkg as it grows past the effective
rate of detection through the free-space channels, i.e., Rη

[as expected from Eq. (22)]. For simplicity, we choose same
background rates at the satellite and at the ground station. In
a realistic scenario, this is obviously not true—background
rates are much smaller at the ground station. Since the aim
here is to just illustrate effect of background photons on the
signal-to-noise ratio, we consider this worst-case scenario.

B. Simulation results for a generic satellite orbit

Next, we run the simulation by allowing the ground station
to be located in a general location, not necessarily in the plane
of satellite’s orbit, which is chosen to be a polar orbit. These
simulations are run with the understanding that, once the
acquisition time is chosen optimally (tAcq = topt

Acq), the optimal
precision can be achieved. Hence, from here on we use the
term precision to mean maximum achievable precision. We
stress here that this does not mean that the satellite and ground
station trajectories need to be known to perform the QCS
successfully. Of course, for any practical application, some
information of the trajectories is available. For example, in or-
der to successfully send photons to the satellite, its trajectory
must be known at least approximately. Given this knowledge,
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FIG. 6. Uplink (left) and downlink (right) correlation functions (red dots) and respective SNRs (blue continuous line) of all peaks as a
function of the time shift τ . For genuine correlations, the expected peaks are at 8 μs for the uplink and 2 μs for the downlink. Top plots
represent the tAcq ≈ topt

Acq case. Notice that only one peak with substantially high SNR exists; all other peaks are also below the chosen threshold

SNRth = 5. For the bottom plots, on the other hand, tAcq � topt
Acq, and several peaks with high SNR (>5) appear. This introduces uncertainty

in the identification of the time offset, and directly reduces the sync precision. Peak-spreading due to motion of the satellite is responsible for
the reduced precision. These simulation results support the results in Sec. III that acquisition times of the order of topt

Acq must be chosen for the
protocol to work at optimal level of precision. The value Rbkg = 106 s−1 has been used for background rate in these simulations. The values
used for other parameters are summarized in Table I.

we can either find bounds for the relative velocity, calculate
a minimum value for topt

Acq, and then choose our acquisition
time close to this value to run the protocol at near-optimal
precision, or we could take an operation view and change the
binning of the total acquired data until the SNR crosses the
threshold (see Appendix C). The satellite and ground station
trajectories need to be known for the purposes of alignment,
etc., but the QCS protocol itself does not need either knowl-
edge of the velocity or the position of the satellite or ground

stations. To understand the effect of such a generic orbit on
the sync outcomes, let us first look at the two parameters K
and ηup/dwn discussed in Sec. IV. The radial velocity of the
satellite with respect to the ground station and the link loss are
both minimal whenever the trajectory is at a local minimum,
i.e., whenever the link distance L or the zenith angle θ0 are at
a local minimum. We call such situations overhead passes of
the satellite. For the simulation results shown in Fig. 9, we
consider a setting with a polar satellite in orbit at 500 km
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FIG. 7. Uplink correlation function CAB for θ0 = θ crit
0 ≈ 3◦ (left) (the uplink is the weaker link, and determines the success or failure of

the protocol). Clearly, there is a unique peak marking the correct time correlations. For comparison, the right panel shows a similar plot for
θ0 = 10◦, where multiple peaks are observed. The values for background noise and acquisition time used in these plots are Rbkg = 106 s−1 and
tAcq = 5 × 10−5 s, respectively.

altitude along the prime meridian, and a ground station in
New York City (40.7128◦ N, 74.0060◦ W). The results clearly
show that overhead passes give a high number of double-
detection events (a peak in CAB and CBA), and, consequently,
a high level of sync precision. For clarity, we define precision
as − log10(tbin ), such that a lower value of bin size means a
higher precision. Since the precision falls down sharply as the
satellite moves past the overhead configuration, we see that an
analog of critical angle θ crit

0 (see Secs. III and V A) emerges in
the generic case as well—the difference being that now it has
to be replaced by a solid angle. Such a solid angle can also be
described as a shadow the satellite casts over Earth during its
motion in its orbit. The shadow describes a region on Earth at
a given instant of time, inside which a ground station can syn-
chronize with the satellite at a certain maximum achievable

precision. We now try to estimate the shape and size of such a
shadow for different levels of maximum achievable precision.

