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A recent theoretical proposal for teleamplification requires preparation of Fock states, programmable in-
terferometers, and photon-number resolving detectors to herald the teleamplification of an input state. These
enable teleportation and heralded noiseless linear amplification of a photonic state up to an arbitrarily large
energy cutoff. We report on adapting this proposal for the Borealis boson-sampling device and demonstrating
teleamplification of squeezed-vacuum states with variable amplification factors. The results match the theoretical
predictions and exhibit features of amplification in the teleported mode, with fidelities from 50 to 93%. This
demonstration motivates the continued development of photonic quantum computing hardware for noiseless
linear amplification’s applications across quantum communication, sensing, and error correction.

DOI: 10.1103/PhysRevA.108.062606

I. INTRODUCTION

Loss is a serious challenge to photonic quantum infor-
mation processing. Given the impossibility of noiselessly
amplifying arbitrary quantum states [1–7], loss must only be
avoided. Noiseless amplification, however, does exist in spe-
cific scenarios: any state with a maximal photon number can
be perfectly amplified using a recent probabilistic protocol
[8]. In fact, this protocol can herald the perfect amplification
of any state up to a resource-dependent cutoff, while si-
multaneously achieving quantum-state teleportation. We here
demonstrate this “teleamplification” procedure on Xanadu’s
machine Borealis.

Noiseless deterministic amplification would violate the no-
cloning theorem [9–13] by allowing the transformation |α〉 →
|√2α〉 followed by a beam-splitter transformation |√2α〉 →
|α〉 ⊗ |α〉 for any input coherent state |α〉, which would solve
numerous problems such as transportation of quantum states
over large distances [14], while rendering quantum key distri-
bution schemes insecure [15] and allowing for superluminal
communication [16,17]. Quantum theory allows two alterna-
tives: noise-added amplification, which places an upper bound
on the fidelity between the actual amplified state and the
desired amplified state [18–26], and nondeterministic ampli-
fication, which may achieve perfect fidelities at the expense
of not always succeeding [27–37]. A new scheme of the
latter type was recently developed [8], with the benefits of
being heralded, such that one can be certain which of a
series of trials succeeded at amplification, of enjoying sig-
nificantly higher success probabilities than previous methods,
and of working for all possible input states. The scheme re-
quires a fixed linear optical network with one programmable
beam-splitter transmissivity to control the amount of ampli-
fication, supplemented with either single-photon input states
and photon-number-resolving detectors (PNRDs) or a Fock-
state input and detectors capable of distinguishing between

zero, one, and more than one photon at the output. Then, any
arbitrary input state can be fed into the circuit for probabilistic,
heralded amplification with arbitrarily large fidelity increasing
with the number of modes in the fixed circuit.

Teleamplification, being an ideal form of noiseless linear
amplification, has applications across quantum information
science. These include quantum key distribution [38,39],
quantum error correction [40], imaging beyond the diffraction
limit [41], and repeaters for quantum communication [42–44].
In a recent work, it was demonstrated that a form of noiseless
linear amplification using a continuous-variable Bell state can
improve the decoherence resistance of teleportation protocols
[45]. Amplification using only linear interferometers was
already demonstrated in the noise-added case in Ref. [26],
while linear interferometers and postselection fruitfully
combine for a number of applications [46–51]. We here
go beyond Ref. [45]’s demonstration of teleportation and
amplification of coherent and displaced thermal states by
teleamplifying squeezed states, use a different protocol
without nonlinear elements, and attain a maximum fidelity of
92.6(9)% to rival Ref. [45]’s 92% when comparing the same
gain factor of g = 1.

Gaussian boson sampling has the same requirements as the
teleamplification protocol: programmable interferometers and
PNRDs. The only difference is that Gaussian boson sampling
requires squeezed light as input states while teleamplification
requires Fock-state inputs, but Fock states can be generated
by heralding the detection of n photons in one arm of a two-
mode squeezed-vacuum (TMSV) state. Teleamplification is
thus amenable to Borealis, a Gaussian boson-sampling device
available on the cloud.

A strong advantage of Borealis is its tunability. Borealis
has been used to demonstrate quantum advantages in bo-
son sampling [52], as well as for measuring quantumness
quantifiers [53] and solving graph theory problems [54].
Instead of having to construct a bespoke teleamplification
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device, Borealis can readily be adapted to the task at hand,
and we used it to test teleamplification of a variety of
P-nonclassical input states with a variety of amplification
factors. These together demonstrate the usefulness of Gaus-
sian boson-sampling devices throughout quantum information
processing applications.

II. METHODS

A. Teleamplification goal

We begin with an arbitrary single-mode quantum state
expressed in the Fock basis as

|ψ〉 =
∞∑

k=0

ψk |k〉 , (2.1)

where the Fock states are created by bosonic operators
([â, â†] = 1) acting on the vacuum |k〉 = â†k |vac〉 /

√
k!.

