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Exploring ququart computation on a transmon using optimal control
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Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). How-
ever, many architectures include higher energy levels that are left as unused computational resources. We
demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient
gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a
generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In
randomized benchmarking experiments we observe gate fidelities � 95% and identify coherence as the primary
limiting factor. Our results validate ququarts as a viable tool for quantum information processing.
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I. INTRODUCTION

While current efforts to build quantum computers mostly
focus on the fabrication and high-fidelity control of two-level
qubits, many proposed implementations like superconducting
transmons or trapped ions provide a much larger Hilbert space
with more energy levels present. Their influence is typically
aimed to be suppressed through careful device engineering;
however, these states are readily available for computation.

Qudits, the d-level generalization of qubits, have gained
a lot of interest as they provide an exponential increase in
Hilbert space dimension (dN versus 2N ), allowing for the
adaption and simplification of a variety of algorithms [1–5].
Extensive research has been conducted for the qutrit case d =
3. While theoretical studies have shown benefits for quantum
compilation [6,7] and improved schemes for quantum error
correction [8–11], experimental implementations of qutrits
have been presented on several architectures [12–20].

Ququarts (d = 4) can be explored from a similar perspec-
tive, and they furthermore offer the alternative interpretation
of storing the information content of two qubits. Theoreti-
cal works have looked at the encoding of qubit pairs into
ququarts to study advantages for quantum circuit compila-
tion [21,22]. Increased hardware utilization, efficient internal
two-qubit gates, and reduced routing costs render this design
highly promising. Recent experimental results have shown the
efficient realization of a variational quantum algorithm [23]
and the verification of the entropic inequality [24] under this
scheme.

Quantum optimal control comprises a set of methods to
find hardware-specific control pulses to make a quantum
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system undergo a desired transformation. A variety of frame-
works have been developed [25–33] and applied in both
theory and experiment to solve problems like state transfer
[34–36] and the implementations of gates [37–40].

In this work we study the realization of single-ququart
operations on a superconducting transmon under both the
qudit perspective as well as the encoded-qubit perspective.
We compare two approaches for each gate: an optimized
decomposition into natively supported gates on our system,
and direct implementation through quantum optimal control.
Using the frameworks JUQBOX [25] and BOULDER OPAL [30],
we find optimal control pulses that drive all three transi-
tions in parallel while respecting hardware constraints. We
perform quantum-process tomography (QPT) as well as ran-
domized benchmarking (RB) to characterize the fidelity of
different gate implementations, where we distinguish between
the ququart Clifford group C4 and the two-qubit Clifford group
C⊗2

2 . We focus on the ququart Hadamard H4 and the two-
qubit Hadamard tensor product H ⊗ H , due to their similar
structure, and include further results in the Appendix.

II. ONE QUQUART OR TWO QUBITS

The concept of the ququart extends the computational unit
of a qubit by two levels and describes the special qudit case
d = 4. Single-ququart gates are then given by 4 × 4 unitary
matrices, and some of them can thus be seen as generalizations
of familiar single-qubit gates [41]:

X4 =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦, H4 = 1

2

⎡
⎢⎢⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦,

Z4 = diag(1, i,−1,−i). (1)
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FIG. 1. Two ways of realizing arbitrary quantum gates on a four-level ququart, which is controlled by three modulated carrier waves with
resonant frequencies ω j . (a) Any ququart gate can be decomposed into a series of at most six qubitlike Y rotations interleaved with ququart
phase gates. Given a target unitary, the parameters θi and �φi can be calculated numerically. (b) Lifting the gate abstraction, quantum optimal
control can be used to determine a control signal that operates on all subspaces in parallel and manipulate the entire ququart state. A final
virtual Z gate adjusts the relative phases. The shown pulses together with �φ = (4.265, 4.590, 0.000) (radians) implement a ququart Hadamard
H4 in T = 350 ns.

Here X4 and Z4 represent the generalizations of the qubit Pauli
operators X and Z , respectively, and H4 denotes the ququart
Hadamard.

Due to the special Hilbert space dimension d = 4 = 22,
another way to think about a ququart is as a pair of qubits. One
possible encoding is given by mapping the qubit bit strings to
their corresponding decimal numbers:

|q0q1〉 =

⎧⎪⎪⎨
⎪⎪⎩

|00〉 ↔ |0〉
|01〉 ↔ |1〉
|10〉 ↔ |2〉
|11〉 ↔ |3〉

⎫⎪⎪⎬
⎪⎪⎭ = |q(4)〉. (2)

Therefore two-qubit operators can be directly translated to
ququart gates given their matrix representation. For exam-
ple, simultaneous bit flips on q0 and q1 described by X ⊗ X
can be implemented by flipping |0〉 ↔ |3〉 and |1〉 ↔ |2〉.
Furthermore, such an encoding provides efficient qubit CX
and SWAP gates through state flips |2〉 ↔ |3〉 and |1〉 ↔ |2〉,
respectively. Past theoretical and experimental works have
studied qubit-based computation under this scheme to find po-
tential advantages in resource requirements and circuit speed
[21–23].

A. Gate decomposition

We use the lowest four energy levels {|0〉, |1〉, |2〉, |3〉} of
a superconducting transmon [42] to represent the ququart.
The elementary gates available in the transmon are el-
ements of SU(2), meaning qubitlike rotations Rj (θ, φ) =
Z†

j (φ)Yj (θ )Zj (φ) between two adjacent levels | j − 1〉 and
| j〉, with j ∈ {1, 2, 3}. The rotations Yj around the y axis
are implemented using microwave pulses resonant with the
| j − 1〉 ↔ | j〉 transitions, while the phase rotations Zj are
realized in software (known as “virtual Z”) by appropri-
ately updating the phase of the respective carrier wave [43]
and are therefore near perfect. The concept of virtual Z
gates can be generalized to the ququart case, allowing the
direct implementation of relative phase rotations Z ( �φ) =
diag(1, eiφ1 , ei(φ1+φ2 ), ei(φ1+φ2+φ3 ) ) by updating all three carrier
waves at once, where �φ = (φ1, φ2, φ3), and φ j denotes the
phase shift to the jth microwave drive.

It has been shown that a sequence of at most six Yj ro-
tations interleaved with phase rotations Z suffices to realize
any ququart unitary [44], which is visualized in Fig. 1(a). In

our work we choose to modify the decomposition protocol
outlined in Ref. [44] such that only one Y3 rotation is re-
quired. This is because we do not observe the expected

√
j

scaling of the Rabi rate in experiment but instead find the
transition |2〉 ↔ |3〉 to have the smallest achievable Rabi rate.
Given a ququart unitary U , we can numerically optimize the
parameters of the sequence, where we formulate the opti-
mization problem such that we find a sequence with minimal
duration. Appendix B provides more details on the Rabi rate
calibration, while Appendix C describes the decomposition
optimization and includes Table II, showing decompositions
for H4, H ⊗ H , and a few more special gates.