From the results in Fig. 9, it is clear that the shape and size
of the shadow of the satellite not only depends on the link
distance L through η but also on the relative radial velocity of
the satellite with respect to the ground station vrad

rel through K.
In Fig. 10, we now show the shadow of the satellite as it passes
over different parts of Earth. Without lack of generality, we
choose the longitude along the prime meridian (since an over-
all rotation along the Earth’s axis for both the ground station
and satellite have no effect either on vrad

rel or on L). Clearly,
the shadow changes shape as the satellite moves closer to
the poles. This is a combined effect of the change in relative
velocity and the fact that that close to the poles, similar az-
imuthal angle separations lead to shorter distances along the

FIG. 8. These plots show the effect of background noise in the correlation functions. Correlation functions and SNR are shown for θ0 = 2◦.
This value is below the critical angle given by Eq. (28). The background noise rates are 106 photons/s (left), 107 photons/s (center), and 108

photons/s (right). It is clear that, as the background rate grows past Rη = 107/s, the SNR falls below the threshold value SNRth = 5, making
it less probable to detect a unique peak.
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FIG. 9. (top) These plots show values for the two parameters that determine the achievable precision: θ0 (the angle that the satellite makes
with the ground station zenith line) and K [the geometric factor defined in (18)]. (left) The geometrical factor K is maximized whenever the
derivative of the θ0 vanishes. The optimal acquisition time topt

Acq is proportional to K. (right) The link transmittance ηup (recall that the uplink,
being the weakest link, determines the limits of precision), as expected, is maximized whenever the link distance L is minimized and hence is
maximum for overhead passes. (bottom) The synchronization outcome (blue line) determines the sync precision (it is the negative log of the
bin size) and it clearly follows the trends set by the two parameters K and ηup [we choose Nmin = 10, see Eq. (25)]. A few times during the
course of a day, when the link distances are minimized (overhead passes), the precision levels surpass the nanosecond level and even approach
the picosecond level. These sync outcomes are currently not achievable by classical techniques for space-based communication like the GPS.
The discontinuity in the precision curve (also the transmittance curve) is a consequence of the horizon condition [Eq. (A8)].
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FIG. 10. “Precision shadow” of a satellite as it passes over differ-
ent parts of Earth. A shadow refers to a region within which a certain
sync precision can be achieved. Here, within the black shadow a
precision of at least 1 ns can be achieved. During real time dynamics
the shadow will be a continuous track along the orbit of the satellite.
Snippets in time are shown here to illustrate the changing shape and
angular size of the shadow as the satellite moves. (top) Polar orbit
along the prime meridian. (bottom) Tilted polar orbit, rotated by 30◦

compared with the case on the left. In both cases the extent of the
shadow close to the equator is ≈50◦ perpendicular to the satellite
trajectory and ≈3◦ along the trajectory.

surface of Earth compared with near the equator. The latter is
the more significant reason, thus this morphing of the shadow
shape should be considered primarily a map projection effect
and not a physical effect. The shadow is closest to an ellipse
near the equator, the minor axis being along the direction of

satellite motion and the major axis perpendicular to it. This is
expected since the satellite velocity is the major contributor
to vrad

rel , and a higher relative velocity means a smaller tAcq.
In other words, the critical angle θ crit

0 along the direction of
satellite motion is the smallest and is the largest perpendicular
to the direction of satellite motion. In contrast, if the precision
were to just depend on the total number of counts received
with no restriction on the acquisition time, the shadow would
have been a circle, i.e., same level of precision would have
been achieved for points equidistant from the satellite since
the loss function is monotonically decreasing with increasing
L. For tilted orbits, the trends remain similar. The shadow still
has its minor axis along the orbit of the satellite. We get a tilted
ellipse close to the equator which becomes more and more
morphed as one moves closer to the poles. These trends are
also shown in Fig. 10. In both cases the extent of the shadow
close to the equator is ≈50◦ perpendicular to the satellite
trajectory and ≈3◦ along the trajectory. Another important
factor in determining the extent of the shadow is the horizon
condition. This sets a cutoff for the shadow size, irrespective
of the possible acquisition time and the link loss. In Fig. 11,
we show the effect of the horizon condition in determining
the size of the satellite shadow. It is also interesting to look at
how the extent of the shadow reduces as one makes the sync
requirements more stringent. In Fig. 11 (bottom) we show the
regions within the shadow where different sync capabilities
can be achieved. As expected, the closer one is to the center
of the shadow, i.e., the closer one is to the overhead case, the
higher the achievable sync precision.