One such state is the coherent state |α〉 with a Poissonian
photon-number distribution ψk ∝ αk/

√
k!. Ideal noiseless

amplification up to a linear cutoff enacts

|ψ〉 →
g;n

|gψ ; n〉 ∝
n∑

k=0

gkψk |k〉 . (2.2)

In the limit of n → ∞ or for states with a maximum ini-
tial photon number, this amplification is perfect |gψ ; n〉 ∝
gâ†â |ψ〉. Such a transformation magnifies all coherent-state
amplitudes as α → gα regardless of their initial phases and
could be used to perfectly clone any input coherent state using
the method given in the introduction. Noise-added amplifi-
cation using linear optics and tunable g was demonstrated in
Ref. [55]. In contrast, since teleamplification can be made as
ideal as desired, it must be probabilistic.

B. Teleamplification ingredients

To implement Eq. (2.2), Ref. [8] proposed to combine two
ingredients: (1) a variable beam splitter with transmissivity
τ = g2/(1 + g2) acting on the vacuum and a Fock state |n〉 and
(2) a linear optical circuit that implements a Fourier transform
on n + 1 modes of which n − 1 begin in the vacuum state, one
ends in the vacuum state, and the other n end in single-photon
states. Putting these two together yields an operator propor-
tional to

∑n
k=0 gk |k〉 〈k| on the appropriate mode. There is a

fixed set of beam splitters and phase shifters that are known to
generate these specific linear optical circuits for any positive
integer n; the Fourier transform circuit [56,57], for exam-
ple, has been demonstrated with four photons [58] and eight
modes [59].

The state |ψ〉 and the output from the variable beam splitter
are the two other inputs to the Fourier circuit, while the state
|gψ ; n〉 gets teleported to the remaining output of the variable
beam splitter. To repeat, this teleportation and amplification
is only successful when n of the Fourier transform’s outputs
are measured to be single photons and the other one to be the
vacuum state. Different patterns of where the vacuum state
appears among the n + 1 output modes yield teleamplified
states with different rephasings of the coefficients ψk , which
can be deterministically corrected just like in qubit teleporta-
tion where different Bell-state measurements require different

updates to be performed on the state, parametrized by classical
bits.

C. Adapting the scheme for Borealis

To enact this transformation on Borealis, we first need
access to a Fock state |n〉. Borealis carves from a single
continuous-wave laser source at 775 nm a series of pumps that
produce phase-stable single-mode squeezed-vacuum (SMSV)
states

|SMSV〉 = 1√
cosh r

∞∑
k=0

(− tanh r)k

√
(2k)!

2kk!
|2k〉 (2.3)

in time bins separated by 1/6 MHz with average power
3.7 mW and duration 3 ns per pulse, sends them through a
series of phase elements and variably coupled delay lines such
that many different time bin modes have the opportunity to in-
teract with each other, then sends each mode to one of an array
of PNRDs to have its photon number measured. Further tech-
nical specifications and diagrams of the setup can be found
in Ref. [52]. To make a Fock state with these resources, we
begin by combining two equal-magnitude SMSV states on a
symmetric beam splitter, setting the phase on the beam splitter
in such a way [60] that they combine into a TMSV state:

|TMSV〉 = 1

cosh r

∞∑
k=0

(− tanh r)k |k〉 ⊗ |k〉 . (2.4)

We send one branch of this state to a PNRD, whose
measurement result is an integer n that heralds the presence
of a Fock state |n〉 in the other branch. The state that we
choose to amplify is also a SMSV state, such that n = 2
is the smallest nontrivial cutoff for teleamplification (note
that |SMSV〉 has no single-photon component). This step is
depicted in the top two rails of Fig. 1.

The rest of the linear optical network is implemented using
Borealis’s programmable phase shifters and beam splitters
before all of the modes are sent to PNRDs: some modes
are used for heralding the success of the Fourier transform
circuit and thus of the teleamplification, while one mode is
measured to characterize the properties of the teleamplified
state. The one caveat is that not every time bin mode can
directly interact with each other; the first delay loop allows
neighbors to interact, the second pairs modes that are six time
bins apart, and the final brings together modes that are 36 time
bins apart. For the appropriate five modes to interact (two to
create the TMSV state, one SMSV state to be amplified, and
n = 2 additional vacuum states input to the Fourier transform
circuit), we must extend our circuit to act over 20 modes of
which the majority begin and end as vacuum states.

Our overall circuit diagram can be found in Fig. 1. This is
an unraveled view of a time bin circuit, with descending wires
representing subsequent time bins. Highlighted in yellow are
the five rails that are necessary for the circuit to operate, while
the rest of the diagram depicts modes that are necessary due
to Borealis’s specific architecture. A version of the diagram
that focuses only on these highlighted rails can be found in
Appendix A.