B. Quantum optimal control

Instead of constructing a target gate from high-level
building blocks like precalibrated gates, one can take a
more low-level approach and directly search for control
pulses which make the quantum system undergo the desired
transformation. Quantum optimal control (QOC) deals with
finding such optimized pulses that implement desired oper-
ations, where the optimization can be based exclusively on
a simulated model (open-loop) or incorporate real hardware
feedback (closed loop). Here we use the open-source software
package JUQBOX [25,45] by Lawrence Livermore National
Laboratory (LLNL) as well as the proprietary tool BOULDER

OPAL [30,31] from Q-CTRL to solve open-loop tasks.
To this end, we model our superconducting transmon with

the Hamiltonian

H = H0 + Hc(t ) =
d̃−1∑
n=0

εn|n〉〈n| − iγ (t )(a − a†), (3)

where H0 and Hc describe the drift and the control Hamilto-
nian, respectively. γ (t ) is the control pulse, which we write
as

γ (t ) =
3∑

j=1

� j (t ) cos (ω jt + ϕ j (t ))

= Re

⎡
⎣ 3∑

j=1

(I j (t ) + iQ j (t ))eiω j t

⎤
⎦, (4)
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where for each subspace we define the quadratures I j (t ) =
� j (t ) cos (ϕ j (t )) = ∑Ns

s=1 αI
j,sBs(t ) and Qj (t ) = � j (t ) sin

(ϕ j (t )) = ∑Ns
s=1 α

Q
j,sBs(t ). In this work we follow the

parametrization implemented in JUQBOX, where pulse
envelopes are decomposed into Ns time-local B-spline basis
functions Bs(t ) with optimizable coefficients α

I/Q
j,s , which

allows a low-dimensional representation of long-duration
pulses.

We calibrate the resonant carrier frequencies
ω j = ε j − ε j−1 for the ququart subspace from Rabi
and Ramsey experiments and extrapolate the en-
ergies of higher levels as εn = ε3 + (n − 3)ω3 +
(n−2)(n−3)

2 (ω3 − ω2) for n > 3. This method essentially defines
an anharmonicity ξ = ω3 − ω2 and extends the calibrated
spectrum according to the anharmonic oscillator model. The
Hamiltonian is truncated at d̃ = 5 levels for simulation, which
includes a guard level outside our computational subspace to
capture leakage effects.

The open-loop optimal control task consists of adjusting
the pulse parameters α

I/Q
j,s such that one obtains a pulse that

minimizes the gate infidelity

1 − F�φ = 1 − 1

d2
|Tr(U †

T Z ( �φ)V�α )|2. (5)

Here UT denotes the target unitary at time T , and V�α describes
the unitary the pulse with parameter vector �α realizes. We
search for a pulse that implements the target up to a trailing
phase gate Z ( �φ), thus we also optimize over the phase vector
�φ. This effectively creates a manifold of equally desirable
optimization targets, some of which might be easier to realize
than the original target. Since virtual phase gates come at
zero cost in the experiment, this increases the freedom of
the optimization and generally allows for faster pulse im-
plementations. This trailing Z gate has the same effect as
Z ( �φ4) in the gate decomposition approach shown in Fig. 1(a).
Note that an explicit leading phase gate is not required,
as its effect is already captured by the phase relations of
I j + iQ j .

We further introduce additional cost terms to the optimiza-
tion problem to ensure a narrow Fourier spectrum of the pulse
γ , as well as to respect the power constraint

∑3
j=1

|� j (t )|
r j

�
(1 AWG) determined by the output limit of the arbitrary wave-
form generator (AWG). r j corresponds to the drive amplitude
the transmon experiences when we solely drive the jth tran-
sition at full power, which produces a frequency-dependent
response we calibrate in advance. Figure 1(b) shows op-
timized quadrature envelopes I j and Qj that modulate the
carrier waves to directly realize the ququart Hadamard H4

up to a final phase correction �φ = (4.265, 4.590, 0.000) (ra-
dians). We similarly obtain controls for the Hadamard tensor
product H ⊗ H . For this gate the freedom of a final phase cor-
rection did not help to achieve a reduced gate duration, so we
set �φ = �0. More details on the drive calibration can be found
in Appendix B, and further information on the optimal control
setup as well as visualizations of pulse results are included in
Appendix D.

III. EXPERIMENTAL RESULTS

We use the two-transmon processor presented in
Refs. [18,20], which is built from two superconducting
transmons with a flux-tunable coupler, and focus solely on
transmon Q1. Q2 remains in the ground state and can be
disregarded when the coupler is not modulated and biased
at the sweet spot. Details of the device are presented in
Appendix A.

A. Quantum process tomography

We start by estimating the quality of our optimal control
pulses via quantum-process tomography [46], which allows
us to fully characterize the corresponding quantum channel
E (ρ) = ∑

j,k χ jkB jρB†
k . We choose the operator basis {Bj}

depending on the scenario. While for true ququart gates
like the H4 we use products Zm

4 X n
4 of the generalized Pauli

operators X4 and Z4, in the encoded-qubits case we follow
the common choice of tensor products of qubit Pauli gates
σm ⊗ σn and apply the encoding scheme to map them to
ququart operators (m, n ∈ {0, 1, 2, 3}). We extract the process
matrix χ of a specific gate by applying it to 16 differently
prepared states {|k〉, (|l〉 + |k〉)/

√
2, (|l〉 − i|k〉)/

√
2} (k, l ∈

{0, 1, 2, 3}, k > l) and reconstructing the resulting state using
maximum likelihood estimation.

Figure 2 shows the process matrices for both gates of
interest H4 and H ⊗ H , comparing between ideal theory and
implementation on our transmon. Defining the experimental
process fidelity as F = |Tr[χideal χexpt]|, we obtain fidelities
of 86.19% and 84.06%, respectively. As a reference, we note
that performing no gate (thus, characterizing the identity 14)
leads to a process fidelity of 89.88%. We trace back this loss in
fidelity to measurement errors as the primary source, resulting
from the challenge of implementing a four-state single-shot
readout. A well-known disadvantage of quantum-process to-
mography for benchmarking quantum gates is that it cannot
separate gate errors from state preparation and measurement
(SPAM) errors, thus yielding a lower bound on the true gate
performance. We expand on the QPT configuration as well
as the measurement setup in Appendix E and include further
experimental results in Table IV.

B. Randomized benchmarking

Randomized benchmarking (RB) allows extracting the av-
erage error per Clifford gate rC without including SPAM
errors [47]. By averaging over randomly sampled sequences
of gates from the Clifford group C, the error channel becomes
effectively depolarizing; analyzing the exponential decay over
sequences of different depths m allows extracting the depo-
larization parameter pC . The error per gate is then given as
rC = d−1

d (1 − pC ) and the average gate fidelity defined as
FC = 1 − rC .

Again, we have to carefully distinguish both scenarios,
as the ququart Clifford group C4 and the two-qubit Clif-
ford group C⊗2

2 differ. While C4 can be generated from
{H4, Z4, S4 = diag(1,

√
i, i,

√
i)}, C⊗2

2 is generated by the
qubit gates {H, S,CX } and contains 11 520 elements (up to
scalars) [48]. C4 is not a subgroup of C⊗2

2 as H4 /∈ C⊗2
2 , for

instance.
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FIG. 2. Process matrices for quantum optimal control implementations of the (a) ququart H4 and (b) two-qubit H ⊗ H . The marker area
encodes the magnitude of each element while the color (shade) encodes the phase. The H4 process matrix is represented in the generalized
Pauli basis, while H ⊗ H is represented in the Pauli basis for two qubits. The exponent or index n ∈ {0, 1, 2, 3} takes on increasing values
from left to right or top to bottom for each tick in a label group.

In experiment, we perform ququart RB by sampling gates
from C4, as well as two-qubit RB by sampling and encod-
ing gates from C⊗2

2 , using sequences of depth m up to 100.
Each sampled gate is decomposed into elementary operations
as outlined in Sec. II A. The measured survival probabilities
are visualized in Fig. 3 and clearly show the exponential
decay. We obtain RB fidelities FC4 = 96.22(14)% and FC⊗2

2
=

95.84(05)% for the ququart RB and two-qubit RB, respec-
tively.