In summary, in this section we have presented the main
results of our numerical analysis. The main output of our
simulations are the precision shadows of a satellite, shown
in Fig. 10. Through these shadows we concretely deter-
mine the region on Earth within which two ground stations
can be synchronized by means of a satellite at a mini-
mum required level of precision. This information is crucial
to determine the size and quality of a QCS network [11].
Our numerical code can be used to obtain these shadows
and their time evolution for satellites in arbitrary orbits and
assist in the design of optimal satellite constellations for
time distribution.

VI. SYNCHRONIZING MULTIPLE GROUND STATIONS

Let us now use the results of the shadow picture to achieve
a practical sync requirement. Consider four major cities on
geographical corners of the continental United States, namely:
New York, Atlanta, Los Angeles, and Seattle. Let us now ask
the following question: “What are the best synchronization
outcomes that can be achieved for these four cities using a
single satellite in a LEO?” We believe this question to be
pertinent from two points of view: (1) It describes a proof
of principle realization of the proposed QCS protocol using
intermediary satellites and therefore paves a way for more
ambitious implementations, like augmenting a global quan-
tum internet, building a quantum GPS, etc. And (2) such
small-medium scale realizations themselves may have prac-
tical benefits, such as time distribution for sensitive scientific
experiments, high-precision secure time transfer for civil and
defense uses, etc.

062613-12



SYNCHRONIZING CLOCKS VIA SATELLITES USING … PHYSICAL REVIEW A 108, 062613 (2023)

FIG. 11. (top left) Region of visibility on Earth of a satellite, which in this example we have placed directly above the intersection of the
prime meridian and the equator. (top right) Regions where a ground station can sync with the satellite at different precisions indicated by
different colors. Innermost region can sync at the highest precision since the relative radial velocity is the lowest around overhead pass. This
plot does not include the condition of visibility. (bottom) The precision shadow of the satellite, obtained by superposition the top two figures.
This precision shadow is the main output of our calculation and contains information about the size and quality of the network.

Let us first trace out the shadow of the satellite when
it is above the center of the ground station configuration
mentioned above. This tells us that all four cities cannot be
synced simultaneously since the shadow is not wide enough
(latitude-wise) to contain all four cities at any given instant
(see Fig. 12). We verify this by looking at the uplink photon
counts received simultaneously by each pair of cities. A sync
at a given precision is considered successful if both the cities
see the satellite (satellite is above the horizon for both) and
more than a cutoff number of correctly correlated photons
are received by each of them in accordance with Eq. (25).
The sync precision is given by the minimum of the two sync
precision values obtained, namely, precision of sync between
ground station 1 (GS1) and the satellite and precision of sync
between GS2 and the satellite. We find, as expected, that only
the New York–Atlanta and Atlanta–Los Angeles pairs can be
synced at a precision higher than or equal to 1 ns. The latitude
difference between the other pair of cities is more than the
width of the shadow.

Therefore, now we must relax the sync requirements. If we
allow even modestly stable clocks on the satellites (standard
rubidium clocks can hold time up to 1 ns precision for around

10 mins) then we can relax the condition of simultaneous
connectivity between the three parties viz. the satellite, and
the two ground stations. We can instead define a holdover
time τ within which, if the satellite connects to both cities,
the two cities are considered synchronized. Larger holdover
times lead larger sync coverage areas because they allow the
satellite to reach stations that are located further away. But of
course such an improvement comes at a cost. Since, earlier
we were only considering simultaneous connection between
GS1, GS2 and the satellite, the precision of the protocol was
limited only by the sync precision, assuming that the satellite
and ground station clocks can timestamp with much higher
precision compared with the sync precision. If we allow for a
holdover time, this no longer remains true. The precision of
the protocol will be determined not only by the sync preci-
sion but also by the precision of the least stable clock. It is
reasonable to assume that the ground station clocks will be
much more stable than the smaller and lighter clocks onboard
a satellite. Therefore, if at a given instant t there is connec-
tion between the satellite and ground station 1, then we look
for the best precision connection between the satellite and
ground station 2 within the interval (t − τ/2, t + τ/2). The
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FIG. 12. (top) Satellite shadow when it is just above the center of the ground station configuration NYC-ATL-LA-SEA. All city pairs do
not fall within the shadow and hence cannot be simultaneously synchronized. The only two pairs whose latitude difference is less than the
width of the shadow are ATL-SEA (bottom left) and NYC-ATL (bottom right). Subnanosecond precision can be achieved at least once a day
in both these cases.