First, we perform the symmetric beam splitter on the two
initial SMSV states to create the TMSV state by delaying the
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FIG. 1. Circuit programmed for Borealis. There are 20 time bin modes unraveled from top to bottom for visualization purposes; highlighted
(in yellow) to display the flow of information in a simplified circuit are the relevant five modes required for creating a Fock state (two) and
implementing teleamplification up until n = 2 (|ψ〉 and two vacuum modes). The first two modes have SMSV states such that the first is used
to herald a two-photon Fock state in the second. The third mode has the state |ψ〉 to be amplified up to n = 2, which can be any state and
which is here another SMSV state. The amount of amplification is set by the transmission parameter τ . On Borealis, modes can interact with
adjacent time bins by waiting in the first delay loop until the neighbor arrives, time bins six modes away by waiting at the second delay loop
until the sixth-nearest neighbor arrives, and similarly for the 36th-nearest neighbor. This is why all of the beam splitters in the sketch connect
neighbors or sixth-nearest neighbors and cascade from top left to bottom right. We use rectangles for beam splitters with their probabilities
of being transmitted into the loop written on top, with the X boxes physically implying complete reflection and computationally implying
complete transmission: whatever is in the loop is saved in the loop and whatever is outside the loop bypasses the loop so that each is directed
to where the other would have gone if the beam splitter was absent. The circles are phase shifts that are applied to a mode before it enters a
delay loop. Most of the phases are present for the purpose of offsetting an automatic phase implemented in all of Borealis’s beam splitters and
simply make the overall unitary operator given in Appendix B have mostly real entries. The 3π/2 phase in the final mode is necessary for the
quantum Fourier transform. Extra phases of π will be present sporadically due to the lack of full programmability of Borealis, so we simply
ensure the compiled program has the correct transfer matrix, but many of them are actually irrelevant to the overall physics (such as phases on
vacuum input states). Any of the postselection patterns (separated by “/”) can be selected, which simply rephase the coefficients of |gψ ; 2〉.

first mode at the first delay line to interact with the second
mode when it arrives at the delay, then send the first time
bin mode to have its photon number measured. If the result
of this measurement is n = 2, the heralding is successful and
teleamplification may proceed. The second mode is sent to
wait in the second delay line to perform more of the desired
circuit. After waiting one delay period, it interacts with a
vacuum mode six time bins away with a transmissivity 1 − τ

that encodes the gain parameter, such that the second time bin
will house the teleamplified state after the 2 + 6 = 8th time
bin mode successfully completes the rest of the circuit. Note
that the “1 − τ” beam splitter is elongated in Fig. 1 so that it
connects two rails that are six rails apart.

Next, since the SMSV states on Borealis are always made
in adjacent time bins, we repeatedly delay the third time bin
mode that houses our state-to-be-amplified |ψ〉 = |SMSV〉
by transmitting it into the delay loop, reflecting it to stay in
the loop, and reflecting onward all of the incoming vacuum

states. One of these reflected vacuum states is the one whose
interaction with the second time bin mode we just described,
beginning in the ninth rail from the top of Fig. 1, reflecting
into the eighth rail at the first beam splitter before approaching
the 1 − τ beam splitter. The delayed state |ψ〉 interacts with a
vacuum mode at a balanced beam splitter that is the topmost
“X” box of Fig. 1 before half of it can finally exit the first
delay stage; it goes on to interact with the other output from
the (2,8) interaction described previously, now with the eighth
time bin mode proceeding toward measurement and the 14th
mode continuing through the circuit. The other half of |ψ〉 that
was at the balanced beam splitter is delayed even further in the
first delay loop until it is ready to interact with the 14th mode
as it exits the second delay loop. The modes are then sent to
PNRDs to be measured. Throughout, relative phases are cru-
cial: some phases are added to adjust the native beam-splitter
phases implemented by Borealis, while the relative phase in
between the first and second delay lines for the final mode is
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imperative to the Fourier-transform circuit. Additional phases
are always added during the delay loops that are compensated
for by the Borealis compiler to the best of its ability.