Interleaved randomized benchmarking

Interleaved RB (IRB) builds upon standard RB to charac-
terize the error of a specific Clifford group element G, which
is achieved by interleaving the gate of interest between the
randomly sampled RB gates [49]. Similar to standard RB, this
yields the depolarization parameter pC+G. Together with the
previously determined parameter pC , the gate fidelity can be
computed as

FG = 1 − rG = 1 − d − 1

d

(
1 − pC+G

pC

)
. (6)

We apply IRB to characterize the ququart Hadamard H4

and the Hadamard tensor product H ⊗ H , where we interleave
them between gates sampled from the appropriate Clifford
groups. We do this for both the gate-level decomposition as
well as the optimal control implementation of each gate and
juxtapose the results in Fig. 3. The open-loop optimized pulses
achieve an improvement over the gate-based realizations in
both cases: the H4 QOC pulse is benchmarked at 96.41(32)%,
while the decomposition achieves 96.18(32)% fidelity; the
H ⊗ H QOC pulse yields 95.98(19)% fidelity compared to
the decomposition with 95.17(26)%. This observation sug-
gests a good agreement between the Hamiltonian model and
the device. The main limitation is now caused by decoher-
ence, dominated by the increased dephasing in the {|2〉, |3〉}
subspace. We include more details on ququart RB as well as

additional results for special gates in Appendix F, and present
error simulations in Appendix G.

FIG. 3. Experimental results for (a) ququart RB [C4 Clifford
group, red] and (b) two-qubit RB [C⊗2

2 Clifford group, red (light
gray)] on a four-level transmon. Using IRB we benchmark (a) H4

and (b) H ⊗ H in the appropriate setting, for both their gate-level
decomposition [DEC, yellow (medium gray)] and their quantum
optimal control [QOC, blue (dark gray)] implementation. Markers
represent the mean survival probabilities, and error bars (smaller than
the marker size) are the standard deviations of these means.
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IV. CONCLUSION AND OUTLOOK

We demonstrate the coherent control of the lowest four
levels in a superconducting transmon, where we explore the
implementation of both high-level optimized gate sequences
and low-level optimized control pulses to realize target uni-
taries. While in the first approach we drive only one transition
at a time, the latter approach enables manipulating all internal
states at once by using open-loop quantum optimal control
tools.

We study the quantum system from two angles: from the
ququart perspective, as the four-dimensional generalization
of a qubit, and from the perspective of two encoded qubits.
We characterize gates from either perspective in QPT and RB
experiments, focusing in particular on the ququart H4 and the
two-qubit H ⊗ H gate. They have similar matrix represen-
tations but belong to different Clifford groups C4 and C⊗2

2 ,
respectively, and we observe IRB fidelities � 95% for both,
finding that the optimal control implementations perform
better.

The fundamental challenges of increased noise on higher
levels as well as the difficulty of performing a four-state read-
out limit the capabilities of our device. Future work should
explore the application of data-driven methods like presented
in Ref. [32] to incorporate hardware feedback into the pulse
calibration.

While recently presented related work also studied the
two-qubit encoding scheme [23,24], we explore optimally
controlled quantum gates on a transmon ququart and further
perform ququart randomized benchmarking using the Clifford
group C4.
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TABLE I. Ququart characterization. Relaxation times T1 and
Ramsey dephasing times TR between neighboring energy levels
| j − 1〉 ↔ | j〉 ( j = 1, 2, 3) are listed, as well as transition frequen-
cies ω j and on-chip drive responses r j to unit power AWG driving.

Transitions |0〉 ↔ |1〉 |1〉 ↔ |2〉 |2〉 ↔ |3〉
T1 (μs) 22.62 25.96 10.19
TR (μs) 40.60 42.32 2.68
Frequency ω j/2π (GHz) 3.2222 3.1021 2.9717
Drive response r j (MHz/AWG) 5.5528 5.6712 1.6749

shared facilities at the University of Chicago Materials Re-
search Science and Engineering Center.

APPENDIX A: DEVICE PARAMETERS
AND FABRICATION

The substrate used for the device fabrication is a 430-
μm-thick C-plane sapphire that was annealed at 1200 ◦C
for 2 h. A tantalum film, 200-nm thick, was sputtered at
800 ◦C. Large features are written with optical lithography
using Heidelberg MLA 150 aligner and wet-etched using
Transene tantalum etchant 111. Ebeam lithography with
Ratih EBPG5000 Plus e-beam writer was used to create the
junction mask with a double-layer resist consisting of MMA
EL11-950 and PMMA A7. The Dolan-bridge junctions were
evaporated in the Plassys electron-beam evaporator through
double-angle evaporation. 7 × 7 mm chips are diced and lifted
off. The resistance of the on-chip test junctions are measured
at room temperature to help preselection. The selected chip
was mounted on a printed circuit board, wire bounded, and
mounted inside a double-shielded μ-metal can. The coherence
times and frequency parameters are listed in Table I. We note
that we observe a larger T1 relaxation time for the |2〉 →
|1〉 transition than for the |1〉 → |0〉 transition, which seems
to contradict the expected scaling T1[| j〉 → | j − 1〉] ∼ T1/ j
[12]. This is due to our choice of centering the filter stop
bands around the |1〉 ↔ |2〉 transition, which leads to less pro-
tection for the other transitions. Figure 4 shows our device’s
false-colored optical image. Unused charge lines coupling
to the transmon pad are visible, which cause Purcell-limited
relaxation times between qudit levels. The cryogenic and
room-temperature measurement setup is illustrated in Fig. 8.

APPENDIX B: AWG DRIVE CALIBRATION
AND NATIVE GATES

In experiments, all components in the measurement and
control chain have their unique frequency response matrix.
To map the actual ququart drive strength observed in the
experiment to the drive strength specified by the input signal,
we need to extract the frequency response matrix between
the arbitrary waveform generator (AWG) and the transmon
around the frequency band used in the control pulse. In our
case we only need to consider the frequencies around the
three transitions |0〉 ↔ |1〉, |1〉 ↔ |2〉, and |2〉 ↔ |3〉, each
within a 25-MHz frequency span. We further assume that
under such a narrow span the frequency response matrix is
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FIG. 4. False-colored optical image of the device. The left trans-
mon (red, left “L” shape) is used as the ququart in the experiment.
Single-ququart rotations are sent through the input line coupled
to the resonator (blue, bottom left). The SQUID coupler (purple,
zoomed-in region) is kept biased to the flux sweet spot throughout
the experiment.

constant for each transition | j − 1〉 ↔ | j〉, which allows us
to directly extract the on-chip drive response factors r j : r j

is the experimentally measured effective drive strength at the
maximum AWG output power for each transition, determined
from the observed Rabi rate. For arbitrary transition rates, as
they appear in the optimal control pulses, the corresponding
AWG output power can be scaled accordingly. The unit of
these parameters is [r j] = MHz/AWG, where we overload
the abbreviation AWG to also refer to the amplitude unit of
the waveform generator. We include the calibrated r j values in
Table I. We note that we do not observe the expected scaling
r j ∼ √

j, which we suspect is due to the filter choices and
undesired couplings of the input line to external modes on
the chip. Especially for the |2〉 ↔ |3〉 transition, we suspect
that the unused control lines, which are directly coupled to
the transmon pads, cause a stray on-chip mode which blocks
this input signal. We do not study this more within the scope of
this work but instead adjust our gate decomposition method as
outlined in the main text to adapt to these circumstances. No
specific changes are required for the optimal control design
as the optimization directly takes the drive responses r j into
account, as discussed in Appendix D below.