precision of connection at time t between the two ground stations defined as

− log10

(
tGS1−GS2
bin

)
(t )

is given by the following expression:

max
t ′∈(t−τ/2,t+τ/2)

(
min

[ − log10

(
tGS1−SAT
bin

)
(t ),− log10

(
tGS2−SAT
bin

)
(t ′),− log10

(
t sat
bin

)
(t ′)

])
. (29)
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FIG. 13. Improvement in sync outcomes between Los Angeles
and Seattle, both in terms of precision and the number of connections
every day, as the holdover time τ is increased from τ = 240s to τ =
600s.

In general, the precision of a clock and hence − log10(t sat
bin )(t ′)

is a complicated function of time. In fact the Allan deviation
curve which is the standard measure of a clock’s stability, is
often obtained empirically. Here, for our simulations we take
a simplistic, worst-case-scenario approach:

− log10

(
t sat
bin

)
(t ′) =

{
C, t − τ/2 < t ′ < t + τ/2
0, otherwise, (30)

where C is a constant level of precision. Figure 13 shows
the improvement in sync outcomes as the holdover time is
increased for SEA-LA. For τ = 0 there was no connection at

the 1 ns precision, and as τ is increases, we see more frequent
connections.

Figure 14 shows that, for τ = 600 s (10 min), six city
pairs in the configuration can be synced at the 1 ns precision
[C = 1 ns in Eq. (30)] more than once a day, in contrast
with the τ = 0 case where only 2 city pairs could be synced
[Fig. 12(bottom)]. Even though nanosecond level precision
can be achieved using a single LEO satellite for the conti-
nental US, the connectivity is sparse, with long disconnected
intervals between sync events. This situation can be easily
alleviated by using a larger constellation of satellites (both
adding satellites to same orbit and using multiple orbits). Op-
timization of satellite resources both in terms of constellation
design and onboard system parameters is a complex problem.
For a more concrete analysis of figures of merit such connec-
tion fractions of the day and longest disconnected intervals (at
required levels of precision) which quantify the connectivity
of various QCS network designs and system parameters, we
refer the reader to a previous work [1].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have assessed the feasibility of a quan-
tum clock synchronization network using satellites. We have
developed a numerical code to simulate the real-time imple-
mentation of a QCS protocol, including the effects of relative
velocities, photon losses, background noise and detector jitter.
Although results presented here are based on some simpli-
fying assumptions, such as constant source and background
rates and circular polar orbits, ignoring effects of cloud cover
and other weather conditions, etc., the general framework of
our code is receptive to loosening these constraints. Our code
is versatile and can be adapted to any given network of ground
stations and satellites. Our results are generic in this sense and
crucially the trends for network quality and size shown here
are supportive of the usefulness of a quantum timing network
based on QCS, albeit requiring a more systems and engineer-
ing level feasibility study. Furthermore, our code can be also
used to analyze quantitatively other entanglement distribution
based protocols such as device-independent QKD, quantum
communication networks, etc.