D. Schematic verification

We can verify using the passive compiler attuned to Bore-
alis that the entire circuit enacts

U †aU = Ua (2.5)

for a particular transfer matrix U, where we collect the mode
operators in a vector a = (a1, · · · , a20)	. This means that
the state will evolve as f (a†) |vac〉 → f (U	a†) |vac〉. Since
only the first three modes begin with photons, we only need
consider the first three columns of U. Our circuit is composed
in such a way that the only nonzero rows for these first
three columns correspond to the 1st, 2nd, 8th, 14th, and 20th
time bins (note the spacings by 1 or 6 due to the pertinent
delay loops and see the corresponding highlighted portions of
Fig. 1). We thus need to consider only the submatrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

i√
2

0

i
√

1−τ
2

√
1−τ

2 0

−i
√

τ
6 −√

τ
6 − 1√

3

i
√

τ
6

√
τ
6

1√
3
ω2

−i
√

τ
6 −√

τ
6 − 1√

3
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.6)

with ω = exp(2π i/3) a third root of unity, that controls the
evolution

⎛
⎜⎜⎝

â†
1

â†
2

â†
3

⎞
⎟⎟⎠ → M	

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

â†
1

â†
2

â†
8

â†
14

â†
20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

The top three highlighted rails on the left of Fig. 1 that begin
without the vacuum state are thus transferred into the five
highlighted output rails on the right of Fig. 1; the other two
highlighted input rails house vacuum states. The components
of the full verified transfer matrix are recorded in Appendix B.
Such a transfer matrix will amplify any state input in mode
3 and teleport it to mode 2, should the heralding events be
successful.

We verify the action of this circuit on our chosen input
states in Appendix B, although the result is guaranteed by
Ref. [8]. Conditional on one of the successful heralding pat-
terns on the applicable four modes, the input state should be
teleamplified to one of

|gψ ; 2〉 ∝ |0〉 − tanh r
√

2 |2〉 1 − τ

τ
ωl , (2.8)

where the phase is determined by the heralding pattern
|0, 1, 1〉 (l = 0), |1, 0, 1〉 (l = 1), or |1, 1, 0〉 (l = 2) in the
outputs of the 8th, 14th, and 20th time bins. Just as in a stan-
dard quantum teleportation scenario, the classical information
“l” must be conveyed to the party receiving the teleamplified

state, who can undo the extra effect of this phase ωl with a
deterministic operation that depends on l . In our paper we
do not independently verify this phase relationship and can at
best rely on Borealis previously reporting phase deviations of
less than 0.03 rad in the first two delay loops for an overall
phase noise of less than one part per 100 × 109 [52]. The
absence of feedforwarding on this device makes it useful
for inspecting the teleamplification algorithm up to the final
rephasing; alternatively, one could ignore all postselection
events other than the pattern corresponding to l = 0, at the
cost of a reduced probability of successful heralding.

The gain parameter g =
√

1−τ
τ

is set by one programmable
transmissivity that we vary between 1/8 and 128. We run
the circuit multiple times to build sufficient statistics among
the successful heralding events, whose success probability
depends on the squeezing parameter r and the gain g. We run
4 × 106 trials for each of the gain parameters g = 1/2 (attenu-
ation), 1 (no gain), 2, and 4 with squeeze parameter r = 1.148.
Other squeeze and gain parameters were also run but fewer
numbers of times, with the measured data all available via
Github (see Appendix C for a copy of the device certificate
for r = 1.148 and other setup details).

III. RESULTS

We use the photon-number distribution of the teleported
mode to evaluate the success of the amplification.1 Since this
does not depend on the heralding pattern [i.e., it is independent
from the integer l in Eq. (2.8)], we aggregate results from all
three heralding patterns. In this sense we are only verifying the
amplification part of the scheme and not its phase insensitivity
because the latter is not directly measurable with this setup. In
total, we measure 23 084, 12 773, 4555, and 2459 successful
postselection events for the gain parameters g = 1/2, 1, 2,
and 4, respectively (again, all of these data are available on
Github). The heralded states from those events are what we
now characterize.

We observe the photon-number distributions of the teleam-
plified states to increase their single- and two-photon com-
ponents relative to their zero-photon component as the gain
increases (Fig. 2; the green dotted line will be explained later).
These demonstrate successful teleamplification. For the pur-
pose of uncertainty calculations, we take the detector readouts
with complete confidence, which is a good approximation
because their intrinsic dark counts are negligible at less than
10−10 per detection event [61] and they can resolve between

1Borealis only provides access to photon-number distributions, so
full tomography is out of the question. One could imagine obtaining
relative-phase information between the coefficients ψk by interfering
the teleamplified state with another beam of light. Since Borealis
only makes one nonvacuum state and only makes those states in
adjacent modes, that beam would have to be a SMSV state in the
fourth rail of Fig. 1 or a set of SMSV states in the fourth through
mth rails. But to interfere with the outgoing second mode after it has
passed through the entire circuit, the second mode must be delayed
at the third delay loop and wait to interfere with the m = 38th
mode. Adding SMSV states in all of the intervening modes ruins
the teleamplification setup, so full state tomography is precluded.
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FIG. 2. Measured ratios of the photon-number probabilities for
the teleamplified state vs gain. The one-photon probability is
expected to scale quadratically with gain and the two-photon prob-
ability quartically, but they each grow slower than linearly. For
comparison, we plot the original ratios of these probabilities, show-
ing that indeed there is gain that increases for increasing gain
parameter, relative to either the perfect initial state or the true, lossy
initial state. While we have a model for these values as a function
of the entire setup, future work could seek a simplified equation to
describe this gain as a function of experimental imperfections. The
error bars are given by Poisson statistics on the number of expected
counts. Quantities in this and all plots are dimensionless; here “gain”
is the factor g in an ideal amplification process |α〉 → |gα〉.