For all physical rotations in the decomposed gate sequence,
the pulse shape is a Gaussian flat-top pulse with a 2σ = 5 ns
ramp and a 2σ = 5 ns tail, where σ is the standard deviation of
the Gaussian edge. In order to implement an arbitrary rotation
angle θ in the jth subspace, we tune the duration of the
constant part τ j of the flat-top section while keeping the power
unchanged. The overall gate duration Tj (θ ) = τ j (θ ) + 4σ is
then given by

Tj (θ ) = θ

2π
√

j r j × 1 AWG
−

√
2πerf (

√
2)σ + 4σ

≈ θ

2π
√

j r j × 1 AWG
+ 4 ns.

(B1)

APPENDIX C: NUMERICAL GATE DECOMPOSITION

We elaborate on finding the parameters of the gate de-
composition outlined in Sec. II A given a target unitary U .
Our native operation set consists of rotations Rj (θ, φ) =
Z†

j (φ)Yj (θ )Zj (φ) in the subspaces {| j − 1〉, | j〉}, j = {1, 2, 3},
which explicitly read

R1(φ, θ ) =

⎡
⎢⎢⎢⎢⎣

cos θ
2 −eiφ sin θ

2 0 0

e−iφ sin θ
2 cos θ

2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦, (C1a)

R2(φ, θ ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 cos θ

2 −eiφ sin θ
2 0

0 e−iφ sin θ
2 cos θ

2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦, (C1b)

R3(φ, θ ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

0 0 cos θ
2 −eiφ sin θ

2

0 0 e−iφ sin θ
2 cos θ

2

⎤
⎥⎥⎥⎥⎦. (C1c)

As derived in Ref. [44] and shown in Fig. 1, every
single-ququart gate U can be decomposed in the following
way:

U = Z ( �φ4)Y1(θ6)Y2(θ5)Y3(θ4)Z ( �φ3)

× Y1(θ3)Y2(θ2)Z ( �φ2)Y1(θ1)Z ( �φ1).
(C2)

Here Z ( �φi ) is a virtual ququart phase rotation which im-
plements all subspace phase shifts �φi = (φi,1, φi,2, φi,3) at
once. This decomposition holds up to a global phase, which
is inconsequential in the experiment. While at first it looks
like 4 × 3 phases + 6 angles = 18 real degrees of freedom,
which contradicts the 15 real degrees of freedom for an
element of SU(4), it is actually the case that one can fix
φ1,2 = φ1,3 = φ2,3 = 0 [44], leaving the right number of
parameters. We changed the indexing of the subspaces com-
pared to Ref. [44] such that the decomposition uses the
fewest gates in the third subspace. This was motivated by
the fact that we experimentally observed a significantly re-
duced achievable Rabi rate in this subspace as presented in
Appendix B, which would likely cause much slower gate
implementations when using the original decomposition un-
der the same experimental constraints. We emphasize that
Eq. (C2) represents the most general decomposition, and in
special cases not all gates might be needed. For instance,
we have X4 = Z (π, 0, 0)Y1(π )Y2(π )Y3(π ), but H4 requires all
gates as shown in Table II.

Given a target unitary U , we determine the decompo-
sition parameters θi ∈ [0, π ] and �φi ∈ [0, 2π )3 via numer-
ical optimization, where we primarily minimize the gate
infidelity,

1 − F = 1 − 1

d2
|Tr(U †V )|2, (C3)
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TABLE II. Numerically obtained decomposition parameters for
several gates according to Eq. (C2), together with sequence execu-
tion durations T computed using Eq. (B1). All angles are measured
in radians. We recognize decimal approximations of parameters as
multiples of π

2 or special analytical expressions which we show in
the lower table.

Gate θ1,2,3 θ4,5,6 �φ1 �φ2 �φ3 �φ4 T [ns]

π

2 θ̃1
3
2 π φ̃1 φ̃1

π

2

H4 θ̃2 θ̃2 0 3
2 π φ̃2

π

2 343
θ̃3

π

2 0 0 3
2 π π

2
π

2 θ̃1 π π π 0

H ⊗ H θ̃2 θ̃2 0 0 π π 365
θ̃1

π

2 0 0 π 0
π

2
π

2 π 0 π

2
3
2 π

1 ⊗ H 0 0 0 0 π

2
π

2 139
0 0 0 0 π 0

0 π

2 0 π 0 π

H ⊗ 1 π π 0 π π π 272
π

2 0 0 0 0 0

0 π 0 0 0 0
CX t=q1

c=q0
0 0 0 0 0 0 176
0 0 0 0 π 0
0 π 0 π π π

CX t=q0
c=q1

π π 0 3
2 π π π

2 309
0 0 0 0 π

2
3
2 π

θ̃1 θ̃2 θ̃3 φ̃1 φ̃2

Value 2.09440 1.91063 1.31812 5.17604 5.03414

eiθ̃/2 1+√
3i

2
1+√

2i√
3

√
5+√

3i√
8

− −
eiφ̃ − − −

√
2−√

8i√
10

1−3i√
10

between the target and the decomposition V = V (θi, �φi ). We
speak of a feasible decomposition if 1 − F � 10−8.

For a specific target, there may be many feasible decompo-
sitions; however, not all of them need to be reasonable with
respect to experimental implementation. Consider that the
identity operation 1 = Y1(π )Y1(π ) would be compatible with
the general formulation (C2) but unnecessarily expensive to
implement. Therefore we also want to minimize the estimated
overall gate duration

T ∗(θi ) =
6∑

i=1

θi

2π
√

j rs(i) × 1 AWG
, (C4)

which is determined by the rotation angles. For simplicity, we
assume rectangular pulse shapes in this model and consider
driving at the maximum AWG output like in the experiment.
The function s maps the angle index i to the correspond-
ing subspace index j. However, this approach is not ideal
because it could lead to the unnecessary splitting of oper-
ations. For instance, if U = Y1(π ), feasible decompositions
would be U = Y1(π ) (ideal) or U = Y1( π

3 )Y1( π
3 )Y1( π

3 ) (not
ideal). Therefore we actually use a different penalty of the

form

T̃ (θi ) =
6∑

i=1

√
θi

2π
√

j rs(i) × 1 AWG
. (C5)

This makes use of the fact that for a, b � 0,
√

a + b � √
a +√

b, with equality if and only if a or b equals zero. Thus
splitting of native rotations is discouraged. Other than that,
T̃ is still monotonically increasing in each θi and minimizing
T̃ also leads to reducing T ∗.

Additionally, it may be the case that (infinitely) many sets
of phase angles �φi lead to feasible decompositions, even for
optimal rotation angles. In order to reduce this degeneracy
and furthermore get a better intuition of the action of the gate
sequence, we steer the optimization towards phase angles that
are multiples of π

2 . In conjunction with Yj gates, these special
phase shifts effectively lead to rotations about the ±x axis and
±y axis in the jth subspace’s Bloch sphere. We achieve this
by introducing another cost term

P( �φi ) = 1

12

4∑
i=1

3∑
j=1

sin2(2φi, j ). (C6)

Overall, for a given target U we solve the minimization prob-
lem

θ̂i, �̂φi = arg min
θi, �φi

I + cT̃ T̃ + cPP (C7)

to find a feasible decomposition. We optimize a batch of ten
initial guesses for the optimization variables and check if the
best-obtained infidelity is below the desired threshold; if not,
we keep optimizing batches until we do. For a suitable choice
of penalty coefficients cT̃ and cP, this method is guaranteed
to succeed eventually since any unitary can be realized with
decomposition (C2). We set cT̃ = 0.2 to strongly encourage
fast sequences and cP = 0.05 to gently push the optimizer
towards preferred phase values and find this setup to work
consistently well in practice.