Our detailed analysis has shown that it is possible to
provide subnanosecond to picosecond level synchronization
outcomes for a network spread across the continental US. This
is a network size of around 4000 km. It is important to mention
that no classical or quantum techniques presently available
can provide such precision levels over distances which are this
long. We thus propose the QCS network with space-terrestrial
optical communication links as the method of choice for high
precision, long-range time distribution. Since the QCS proto-
col is yet to be tested between moving clocks, our analytical
and simulation results build the ground for future implemen-
tations. For future work we consider the establishment of
a master clock in the sky, by interlinking satellites through
QCS. By establishing continuous network coverage on global
scales, this provides an opportunity to create a high-precision
quantum-secure infrastructure for long-distance positioning,
navigation, and timing services.
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FIG. 14. Sync outcomes between all six city pairs for a holdover time τ = 600s (10 min). Nanosecond precision can now be achieved in
all cases in contrast with the situation with τ = 0 where only two city pairs could achieve the required precision levels.
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APPENDIX A: DETAILS OF THE SIMULATION MODEL

The pure-loss model for the free-space quantum com-
munication channel is quantified by a single transmissivity
parameter η. η has three contributions:

i. Free-space transmittance: This includes effects of beam
broadening and finite apertures of the transmitting and re-
ceiving telescopes. The free-space transmittance follows an
inverse square falloff law with the link distance and is given
by

ηfs(L) = 1 − exp

(
− 2R2

[w(L)]2

)
, (A1)

where R is the receiving telescope’s radius and w(L) is the
beam waist after traversing the link distance L. The latter is
given by

w(L) := w0

√
1 +

(
L

LR

)2

, (A2)

and the Rayleigh range LR := πw2
0λ

−1. λ is the source wave-
length, and w0 is the initial beam-waist radius. w0 = 0.8r,
where r is the transmitting telescope’s radius and we use a
80% fill fraction. The above relation holds under the approxi-
mation of the beam as a zeroth-order Gaussian spatial mode.

ii. Atmospheric transmittance: Here we assume the atmo-
sphere to be a homogeneous absorptive medium following the
Beer-Lambert law (transmittance falls exponentially with in-
creasing distance that is traveled through the medium). Thus,
the atmospheric transmittance is given by

ηatm(L, h) =
{ (

ηzen
atm

)sec ζ
, if − π

2 < ζ < π
2

0, if |ζ | � π
2 ,

(A3)

where ηzen
atm is the atmospheric transmittance at zenith (ζ = 0)

and the zenith angle ζ for circular orbits is given by

cos ζ = h

L
− 1

2

L2 − h2

RE L
, (A4)

where RE is the radius of Earth.
iii. Detector inefficiencies: κsat and κgrd are efficiencies of

the detectors at the satellite and ground station, respectively.
Thus, the total efficiency of the channel (uplink or down-

link) is given by η = ηatmηfsκsatκgrd.
Given the above loss model we model the satellite-ground

quantum communication channel as follows: For concrete-
ness, let us focus on a downlink channel. The following
will hold similarly for an uplink channel. We assume clear
skies and approximate the downlink channel as only lossy
(background noise is accounted for at the detectors). That
is, photons are either transmitted through the channel or lost
in transmission. The dominant sources of loss are (1) beam
spreading (free-space diffraction loss), (2) atmospheric ab-
sorption or scattering, and (3) nonideal photodetectors on the
satellite and on the ground. We characterize these loss mech-
anisms by their transmittance values, which is the fraction of
the received optical power to the transmitted power (which
is also equal to the probability to transmit or detect a single
photon). Let these transmittance values be, respectively,

η
(dwn)
f s (L), η

(dwn)
atm (L), κsat, κgs,

where the superscripts refer to the downlink, f s refers to
free-space diffraction loss, atm to atmospheric loss, L is the
link distance (physical distance) between satellite and receiver
(which in turn depends on the satellite altitude h, position of
the satellite in its orbit, and position of the ground station
on Earth’s surface), κ denotes nonideal detection efficiencies
for the onboard satellite detector array (sat) as well as the
detector array at the ground station (gs), and all transmittance
values are less than or equal to 1. Simple analytic formulas
are used to estimate the free-space and atmospheric transmit-
tance values in accordance with Ref. [6]. See Eqs. (A1)–(A4).
Therefore, the overall efficiencies are given as

η(dwn) = η
(dwn)
f s η

(dwn)
atm κsatκgs, (A5)

η(up) = η
(up)
f s η

(up)
atm κsatκgs. (A6)

Finally, following standard Monte Carlo techniques, our code
works by registering a joint detection event (two photons from
the same pair detected at A and B) every time two random
numbers r, r′ independently generated from a uniform distri-
butions ∈ [0, 1] satisfy the following conditions in the same
time step:

r < Rtbin, (A7)

r′ < η. (A8)

For the noise photons to be detected at A or B, a condition
analogous to Eq. (A7), r′′ < Rbkgtbin, is used, where r′′ is
also a random number chosen independently from a uniform
distribution ∈ [0, 1]. Furthermore, a condition that the satellite
be above the ground station’s horizon is already imposed via
Eq. (A3).