zero and two photons (for all of the heralding patterns) with
greater than 0.999 999 99 probability of success and up to
seven photons (the highest depicted in any plot here) with
probability greater than 0.999 [62]. The dominant errors by
far then come from loss. For example, the minimum detector
efficiency is 0.893; since these parameter are known from
device calibration (again, see Github for device certificates),
they do not contribute to the error bars depicted in Fig. 2.
Rather, we assume errors on our photon-number counts arise
from Poissonian photodetection statistics and take the rest of
the circuit to behave as anticipated including pervasive loss.

One might have expected there to be no single-photon
contribution present in the amplified state as in Fig. 2, but
loss in the initial state prior to being amplified gives rise to
an initial nonzero single-photon contribution that can then be
amplified. Loss that occurs later in the circuit degrades the
fidelity between the heralding pattern and the true desired
postselection events, which also gives rise to the teleamplified
state having small nonzero contributions from photon num-
bers greater than n = 2.

How does the measured gain compare to the expected
value? Initially, one expects a quadratic increase with gain for
the relative single-photon probability and a quartic increase
for the two-photon probability. However, loss in the heralding
modes prior to their detection causes mismatches in the ex-
pected distributions: when a detector registers “one photon,”
for example, it is possible that there were actually two photons
in that mode and one got lost along the way, either due to mode
mismatch or detector inefficiency or other sources of loss. We

FIG. 3. Measured photon-number distribution for the amplified
state in the teleported mode (cyan, dashed line; Poissonian error
bars) compared to the initial distribution in the input mode (far left
bar in each cluster, black). Also plotted are simulated results for
the teleamplified state, should all of the loss parameters present in
the circuit have been multiplied by a factor between 0.001 (blue,
second bar from left) increasing to the full loss present 1.0 (brown,
far right bar). Here the gain parameter is g = 2 and the data match
the predictions, with the two-photon component increasing relative
to the zero-photon component. The fidelity between the measured
and ideal (lossless) photon-number distributions is 0.83 ± 0.01 and
was expected to be 0.84.

can use calibration data from all of the components of Borealis
to plot the true expected photon-number distributions from the
lossy circuit. The case for g = 2 is plotted in Fig. 3 with the
rest of the data deferred to Appendix D. We observe excellent
agreement between the predicted and measured values for all
of the photon numbers in the teleamplified state.

Effects of loss

Inspecting Fig. 1, there are multiple places for loss to oc-
cur: in the delay loop for the nearest-neighbor beam splitters,
the delay loop for the sixth-nearest-neighbor beam splitter,
the rest of the free propagation, and detector inefficiencies
that can be modeled as loss. We can simulate the same setup
with smaller loss parameters to see how the photon-number
distribution in the output mode is affected by loss. We col-
lectively reduce all of the loss parameters throughout the
circuit by a factor of q ∈ (0, 1), which is like increasing the
relevant transmission parameters as η → η + (1 − η)(1 − q).
Expected photon-number distributions for different values of
q are also plotted in Fig. 3, where we can compare the tran-
sition between tiny loss probabilities (q = 0.001) and the true
loss probabilities (q = 1). As the amount of loss increases,
the zero- and one-photon components of the state increase,
requiring tiny loss parameters q � 0.001 for the one-photon
component to vanish. For the two-photon component to reach
as large of a probability as the ideal teleamplified value, small
loss parameters q � 0.01 are also required. These are due to
the sensitivity of such heralded schemes to loss, as such small
loss parameters would require each component of Borealis
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FIG. 4. Same plot as Fig. 3: photon-number distribution for the
amplified state in the teleported mode (cyan, dashed line; Poissonian
error bars) compared to the initial distribution in the input mode (far
left bar in each cluster, black), but now considering the input state
to have been the attenuated squeezed state that resulted from loss in
the first delay line before interacting with the rest of the circuit. The
simulated results for the teleamplified state thus change relative to
Fig. 3 and are much closer to the measured values. Regardless, when
the loss parameters are set to be the same as in the actual circuit, the
data match the predictions (the far right bars in the histograms are
the same as in Fig. 3). Here the gain parameter is g = 2 and the data
match the predictions, where now it is more clear how the one- and
two-photon components increase in the amplified state relative to the
input state.

to have transmission parameters and efficiencies greater than
0.999.