We show the decomposition for the ququart Hadamard H4

as well as several gates acting on two qubits in Table II and
further list the execution time computed by summing up the
individual pulse times according to Eq. (B1), rounded to the
full nanosecond. The numerically obtained parameter values
suggest that they approximate multiples of π

2 or more com-
plicated analytical expressions. For example, for the gate H4

we find θ1 ≈ 2.094 40, which has the property eiθ1/2 ≈ 1+√
3i

2 .
This analytical nature is reasonable given the structure of the
gates we consider to factor unitaries, which motivates study-
ing qudit gate decompositions further and finding better ways
to obtain these expressions directly.

APPENDIX D: OPTIMAL CONTROL

Our native as well as optimal-control pulses implement a
desired gate UT (duration T ) in the interaction frame defined
by |ψrot (t )〉 = eiH0t |ψlab(t )〉 with the Hamiltonian

Hint =
3∑

j=1

√
j

2
[I j (t )Yj + Qj (t )Xj],
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where I j and Qj are the quadrature signals for the jth sub-
space. In the optimal-control setting, they are built from
time-local B-spline basis functions, as defined in Sec. II B and
used in JUQBOX [25]:

I j (t ) =
Ns∑

s=1

αI
j,sBs(t ), Qj (t ) =

Ns∑
s=1

α
Q
j,sBs(t ). (D1)

However, computation in this frame cannot take the leakage
into higher energy levels into account; therefore we con-
sider a different rotating frame transformation |ψrot (t )〉 =
eiωrott n̂|ψlab(t )〉 to solve the open-loop optimal control problem
instead. This yields the Hamiltonian

Hrot (t ) =
d̃−1∑
n=0

(εn − nωrot )|n〉〈n|

+ 1

2
[I (t )(−i)(a − a†) + Q(t )(a + a†)], (D2)

with I (t ) + iQ(t ) = ∑3
j=1[I j (t ) + iQ j (t )]ei(ω j−ωrot )t . The

Hamiltonian is truncated at d̃ = 5 levels to account for
leakage, and we find this to be sufficient in simulation (see
Appendix G). Accordingly, the target gate has to be trans-
formed to U ′

T = Wtrans,T UT , where Wtrans,T = eiωrotT n̂e−iH0T .
The infidelity cost term becomes

1 − F�φ = 1 − 1

d2
|Tr(U ′†

T Z ( �φ)V�α )|2, (D3)

with the phase corrections �φ and pulse parameters �α =
(αI

j,s, α
Q
j,s) j,s that are optimized over.

We choose ωrot = ω1 to reduce the oscillating behavior
of the functions I and Q, which allows the choice of larger
time steps in the numerical solution of the dynamics. Typi-
cally we set the time-step size �t = 0.03 . . . 0.3 ns. In most
optimal control scenarios the gate time T needs to be fixed a
priori, and infidelity convergence is an indicator if the cho-
sen duration was sufficient to realize the gate. For the pulse
parametrization at hand, we choose the number of B-splines
Ns proportional to the gate time, Ns = � T

10 ns�, to ensure simi-
lar B-spline densities for pulses of different durations.

We try to find optimal control pulses of short durations as
decoherence limits the capabilities of our device, especially
due to increased dephasing in the {|2〉, |3〉} subspace (see
Table I). In this work we perform the duration optimization by
hand, which is achieved by reducing the gate time further and
further while making sure the numerical infidelity stays below
the threshold 1 − F�φ � 10−4. We note that this is a rather sim-
ple method that could be improved. One alternative approach
would be to make the duration T an optimization variable,
rescale all time variables with 1

T and all frequency variables
with T , respectively, and then solve the optimal control task
in the time interval [0, 1]. However, we observe worse conver-
gence and higher obtained gate durations in this case. Despite
its simpler nature, our method is sufficient for our purposes
and manages to show the impact of performing final phase
corrections using a virtual Z (VZ) on the gate time T . Figure 5
shows H4 pulse implementations both with (solid lines) and

FIG. 5. Optimal control pulses for ququart Hadamard H4, with
final VZ correction (solid lines, T = 350 ns) and without final VZ
correction (dashed lines, T = 420 ns). The vertical gray line marks
the duration of the former.

without a final VZ (dashed lines), where the difference in
duration is highlighted by the solid gray line. Interestingly,
we find that for the H ⊗ H tensor product optimizing with
a final VZ does not lead to a reduced gate duration; there-
fore we choose the optimization result without a VZ in our
experiments.

In the following, we provide details on the additionally in-
troduced cost terms like mentioned in Sec. II B. One important
hardware constraint the optimized control pulse needs to obey
is the power limit of the arbitrary waveform generator, which
imposes |γ (t )| � 1 AWG. Here we overload the abbreviation
AWG to use it as the corresponding power unit and further
reiterate that the conversion from the drive strength on-chip
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(in MHz) to AWG power is frequency dependent. With Eq. (4)
this constraint can be ensured by imposing

|γ (t )| �
3∑

j=1

|� j (t )|
r j

≡ �̃(t )
!
� 1 AWG, (D4a)

⇒
3∑

j=1

1

r j

√(
αI

j,s

)2 + (
α

Q
j,s

)2 � 1 AWG. (D4b)

At this time JUQBOX does not support constraints that in-
clude multiple optimization variables. Without any additional
knowledge of the structure of the target gate, the most general
approach is assigning one-third of the power budget to each
of the three carrier waves, which can be done by enforcing
|αI

j,s|, |αQ
j,s| � r j

3
√

2
. However, this may drastically reduce the

potential speed of the gate implementation, as no transition
is allowed to be driven at more than a third of the maximum
power.

We transition to using BOULDER OPAL [30] while sticking to
the JUQBOX pulse parametrization to overcome this limitation.
While BOULDER OPAL currently cannot directly implement
constraints of the form (D4b) either, it allows for a more
flexible formulation of the quantum control task, construction
of signals, and definition of cost terms. Let us consider the
functions

f (x) = [1 − g(x − a)]x + g(x − a)a, (D5)

g(x) = 1 − tanh
(− 1000x

a

) + 1

2
, (D6)

where g serves as a differentiable version of the Heaviside step
function �(x) that can be implemented in BOULDER OPAL’s
framework. f can be seen as a suppression function with
threshold a, which means f (x) ≈ x for x < a and f (x) ≈ a
for x � a. Using this we can construct a suppressed signal

�̃sup(t ) = f
(
�̃(t )

)
(D7)

and a penalty term

Pamp =
∫ T

0
|�̃(t ) − �̃sup(t )|dt, (D8)

which captures how much the original signal �̃ violates the
power constraint. We set the threshold amplitude to a =
0.95 AWG to allow the optimizer some slack to the critical
value of 1 AWG.

The second cost term addresses the assumption
of a constant frequency response matrix in the range
[−25 MHz, 25 MHz] around the three transition frequencies,
which we discuss in Appendix B. In order to be consistent
with this assumption in the optimal control pulse design, we
introduce a filter penalty to steer the optimization towards
pulses with narrow peaks in the Fourier spectrum:

Pfil =
3∑

j=1

∫ T

0

∣∣� j (t ) − �fil
j (t )

∣∣dt, (D9)

where �fil
j is the convolution of � j with a sinc kernel to limit

the bandwidth around each transition to [−25 MHz, 25 MHz].
The computation of the convolution is a built-in feature in
BOULDER OPAL.

FIG. 6. Optimal control pulses for the tensor product H ⊗ H
without a final VZ correction, T = 380 ns. Allowing a correction did
not lead to a significantly reduced gate duration.