Once the photons are generated and timestamped, the
correlation functions are calculated by counting the number
of photons that are generated a time interval τ apart from
each other. This is the value of the correlation Function
C(τ ).

For larger configurations involving multiple satellites and
ground stations, and for longer simulation periods (≈1 day),
it becomes computationally expensive to run the Monte Carlo
simulation at the subnanosecond time resolution. It is also not
necessary to do so, since all the information about the success
and quality of the time synchronization can be evaluated from
Eqs. (23) and (25). See Fig. 9 for an illustration.

APPENDIX B: SIGNAL-TO-NOISE RATIO OF THE
CORRELATION FUNCTIONS

The sharpness of the correlation function peak can be quan-
tified through the signal-to-noise ratio (SNR). This depends
on (i) the height of the peak from correctly correlated pho-
tons [photons whose timestamps are related by Eqs. (1) and
(2)], and (ii) the average noise level (spurious peaks) of the
correlation function.

Let us look at the threshold due to noise. The peak
due to correct correlations should breach this threshold to
be detectable. This threshold arises from the following two
sources:

i. Spurious correlations among source photons. Every
source photon detected by A has some time correlation
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with every photon detected at B, but the correct time cor-
relation given by Eq. (1) or (2) with only one photon,
which is its entangled pair partner. All the other corre-
lations form a uniformly distributed threshold level. Total
number of correlations (spurious + correct), Ntotal< is given
by the area under the C curve. A simple substitution of
Eqs. (3) and (4) into (5) and then integrating with respect to
time gives:

Ntotal =
∫ tAcq

0
Cdt = R2ηt2

Acq. (B1)

The number of correlated photons detected in time tAcq, Ncorr,
is given by

Ncorr = RηtAcq. (B2)

Therefore, the number of spurious correlations Nspur is given
by

Nspur = Ntotal − Ncorr = RηtAcq(RtAcq − 1) ≈ R2ηt2
Acq. (B3)

The last approximation holds since the total number of
photons generated within the acquisition time R tAcq � 1,
for reasonably high source rates (≈106–107 ebits/s). From
Eq. (B3) we get the mean height of such spurious correlations
to be

C̄spur = Nspur

Nbins
= R2ηt2

Acq

tAcq/tbin
= R2ηtAcqtbin. (B4)

ii. Noise from background. Thermal photons, photons
from the sun, radiation in space, dark counts, etc., might
lead to further photon timestamps which are not correctly
correlated. They appear independently at A and B and hence
they also form a uniformly distributed threshold in the corre-
lation function CAB. The average number of correlations due
to background photons, again following an argument similar
to above, is given by

C̄bkg = RRbkgtAcqtbin, (B5)

where Rbkg = Rsat
bkg and Rbkg = Rgs

bkg for CAB and CBA, respec-
tively, are the background photon rates at the ground station
and the satellite. Furthermore, if the dark count rate for the
detectors is given by Rdc, then an analogous additional term is
added to the average noise level, given by

C̄dc = Rdc(Rη + Rbkg + Rdc)tAcqtbin. (B6)

Here we assume that R � Rdc. Also for (LEO) satellite-based
implementations, since η ≈ 0.01, we have assumed back-
ground rates Rbkg � Rη and Rbkg � Rdc. Therefore, Cdc �
Cbkg, and its effect on the SNR has been ignored in this work.
Nonetheless, the framework in general allows for its inclusion
by introducing a term like Eq. (B6).

The total average height of the noise is, therefore, given by

C̄noise = C̄spur + C̄bkg. (B7)

Now, we can evaluate the SNR. The SNR is defined as
the ratio of the height of the correlation function peak above
the threshold level and the standard deviation of the noise
(background + spurious correlations). The noise follows a
standard Poisson distribution, and hence the mean is equal to
the variance.