Again inspecting Fig. 1, we see that the state-to-be-
amplified |ψ〉 must traverse the first delay loop 11 times
before interacting with another vacuum mode, by virtue of
Borealis requiring the initially populated modes to be adjacent
time bins. By taking the calibrated transmission probability
for this loop from Borealis, 0.88, we can model the input
state instead as the one modified from |ψ〉 by first transform-
ing â →

√
0.8811â + √

1 − 0.8811b̂ and then tracing out the
mode annihilated by b̂ that began in the vacuum state. This is
how we obtain the green dotted lines in Fig. 2 with nonzero
initial probability of finding a single photon; we refer to the
“lossy original” state that is effectively an attenuated SMSV
state.

Another reason for the sensitivities of this setup is the
requirement to repeatedly store light in delay loops so that
it can interact with the appropriate mode. We can use this to
our advantage by again considering the initial state not to be
the perfect SMSV state but the lossy version that results from
being stored in the first delay loop 11 times.2 This initial state
is plotted in Fig. 4 with the measured data for g = 2, where it
is now clear that the one-photon and two-photon components

2We remark that a SMSV state subject to photon loss is still non-
classical according to its P function, although nonclassicality of our
input states is merely a curiosity and is by no means necessary.

FIG. 5. Similarity between the ideal amplified photon-number
distribution and the predicted teleamplified photon-number distri-
bution when the loss in the circuit is decreased throughout by a
multiplicative factor. The relative entropies approach their minimum
value of zero quadratically with this factor, as expected from a min-
imum, by the time the losses are multiplied by ≈ 0.01–0.1. Lower
gain parameters are more loss tolerant, with monotonic behavior
other than the one exception that g = 2 is more loss tolerant than
g = 1 and 1/2 once the loss is decreased by a factor of 10.

are amplified and the zero-photon component is diminished
relative to the original state. We can then take the lossy initial
state and see what would come of the setup should the rest
of the components of the circuit have their loss probabilities
diminish by a factor q; these are also plotted in Fig. 4 and are
equivalent to the simulations performed to attain Fig. 3 but
with the loss parameters undiminished for the state |ψ〉 that is
initially held in the first delay loop. Now it is seen that small
loss parameters with q � 0.01 are required to observe the true
amplified distribution, which is less stringent than 0.001 from

FIG. 6. Same as Fig. 5 but plotting photon-number probability
distributions’ fidelity instead of relative entropy. The fidelities ap-
proach their maximum value of 1 quadratically with this factor, as
expected from a maximum, by the time the losses are multiplied
by ≈0.01–0.1. Lower gain parameters are more loss tolerant, with
monotonic behavior rectifying the exceptions from Fig. 5.
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FIG. 7. Circuit programmed for Borealis showing only the five crucial modes from Fig. 1. Delays are depicted by dashed lines, which are
physically enacted using reflective beam splitters that prevent the light from escaping the delay loop.

before but still shows how sensitive this heralded scheme is to
photon loss.

We conclude by looking at the same simulated photon-
number distributions versus loss for the other gain parameters
and the lossy initial state. It roughly seems that the larger gain
parameters are less loss tolerant when we look at the same
figures, all recorded in Appendix D 2, but such a qualitative
reasoning is perilous and so the figures are less informative. To
quantify this loss tolerance, we compute the relative entropy
(i.e., the Kullback-Leibler divergence) between the simulated
photon-number distributions’ zero-, one-, and two-photon
components with various amounts of loss to the distribution
without loss, all for the lossy initial state. In Fig. 5, we plot
these divergences, which go to zero approximately quadrat-
ically with the loss multiplication factor. It is there evident
that larger gain parameters are less loss tolerant, with smaller
gain parameters generally achieving lower relative entropies
for the same value of loss. We also plot the fidelities expected
for different amounts of loss in Fig. 6, confirming that larger
gain parameters are more sensitive to loss. These fidelities are
calculated between photon-number distributions and, since
the simulations maintain phase coherence, are equivalent to
the best quantum fidelities that could be achieved for the
various gain and loss parameters. We thus conclude that an
interferometer maintaining phase coherence could achieve a
gain of g = 16 with fidelity greater than 99% if the overall
losses are all multiplied by 0.01, corresponding to detector ef-
ficiencies greater than 0.999 and common-mode transmission
probabilities greater than 0.99.