The full optimal control problem then reads

α̂ j,s, �̂φ = arg min
α j,s, �φ

I �φ + campPamp + cfilPfil, (D10)

where we empirically choose camp = cfil = 1
2 . We show the

obtained pulse implementations for our gates of interest H4

and H ⊗ H in Figs. 5 and 6, respectively.

APPENDIX E: TOMOGRAPHY
AND READOUT HISTOGRAM

To perform single-ququart quantum-state tomography
(QST), we apply one of 16 different postrotation gates prior
to the single-shot readouts. This set T is shown in Table III,
where 1 is the identity gate, and the rotations R1, R2, and R3

are defined in Appendix C.
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TABLE III. Sets of prerotation (S) and postrotation (T ) gates
to implement quantum-state tomography and quantum-process
tomography.

Prerotation set S Postrotation set T

14 14

R1(0, π

2 ) R1(0, π

2 )
R1( π

2 , π

2 ) R1( π

2 , π

2 )
R1(0, π ) R1(0, π )
R2(0, π

2 ) R2(0, π

2 )
R2( π

2 , π

2 ) R2( π

2 , π

2 )
R2(0, π )R1(0, π

2 ) R2(0, π

2 )R1(0, π )
R2(0, π )R1( π

2 , π

2 ) R2( π

2 , π

2 )R1(0, π )
R2(0, π )R1(0, π ) R2(0, π )R1(0, π )
R3(0, π

2 ) R3(0, π

2 )
R3( π

2 , π

2 ) R3( π

2 , π

2 )
R3(0, π )R2(0, π

2 ) R3(0, π

2 )R2(0, π )
R3(0, π )R2( π

2 , π

2 ) R3( π

2 , π

2 )R2(0, π )
R3(0, π )R2(0, π )R1(0, π

2 ) R3(0, π

2 )R2(0, π )R1(0, π )
R3(0, π )R2(0, π )R1( π

2 , π

2 ) R3( π

2 , π

2 )R2(0, π )R1(0, π )
R3(0, π )R2(0, π )R1(0, π ) R3(0, π )R2(0, π )R1(0, π )

The single-shot readouts are collected after applying the
postrotations. The readout histogram and heat map of the
assignment fidelity matrix are visualized in Fig. 7. We apply
the confusion matrix, which is the inverse matrix of the nor-
malized readout heat map, to the single-shot data to reduce the
readout error. Maximum likelihood estimation (MLE) is then
used to reconstruct the physical density matrix.

The single-ququart process tomography (QPT) [46] is per-
formed by sandwiching the unknown quantum channel E with
different combinations of prerotation and postrotation gates,
where the prerotation set S is shown in Table III.

After applying each prerotation and the gate for charac-
teristics, the density matrix is reconstructed through MLE
QST. The full quantum channel E (ρ) = ∑

i, j χi jBiρB†
j is

calculated based on Ref. [50] with either the basis {Bi} =
{Zm

4 X n
4 } (ququart scenario) or {Bi} = {σm ⊗ σn} (two-qubit

scenario, ququart encoding), m, n = {0, 1, 2, 3}. Here Z4 and
X4 are the single-ququart Pauli operators, and σm denotes
one of the qubit Pauli operators {1, X,Y, Z}. The operator
basis elements are orthogonal under the Hilbert-Schmidt inner
product: Tr[B†

i B j] = d δi j . The process fidelity of two chan-

FIG. 7. Readout characterization. (a) Single-shot histogram after
phase rotation and (b) heat map of detection probabilities (in %).
Single-ququart basis states are prepared and measured 5000 times.

TABLE IV. Single-ququart gate fidelity characterized by QPT,
for decomposed gates (DEC) and optimally controlled gates (QOC).
In the QOC implementation of H ⊗ H we only considered the case
without a final VZ, see Appendix D.

QOC

Gate DEC No VZ With VZ

14 − 89.88% −
Z4 − 88.85% −
H4 84.30% 81.35% 86.18%
H ⊗ H 83.53% 84.06% −∗

X ⊗ H 83.47% − −
H ⊗ 1 84.80% − −
CX t=q0

c=q1
85.36% − −

nels with process matrices χ1 and χ2 is then given by

F = |Tr[χ1χ2]|, (E1)

which in the case of unitary channels recovers the expression
(C3). Table IV shows our experimental QPT results.

APPENDIX F: QUQUART RB

In the RB protocol [47] one constructs sequences of m
Clifford gates CmCm−1 · · ·C1 and further computes inver-
sion gates Cinv, which invert the effect of the sequences:
CinvCmCm−1 · · ·C1 = 1. Cinv can be computed efficiently due
to the Gottesman-Knill theorem [51]. In the experiment, one
initializes the system in the ground state, applies the sequence,
and measures the population in the ground state (survival
probability) Pm.

Averaging over different sequences effectively corresponds
to a depolarizing channel, and the depolarization parameter p
can be extracted from a fit to the exponential decay 〈Pm〉 =
Apm + B. The error per Clifford gate (or for a specific Clifford
gate in the IRB setting) is then determined as described in
Sec. III B.

Since RB relies on sampling from the Clifford group,
choosing the appropriate Clifford group for a certain scenario
is important. The Clifford group C is defined as the group
which normalizes the Pauli group P . In the ququart case,
the Pauli group P4 consists of products of X4 and Z4, which
are normalized by H4 and S4 = diag(1,

√
i, i,

√
i) [52]. Z4

trivially is an element of the ququart Clifford group C4 and we
check numerically that {H4, Z4, S4} can generate the predicted
number of 768 elements in C4 [53]. In the case of two qubits,
the Pauli group P⊗2

2 is given by the tensor product of the
single-qubit operators 1, X , Y and Z , and the gates {H, S,CX }
generate the Clifford group C⊗2

2 with 11 520 elements (up to
scalars) [48].

For the ququart case, we sample from C4 which we con-
struct explicitly, and for the two-qubit case we use QISKIT [54]
to produce RB sequences. In either case we decompose the
matrices for each gate in a sequence according to decompo-
sition (C2) in order to implement the RB experiment on our
transmon. RB and IRB results are summarized in Table V.
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FIG. 8. Measurement setup.

APPENDIX G: ERROR BUDGET

Table VI shows the infidelities of different ququart gates
extracted from simulating the Lindblad master equation. We
compare the noise-free case with the noisy case, where for the
latter we include decay and dephasing collapse operators for
each subspace using the experimentally measured lifetimes.
The simulation time step is set to dt = 0.001 ns for high

TABLE V. Single-ququart gate fidelity characterized by different
types of RB experiments, for decomposed gates (DEC) and quantum
optimally controlled gates (QOC). The H4 gate fidelity is character-
ized using the Clifford group C4, other gates are characterized using
the Clifford group C⊗2

2 . Base fidelity for RB with C4 is 96.22(14)%,
and with C⊗2

2 is 95.84(5)%. We only consider the VZ implementation
for the QOC H4 pulse.

Gate DEC QOC

H4 96.18(32)% 96.41(32)%
H ⊗ H 95.17(19)% 95.98(19)%
1 ⊗ H 98.51(13)% −
H ⊗ 1 96.70(29)% −
CX t=q1

c=q0
96.68(24)% −

CX t=q0
c=q1

98.84(17)% −

numerical precision, which is over an order of magnitude
lower than what was used for the pulse optimization (see
Appendix D). We perform all simulations with the lowest 5×
energy levels of the transmon to account for a leakage into
higher levels. By taking the trace of the 4 × 4 submatrix which
describes the ququart state, we verify for each simulation
result that leakage into the fifth state is below 0.01%,
justifying the truncation of the Hamiltonian at d̃ = 5
levels.