The SNR is distinct in the following two time regimes:

i. tAcq � topt
Acq

SNR = C(τmax) − C̄noise√
C̄noise

. (B8)

using the Equations (B3)–(B6) we get

SNR =
√

η

tbin(1 + Rbkg/Rη)
(1 − Rtbin )

√
tAcq. (B9)

In this regime, there exists only one peak due to cor-
rectly correlated photons and the SNR increases with
tAcq. Also, Rtbin < 1 for the SNR to make sense. This
translates into the fact that each photon should have a
unique timestamp within the precision of the clocks.
In fact, for reasonable choices of R and tbin (e.g., see
Table I), Rtbin � 1. Therefore,

SNR ≈
√

η

tbin(1 + Rbkg/Rη)

√
tAcq. (B10)

ii. tAcq > topt
Acq.

Multiple peaks now start appearing. Spurious corre-
lations will now also add to the older peaks, hence not
all peaks are of equal height, the average height can be
approximated as

C(τ̄peak ) ≈ Rηtopt
Acq + RRbkgtAcqtbin + R2ηtAcqtbin.

(B11)
Therefore, using Eq. (B8), the SNR in this case is given
by

SNR ≈ K
√

ηtbin√
(1 + Rbkg/Rη)

1√
tAcq

. (B12)

Therefore, for tAcq > topt
Acq, the SNR decreases as

(tAcq)−1/2.
This analysis clearly indicates that the SNR is maximum

for tAcq = topt
Acq and hence,

SNRmax ≈
√

ηK
(1 + Rbkg/Rη)

. (B13)

APPENDIX C: OPERATIONAL POINT OF VIEW: HOW TO
GET THE BEST AVAILABLE LEVEL OF PRECISION?

The limiting value of tbin found via Eq. (25), in conjunction
with Eq. (B13) is calculated using the relative radial velocity
vrad

rel of the satellites with respect to the ground station. From an
operational point of view, the QCS protocol does not require
the knowledge of vrad

rad and a high degree of precision can
be achieved without using any estimate of relative velocity.2

When a satellite is visible from a certain ground station,
the satellite holdover time τ may allow several rounds of
the QCS protocol to be conducted (where the true unknown

2This does not eliminate the need for tracking of the satellite for
the purposes of alignment etc., the algorithm to find the offset does
not need the knowledge of the ground station and satellite positions
or velocities.
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FIG. 15. Here we show that precision obtained at the threshold
SNR can be substantially higher than what is achievable if we work
the max SNR setting. Source rate and background rates are set at
107 ebits/s and 104 photons/s, respectively. Loss and relative radial
velocity numbers are representative of a 500 km polar orbit passing
over New York City. (top) A very oblique pass of the satellite over
the ground station leads to a high loss (35 dB) and high relative
velocity (4 km/s) setting. In such cases, the max SNR is less than
the threshold SNR, and, hence, even though we have visibility, the
protocol fails at all levels of precision. (bottom) For a slightly less
oblique pass (25 dB loss and 1 km/s relative velocity), working in
the threshold SNR regime can provide a precision 10 times higher
than what can be achieved by working at the maximum SNR.

offset remains the same up to a maximum required precision).
Once the timestamp data are collected, the cross-correlation
functions must be calculated, which requires choosing a bin
size (working precision of the protocol tbin). We must at the
same time also choose an acquisition time window tAcq, since,
over the total visibility or holdover period, large amounts of
data are collected which if used in their entirety to plot the
correlation functions will lead to substantial peak spreading
and loss of SNR. Therefore, the data must be divided into
smaller acquisition windows. Let us begin with the small-
est possible tbin (could be the timestamp resolution) and the
largest possible tAcq (full timestamp data set available). We
would then be working in the regime where the SNR follows
Eq. (B12) and is proportional to