IV. CONCLUSIONS

We have demonstrated amplification of an attenuated
squeezed state up to its n = 2 cutoff and teleportation of the
state in question by adapting Ref. [8]’s heralded scheme to
the programmable quantum device Borealis, for various gain
parameters, with one- and two-photon components of the state
growing by a factor of up to 5 in probability. Our fidelities
with the ideal (lossless) states for gain parameters of 1/2, 1,
2, and 4 were 93.2(6), 92.6(9), 83(1), and 50(1)%, respec-
tively. We also presented simulations showing how sensitive
this heralded scheme is to loss in the heralding modes; a
device dedicated only to teleamplification could circumvent

some loss by avoiding delay loops, but ultimately would be
just as sensitive to overall loss as our results. Relative to the
actual predicted values in the presence of loss, our fidelities
are always greater than 98%. The outlook is that, once the
teleamplification interferometer and PNRD components are
created, the main limiting factor for the protocol is photon
loss. Improvements in the form of enhanced mode matching
or heightened detector efficiencies will help make this proto-
col viable for varied applications. Teleamplification, an ideal
form of noiseless linear amplification, has many applications
across quantum information science [38–44], showcasing the
usefulness and tunability of the machines and components
developed for fault tolerant quantum computation to a wide
variety of problems and solutions.

All source codes for simulating and executing our proto-
cols on Borealis as well as the measurement data and device
certificates are available via Github [63].
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APPENDIX A: SIMPLIFIED CIRCUIT DIAGRAM

A simplified version of Fig. 1 that ignores the unhigh-
lighted components is depicted in Fig. 7. There are five crucial
time bin modes unraveled from top to bottom for visualization
purposes.

APPENDIX B: VALIDATING THE OVERALL TRANSFER
MATRIX

The circuit that we ran had the following verified transfer
matrix acting on all 20 time bin modes:
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U =

⎛
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.

(B1)

The phases in each row are actually irrelevant to the output
photon-number distributions, as are the phases for all of the
input vacuum states and changes in phase by π on the input
SMSV states. The relevant modes with entries other than unity
correspond to the highlighted wires in Fig. 1. Many of the
phases in Fig. 1 do not affect the dynamics of our setup but
are chosen so that many of the entries of U are equal to 1.

We can verify the action of this transfer matrix on our input
states, although one can prove in general that it will teleport

and amplify any input state should the proper heralding pat-
tern be observed. The initial state has an SMSV state in each
of the first three modes:

|�〉 ∝ exp
[− tanh reiϕ(

â2†
1 + â2†

2 + â2†
3

)] |vac〉 . (B2)

This transforms into

|� ′〉 ∝ exp{− tanh reiϕ[(M11â†
1 + M21â†

2 + M81â†
8 + M14,1â†

14 + M20,1â†
20)2

+ (M12â†
1 + M22â†

2 + M82â†
8 + M14,2â†

14 + M20,2â†
20)2 + (M13â†

1 + M23â†
2 + M83â†

8 + M14,3â†
14 + M20,3â†

20)2]} |vac〉
= exp{− tanh reiϕ[(M11â†

1 + M21â†
2 + M81â†

8 + M14,1â†
14 + M20,1â†

20)2

+ (iM11â†
1 − iM21â†

2 − iM81â†
8 − iM14,1â†

14 − iM20,1â†
20)2 + (M83â†

8 + M14,3â†
14 + M20,3â†

20)2]} |vac〉
= exp{− tanh reiϕ[4M11â†

1(M21â†
2 + M81â†

8 + M14,1â†
14 + M20,1â†

20)]}
× exp{− tanh reiϕ[(M83â†

8 + M14,3â†
14 + M20,3â†

20)2]} |vac〉 . (B3)

Projecting the first mode onto the two-photon state is straightforward because â†
1 appears only once:

〈2|1 |� ′〉 ∝ (M21â†
2 + M81â†

8 + M14,1â†
14 + M20,1â†

20)2 exp{− tanh reiϕ[(M83â†
8 + M14,3â†

14 + M20,3â†
20)2]} |vac〉

= |0〉2 (M81â†
8 + M14,1â†

14 + M20,1â†
20)2 exp{− tanh reiϕ[(M83â†

8 + M14,3â†
14 + M20,3â†

20)2]} |vac〉
+ 2M21 |1〉2 (M81â†

8 + M14,1â†
14 + M20,1â†

20) exp{− tanh reiϕ[(M83â†
8 + M14,3â†

14 + M20,3â†
20)2]} |vac〉

+ M2
21

√
2 |2〉2 exp{− tanh reiϕ[(M83â†

8 + M14,3â†
14 + M20,3â†

20)2]} |vac〉 . (B4)

062606-8



TELEAMPLIFICATION ON THE BOREALIS … PHYSICAL REVIEW A 108, 062606 (2023)

Modes 8, 14, and 20 get projected onto having a total of two
photons, so overall we only need to consider the terms

|0〉2 (M81â†
8 + M14,1â†

14 + M20,1â†
20)2 |vac〉 + M2

20

√
2 |2〉2

×{− tanh reiϕ[(M83â†
8 + M14,3â†

14 + M20,3â†
20)2]} |vac〉 .