TABLE VI. Ququart gate infidelities extracted from simulation.
DEC: decomposition, QOC: quantum optimal control.

Gate Decoherence-free Decoherence

H4 DEC 0.42% 4.53%

H ⊗ H DEC 0.41% 4.78%

CX t=q1
c=q0

DEC 0.38% 4.11%

CX t=q0
c=q1

DEC 0.03% 2.18%

H ⊗ I DEC 0.62% 3.89%

I ⊗ H DEC 0.11% 1.82%

H4 QOC 0.08% 4.28%

H ⊗ H QOC 0.26% 4.81%
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We observe that the optimal control pulses can theoreti-
cally reduce the decoherence-free infidelities by more than
30%, and future work will be optimizing pulse duration to re-

duce the decoherence error further. The difference in infidelity
between the ideal simulation here and the optimization target
1 − F�φ � 10−4 arises from the increased time-step precision.

[1] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and high-
dimensional quantum computing, Front. Phys. 8, (2020).

[2] A. S. Nikolaeva, E. O. Kiktenko, and A. K. Fedorov,
Efficient realization of quantum algorithms with qudits,
arXiv:2111.04384.

[3] Y. Deller, S. Schmitt, M. Lewenstein, S. Lenk, M. Federer, F.
Jendrzejewski, P. Hauke, and V. Kasper, Quantum approximate
optimization algorithm for qudit systems, Phys. Rev. A 107,
062410 (2023).

[4] A. Bocharov, M. Roetteler, and K. M. Svore, Factoring with
qutrits: Shor’s algorithm on ternary and metaplectic quantum
architectures, Phys. Rev. A 96, 012306 (2017).

[5] D. M. Nguyen and S. Kim, Quantum key distribution protocol
based on modified generalization of Deutsch-Jozsa algorithm in
d-level quantum system, Int. J. Theor. Phys. 58, 71 (2019).

[6] J. M. Baker, C. Duckering, and F. T. Chong, Efficient quantum
circuit decompositions via intermediate qudits, in 2020 IEEE
50th International Symposium on Multiple-Valued Logic (IS-
MVL) (IEEE, New York, 2020), pp. 303–308.

[7] J. M. Baker, C. Duckering, P. Gokhale, N. C. Brown, K. R.
Brown, and F. T. Chong, Improved quantum circuits via inter-
mediate qutrits, ACM Trans. Quantum Comput. 1, 1 (2020).

[8] E. Kapit, Hardware-efficient and fully autonomous quantum
error correction in superconducting circuits, Phys. Rev. Lett.
116, 150501 (2016).

[9] Z. Li, T. Roy, D. R. Perez, K.-H. Lee, E. Kapit, and D. I.
Schuster, Autonomous error correction of a single logical qubit
using two transmons, arXiv:2302.06707.

[10] S. Muralidharan, C.-L. Zou, L. Li, J. Wen, and L. Jiang, Over-
coming erasure errors with multilevel systems, New J. Phys. 19,
013026 (2017).

[11] R. Majumdar, S. Basu, S. Ghosh, and S. Sur-Kolay, Quantum
error-correcting code for ternary logic, Phys. Rev. A 97, 052302
(2018).

[12] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M.
Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao, and
I. Siddiqi, Quantum information scrambling on a superconduct-
ing qutrit processor, Phys. Rev. X 11, 021010 (2021).

[13] M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P.
Schindler, and T. Monz, A universal qudit quantum processor
with trapped ions, Nat. Phys. 18, 1053 (2022).

[14] P. Hrmo, B. Wilhelm, L. Gerster, M. W. van Mourik, M. Huber,
R. Blatt, P. Schindler, T. Monz, and M. Ringbauer, Native
qudit entanglement in a trapped ion quantum processor, Nat.
Commun. 14, 2242 (2023).

[15] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng,
M. Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, A. Zeilinger,
and J.-W. Pan, Quantum teleportation in high dimensions, Phys.
Rev. Lett. 123, 070505 (2019).

[16] A. Morvan, V. V. Ramasesh, M. S. Blok, J. M. Kreikebaum, K.
O’Brien, L. Chen, B. K. Mitchell, R. K. Naik, D. I. Santiago,
and I. Siddiqi, Qutrit randomized benchmarking, Phys. Rev.
Lett. 126, 210504 (2021).

[17] N. Goss, A. Morvan, B. Marinelli, B. K. Mitchell, L. B.
Nguyen, R. K. Naik, L. Chen, C. Jünger, J. M. Kreikebaum,
D. I. Santiago, J. J. Wallman, and I. Siddiqi, High-fidelity qutrit
entangling gates for superconducting circuits, Nat. Commun.
13, 7481 (2022).

[18] T. Roy, Z. Li, E. Kapit, and D. I. Schuster, Realization of two-
qutrit quantum algorithms on a programmable superconducting
processor, arXiv:2211.06523.

[19] K. Luo, W. Huang, Z. Tao, L. Zhang, Y. Zhou, J. Chu, W. Liu,
B. Wang, J. Cui, S. Liu, F. Yan, M.-H. Yung, Y. Chen, T. Yan,
and D. Yu, Experimental realization of two qutrits gate with
tunable coupling in superconducting circuits, Phys. Rev. Lett.
130, 030603 (2023).

[20] T. Roy, Z. Li, E. Kapit, and D. I. Schuster, Two-qutrit quan-
tum algorithms on a programmable superconducting processor,
Phys. Rev. Appl. 19, 064024 (2023).

[21] A. Litteken, L. M. Seifert, J. Chadwick, N. Nottingham, F. T.
Chong, and J. M. Baker, Qompress: Efficient compilation for
ququarts exploiting partial and mixed radix operations for
communication reduction, in Proceedings of the 28th ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2023
(Association for Computing Machinery, New York, NY, USA,
2023), Vol. 2, pp. 646–659.

[22] A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, T.
Roy, Z. Li, D. Schuster, F. T. Chong, and J. M. Baker, Dancing
the Quantum Waltz: Compiling Three-Qubit Gates on Four
Level Architectures, in Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture (Association for
Computing Machinery, New York, NY, USA, 2023), pp. 1–14.

[23] S. Cao, M. Bakr, G. Campanaro, S. D. Fasciati, J. Wills, D. Lall,
B. Shteynas, V. Chidambaram, I. Rungger, and P. Leek, Emulat-
ing two qubits with a four-level transmon qudit for variational
quantum algorithms, arXiv:2303.04796.

[24] Y. Dong, Q. Liu, J. Wang, Q. Li, X. Yu, W. Zheng, Y. Li, D.
Lan, X. Tan, and Y. Yu, Simulation of two-qubit gates with
a superconducting qudit, Phys. Status Solidi B 259, 2100500
(2022).

[25] N. Anders Petersson and F. Garcia, Optimal control of closed
quantum systems via B-splines with carrier waves, SIAM J. Sci.
Comput. 44, A3592 (2022).

[26] S. Günther, N. A. Petersson, and J. L. Dubois, Quandary: An
open-source C + + package for high-performance optimal con-
trol of open quantum systems (IEEE Computer Society, 2021),
pp. 88–98.

[27] M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss,
K. P. Horn, D. M. Reich, and C. P. Koch, Krotov: A Python
implementation of Krotov’s method for quantum optimal con-
trol, SciPost Phys. 7, 080 (2019).

[28] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, Optimal control of coupled spin dynamics: De-
sign of NMR pulse sequences by gradient ascent algorithms,
J. Magn. Reson. 172, 296 (2005).