√
tbin/tAcq. The SNR thus

depends on the ratio tbin/tAcq, as tbin is increased and tAcq

FIG. 16. Effect of detector jitter on the precision shadows for
1 ns precision—red (intermediate shaded region in top figure and
outermost in bottom figure) shadow represents the jitterless case,
green shadow (innermost shaded region in top figure and intermedi-
ate region in bottom) represents the shadow for 300 ps of jitter if the
precision is determined using Eq. (D1) (Nmin condition), whereas the
blue shadow (outermost shaded region in top and innermost in the
bottom) represents the shadow if Eq. (D3) (SNR condition) deter-
mines the precision. (top) Precision shadow for low background rate
Rbkg/R = 10−2, Eq. (D1) dominates over Eq. (D3) in determining
the maximum achievable precision. (bottom) Precision shadow for
high background rate Rbkg/R = 0.5, Eq. (D3), i.e., the SNR condition
dominates over Eq. (D1) in determining the maximum achievable
precision.

is decreased this ratio increases, increasing the SNR up to
the point that it reaches SNRmax. We know that tbin/tAcq = κ

for this optimal setting [see Eq. (B13)]. In practice, though,
the following approach could be taken: tbin is increased and
tAcq decreased up to the point SNR = SNRth, at the same
time ensuring RηtAcq � Nmin. The latter condition is needed
to ensure the success of protocol with high probability. For
instance, even if the SNR > SNRth, RηtAcq < 1 would mean
that for some acquisition windows no ebit will be shared
between the ground station and satellite, thus the offset would
not be obtainable from that round of the protocol. The larger
the value of Nmin, the larger the probability that each run of
the protocol gets some shared ebits. This gives an operational
meaning to Nmin. In summary, in order to find the best avail-
able precision given a set of timestamps (collected over a
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single holdover window), we vary tbin and tAcq until both the
following conditions are satisfied:

SNR � SNRth, (C1)

C(τmax) � Nmin. (C2)

Working at a suboptimal SNR still allows us to find the offset
because even though we see multiple peaks (tAcq > κtbin ), all
such peaks are above the average noise level. Since the range
rate change can be calculated looking at the width of the peak
and knowledge of acquisition time, the true offset can then
be determined. The precision achievable if we work in this
suboptimal SNR regime (and require Nmin number of ebits to
be collected on average within tAcq) is given by

tbin = SNR2
th

Nmin

Rη2

(
1 + Rbkg

Rη

)
. (C3)

In Fig. 15 we show that this precision is higher than what is
achievable if we work only in the max SNR regime. Working
in this regime can be especially useful for low source rate
or high loss or slightly oblique pass (high relative velocity)
scenarios. Also, for comparison we show a scenario where the
max SNR is less than the threshold SNR and thus no working
precision can be obtained.

APPENDIX D: EFFECT OF DETECTOR JITTER ON
SIGNAL-TO-NOISE RATIO AND ACHIEVABLE PRECISION

Let us say that the detector jitter accounts for a uncertainty
σ j (standard deviation) in the timestamps of the detected pho-
tons. This leads to a peak broadening effect adding onto the
effect of range-rate change. Therefore, a smaller maximum

precision is now achievable, other factors remaining the same
(see Fig. 16). Appending Eq. (25) for the effects of jitter, we
find that this reduced precision is given by

tbin � Nmin

RηK + σ j . (D1)

The above equation can also be understood by realizing that,
since the jitter already leads to a peak broadening by the
amount σ j , the peak broadening effect due to range-rate
change tolerable at a given working precision tbin is smaller.
This leads to a smaller topt

Acq and is given by κ (tbin − σ j ). This
has implications for the SNR of the correlation function peaks
as well. Since the optimal acquisition time is now reduced to
κ (tbin − σ j ), the max SNR achievable becomes

SNRmax ≈
√

ηκ

tbin
(
1 + Rbkg/Rη

)(
1 − σj

tbin

)
, (D2)

which is meaningful only when tbin > σ j . This reduces to the
jitterless case for σ j = 0. In the limiting case of σ j = tbin

shows than SNR = 0, i.e., no peak can be seen at the working
precision of tbin. Furthermore, contrary to the jitterless case,
here the SNR is not independent of the precision tbin. Thus,
imposing a threshold condition on the required SNR [analo-
gous to Eq. (23)], and then solving the equation for tbin, gives
a relation for the maximum achievable precision in terms of
the imposed threshold SMRth. This is given by

tbin � σ j

1 − S2
th

ηκ

(
1 + Rbkg

Rη

) . (D3)
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