(B5)

We find the three patterns

〈2|1 ⊗ 〈0|8 ⊗ 〈1|14 ⊗ 〈1|20 |� ′〉 ∝ 2M14,1M20,1 |0〉2

− tanh reiϕ2M14,3M20,3M2
20

√
2 |2〉2 ∝ |0〉2

− tanh reiϕ
√

2

(
1 − τ

τ

)
|2〉2 , (B6)

〈2|1 ⊗ 〈1|8 ⊗ 〈0|14 ⊗ 〈1|20 |� ′〉 ∝ 2M81M20,1 |0〉2

− tanh reiϕ2M83M20,3M2
20

√
2 |2〉2 ∝ 2

(
−τ

6

)
|0〉2

− tanh reiϕ2
e2iπ/3

3

(
− 1 − τ

2

)√
2 |2〉2 ∝ |0〉2

− tanh reiϕ
√

2

(
e2iπ/3 1 − τ

τ

)
|2〉2 , (B7)

and

〈2|1 ⊗ 〈1|8 ⊗ 〈1|14 ⊗ 〈0|20 |� ′〉 ∝ |0〉2 2M81M14,1 |vac〉
+ M2

20

√
2 |2〉2 {− tanh reiϕ2M83M14,3} |vac〉 ∝ |0〉2 2

τ

6

+
(

− 1 − τ

2

)√
2 |2〉2

{
− tanh reiϕ2

eiπ/3

3

}
∝ |0〉2

− tanh reiϕ
√

2

(
e−2iπ/3 1 − τ

τ

)
|2〉2 . (B8)

All three correspond to a gain relative to the squeezed state

|0〉 − tanh reiϕ
√

2 |2〉 by a factor g =
√

1−τ
τ

, with different
phases for the different heralded patterns that can be adjusted
with classical communication as in standard teleportation

FIG. 8. Same as Fig. 3 but with gain parameter g = 1/2. The
fidelity between the measured and ideal (lossless) photon-number
distributions is 0.932 ± 0.006 and was expected to be 0.949.

FIG. 9. Same as Fig. 3 but with gain parameter g = 1. The
fidelity between the measured and ideal (lossless) photon-number
distributions is 0.926 ± 0.009 and was expected to be 0.936.

FIG. 10. Same as Fig. 3 but with gain parameter g = 4. The
fidelity between the measured and ideal (lossless) photon-number
distributions is 0.50 ± 0.01 and was expected to be 0.50.

FIG. 11. Same as Fig. 4 but with gain parameter g = 1/2.

062606-9



AARON Z. GOLDBERG AND KHABAT HESHAMI PHYSICAL REVIEW A 108, 062606 (2023)

FIG. 12. Same as Fig. 4 but with gain parameter g = 1.

schemes. The actual initial state had ϕ = 0 but, as iterated
above, this circuit works to teleport and amplify any input
state.

APPENDIX C: DEVICE DETAILS

A full diagram with full details of the device
used to perform our demonstration can be found in
Ref. [52]. The certificate from the device on the
day the experiment was run was {’finished_at’:
’2023-05-29T17:41:34.623450+00 : 00’,
’target’: ’borealis’, ’loop_phases’:
[1.268, -0.051, 1.848], ’schmidt_number’:
1.151, ’common_efficiency’: 0.386,
’loop_efficiencies’: [0.88, 0.879, 0.793],
’squeezing_parameters_mean’: {’low’:
0.678, ’high’: 1.148, ’medium’: 1.06},
’relative_channel_efficiencies’: [0.918,
0.938, 0.912, 1.0, 0.961, 0.917, 0.893, 0.969,
0.951, 0.955, 0.965, 0.998, 0.947, 0.966,
0.947, 0.898]}.

FIG. 13. Same as Fig. 4 but with gain parameter g = 4.

APPENDIX D: FIGURES FOR OTHER GAIN
PARAMETERS

We here list the same figures as in the main text but
for gain parameters of g = 1/2, 1, and 4. These include the
measured data for each parameter as well as the predicted
photon-number distributions when reducing the loss by var-
ious multiplicative factors.

1. Squeezed state input

We begin by reducing the loss by multiplicative factors,
considering the original state to be a perfect SMSV state. The
figures for gains of g = 1/2, 1, and 4 are plotted in Figs. 8–10,
respectively.

2. Attenuated squeezed state input

We again consider reducing the loss by multiplicative fac-
tors, but the original state to be an attenuated SMSV state that
resulted from waiting in the first delay loop for 11 lossy round
trips. The figures for gains of g = 1/2, 1, and 4 are plotted in
Figs. 11–13, respectively.
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