062609-12

https://doi.org/10.3389/fphy.2020.589504
http://arxiv.org/abs/arXiv:2111.04384
https://doi.org/10.1103/PhysRevA.107.062410
https://doi.org/10.1103/PhysRevA.96.012306
https://doi.org/10.1007/s10773-018-3910-4
https://doi.org/10.1145/3406309
https://doi.org/10.1103/PhysRevLett.116.150501
http://arxiv.org/abs/arXiv:2302.06707
https://doi.org/10.1088/1367-2630/aa573a
https://doi.org/10.1103/PhysRevA.97.052302
https://doi.org/10.1103/PhysRevX.11.021010
https://doi.org/10.1038/s41567-022-01658-0
https://doi.org/10.1038/s41467-023-37375-2
https://doi.org/10.1103/PhysRevLett.123.070505
https://doi.org/10.1103/PhysRevLett.126.210504
https://doi.org/10.1038/s41467-022-34851-z
http://arxiv.org/abs/arXiv:2211.06523
https://doi.org/10.1103/PhysRevLett.130.030603
https://doi.org/10.1103/PhysRevApplied.19.064024
http://arxiv.org/abs/arXiv:2303.04796
https://doi.org/10.1002/pssb.202100500
https://doi.org/10.1137/21M1429618
https://doi.org/10.21468/SciPostPhys.7.6.080
https://doi.org/10.1016/j.jmr.2004.11.004


EXPLORING QUQUART COMPUTATION ON A TRANSMON … PHYSICAL REVIEW A 108, 062609 (2023)

[29] T. Propson, B. E. Jackson, J. Koch, Z. Manchester, and D. I.
Schuster, Robust quantum optimal control with trajectory opti-
mization, Phys. Rev. Appl. 17, 014036 (2022).

[30] Q-CTRL, Boulder Opal (2023).
[31] H. Ball, M. J. Biercuk, A. R. R. Carvalho, J. Chen, M. Hush,

L. A. D. Castro, L. Li, P. J. Liebermann, H. J. Slatyer, C.
Edmunds, V. Frey, C. Hempel, and A. Milne, Software tools for
quantum control: Improving quantum computer performance
through noise and error suppression, Quantum Sci. Technol. 6,
044011 (2021).

[32] R.-B. Wu, B. Chu, D. H. Owens, and H. Rabitz, Data-driven
gradient algorithm for high-precision quantum control, Phys.
Rev. A 97, 042122 (2018).

[33] D. Puzzuoli, C. J. Wood, D. J. Egger, B. Rosand, and K. Ueda,
Qiskit dynamics: A python package for simulating the time
dynamics of quantum systems, J. Open Source Softw. 8, 5853
(2023).

[34] S. Günther, N. A. Petersson, and J. L. DuBois, Quantum op-
timal control for pure-state preparation using one initial state,
AVS Quantum Sci. 3, 043801 (2021).

[35] A. J. Goldschmidt, J. L. DuBois, S. L. Brunton, and J. N. Kutz,
Model predictive control for robust quantum state preparation,
Quantum 6, 837 (2022).

[36] O. R. Meitei, B. T. Gard, G. S. Barron, D. P. Pappas, S. E.
Economou, E. Barnes, and N. J. Mayhall, Gate-free state prepa-
ration for fast variational quantum eigensolver simulations, npj
Quantum Inf. 7, 155 (2021).

[37] X. Wu, S. L. Tomarken, N. A. Petersson, L. A. Martinez, Y. J.
Rosen, and J. L. DuBois, High-fidelity software-defined quan-
tum logic on a superconducting qudit, Phys. Rev. Lett. 125,
170502 (2020).

[38] L. M. Seifert, J. Chadwick, A. Litteken, F. T. Chong, and J. M.
Baker, Time-efficient qudit gates through incremental pulse re-
seeding, in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE) (IEEE Computer Society,
Washington, DC, 2022), pp. 304–313.

[39] J. Chadwick and F. T. Chong, Efficient control pulses for
continuous quantum gate families through coordinated re-
optimization, arXiv:2302.01553.

[40] A. R. R. Carvalho, H. Ball, M. J. Biercuk, M. R. Hush, and
F. Thomsen, Error-robust quantum logic optimization using a
cloud quantum computer interface, Phys. Rev. Appl. 15, 064054
(2021).

[41] D. Gottesman, Fault-tolerant quantum computation with higher-
dimensional systems, in Quantum Computing and Quantum

Communications, Lecture Notes in Computer Science, edited
by C. P. Williams (Springer, Berlin, Heidelberg, 1999), pp.
302–313.

[42] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Charge-insensitive qubit design de-
rived from the Cooper pair box, Phys. Rev. A 76, 042319
(2007).

[43] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M.
Gambetta, Efficient Z gates for quantum computing, Phys. Rev.
A 96, 022330 (2017).

[44] P. Dita, Factorization of unitary matrices, J. Phys. A: Math. Gen.
36, 2781 (2003).

[45] N. A. Petersson, F. M. Garcia, A. E. Copeland, Y. L. Rydin, and
J. L. DuBois, Discrete adjoints for accurate numerical optimiza-
tion with application to quantum control, arXiv:2001.01013.

[46] I. L. Chuang and M. A. Nielsen, Prescription for experimental
determination of the dynamics of a quantum black box, J. Mod.
Opt. 44, 2455 (1997).

[47] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and
robust randomized benchmarking of quantum processes, Phys.
Rev. Lett. 106, 180504 (2011).

[48] P. Selinger, Generators and relations for n-qubit Clifford opera-
tors, Log. Methods Comput. Sci. 11, 1570 (2015).

[49] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan,
J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe,
M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen,
Efficient measurement of quantum gate error by interleaved
randomized benchmarking, Phys. Rev. Lett. 109, 080505
(2012).

[50] M. Mohseni, A. T. Rezakhani, and D. A. Lidar, Quantum-
process tomography: Resource analysis of different strategies,
Phys. Rev. A 77, 032322 (2008).

[51] D. Gottesman, The Heisenberg representation of quantum
computers, Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics, edited by
S. P. Corney, R. Delbourgo, and P. D. Jarvis (International Press,
Cambridge, MA, 1999), pp. 32–43. arXiv:quant-ph/9807006.

[52] E. Hostens, J. Dehaene, and B. De Moor, Stabilizer states and
Clifford operations for systems of arbitrary dimensions and
modular arithmetic, Phys. Rev. A 71, 042315 (2005).

[53] J. Tolar, On Clifford groups in quantum computing, J. Phys.:
Conf. Ser. 1071, 012022 (2018).

[54] QISKIT contributors, QISKIT: An open-source framework for
quantum computing (2023).

062609-13

https://doi.org/10.1103/PhysRevApplied.17.014036
https://doi.org/10.1088/2058-9565/abdca6
https://doi.org/10.1103/PhysRevA.97.042122
https://doi.org/10.21105/joss.05853
https://doi.org/10.1116/5.0060262
https://doi.org/10.22331/q-2022-10-13-837
https://doi.org/10.1038/s41534-021-00493-0
https://doi.org/10.1103/PhysRevLett.125.170502
http://arxiv.org/abs/arXiv:2302.01553
https://doi.org/10.1103/PhysRevApplied.15.064054
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1088/0305-4470/36/11/309
http://arxiv.org/abs/arXiv:2001.01013
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.2168/LMCS-11(2:10)2015
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1103/PhysRevA.77.032322
http://arxiv.org/abs/arXiv:quant-ph/9807006
https://doi.org/10.1103/PhysRevA.71.042315
https://doi.org/10.1088/1742-6596/1071/1/012022

