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Entanglement-enhanced quantum strategies for accurate estimation of multibody-group
motion and moving-object characteristics

Yongqiang Li and Changliang Ren *

Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,
Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center

for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
and Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China

(Received 4 July 2023; accepted 15 November 2023; published 7 December 2023)

This study presents a quantum strategy for simultaneous estimation of two physical quantities using different
entanglement resources. We explore the utilization of positively or negatively time-correlated photons. The
proposed method enables the detection of the central position and relative velocity of multibody systems, as well
as precise measurement of the size and velocity of moving objects. Comparative analysis with other strategies
reveals the superior quantum advantage of our approach, particularly when appropriate entanglement sources
with a high degree of entanglement are employed. These findings contribute to advancing our understanding of
quantum strategies for accurate measurements.
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I. INTRODUCTION

Quantum metrology [1–6] is an emerging application of
quantum information technology that follows quantum com-
munication [7] and quantum computing [8,9], which aims
to achieve higher-precision measurements using quantum
strategies. Along with the latest technological advances in
quantum optics, electricity, and optomechanical vibronic sys-
tems, quantum metrology has been applied to many practical
tasks, which have significantly boosted the development of re-
lated fields, such as gravitational wave detection [10,11], force
sensing [12,13], magnetic force measurement [14], clocks
[15,16], and biological measurements [17,18].

As fundamental physical quantities, the precision mea-
surement of time and frequency is an essential ingredient
of quantum metrology [1,2]. According to these studies,
enhancing the detection accuracy of radar becomes an im-
portant potential application. Several quantum radar schemes
have been proposed, such as quantum illumination [19–24],
quantum positioning [15], and three-dimensional accuracy-
enhanced quantum radar [25,26], some of which have also
been demonstrated in experiments [27,28]. Most of the current
research can be attribute to a single parameter estimation
problem, such as determining positions or velocities. The
ultimate measurement accuracy of them that can be achieved
is determined by the quantum Cramér-Rao bound (QCRB)
[3,29–31], which is obtained by analyzing the quantum Fisher
information (QFI) [3,29–31]. Compared to classical strate-
gies, quantum strategies can improve accuracy and sensitivity,
where the maximum accuracy achievable for a single param-
eter is the Heisenberg limit, which transcends the standard
quantum limit. However, in various application scenarios,
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the positioning of the multibody system, and the size of the
object, we actually need to determine different physical quan-
tities simultaneously, such as the simultaneous estimation of
the central position and relative velocity. Although quantum
multiparameter estimation has started to be explored [29,30],
few generalized quantum positioning schemes were designed
based on quantum multiparameter estimation theory. With
respect to multiparameter estimation, subject to the noncom-
muting relation between different observables, it often exists
as a tradeoff, i.e., Heisenberg’s uncertainty principle [32,33].
Zhuang et al. proposed entanglement-induced lidar for mea-
suring a target’s range and velocity [34]. Recently, Huang
et al. showed that the tradeoff in simultaneously estimating
both time and frequency can be weakened when using entan-
gled states as probe states [35]. In this study we introduce
a quantum strategy aimed at simultaneously estimating two
distinct physical quantities in various application scenarios
utilizing different quantum entanglement resources. Specifi-
cally, we investigate the utilization of photons with positive
time correlation or negative time correlation.

First, we propose a method for detecting the central posi-
tion and relative velocity of a multibody system by measuring
the time sum and frequency difference. Second, we present
a technique for precisely measuring the size and velocity of
moving objects. To provide a comprehensive analysis, we
delve into the accuracy limits of the aforementioned estima-
tion parameters when employing the quantum illumination
strategy and the single-photon strategy mentioned earlier.
Our results demonstrate that when appropriate entanglement
sources are utilized and the entanglement degree is relatively
high, this strategy exhibits a superior quantum advantage
compared to the other two strategies.

The article is structured as follows. In Sec. II we delve
into the estimation of the central position and relative velocity
of two-object systems. We employ quantum multiparameter
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FIG. 1. Illustration of the central position and relative velocity
detection in a multibody system.

estimation theory to establish a comprehensive method for
analyzing the measurement accuracy limits across different
schemes. Section III introduces quantum strategies specifi-
cally designed for measuring the size and velocity of objects.
We outline approaches employed in this context. Section IV
presents the concluding remarks and summarizes the key find-
ings, as well as provides an outlook for future work.

II. ESTIMATION OF GROUP MOTION
OF A MULTIBODY SYSTEM

We present a method for detecting the central position and
relative velocity of a multibody system through the measure-
ment of the time sum and frequency difference. To describe
the concept, let us examine a basic multibody system consist-
ing of two objects as an illustrative example. As illustrated
in Fig. 1, supposed that two photons arrive at two objects
moving with velocities v1 and v2 after travel times t̄1

2 and
t̄2
2 , respectively. The position �r1 = �c1

t̄1
2 of object A and the

position �r2 = �c2
t̄2
2 of object B can be measured. Hence the

central position between these two objects can be expressed as

�r = �c1t̄1 + �c2t̄2
4

, (1)

where �c1 and �c2 are two velocity vectors of the returned
photons. The two objects are located at a considerable
distance from the radar, �c1 ≈ �c2, enabling their central
position to be precisely determined as �r = �c(t̄1+t̄2 )

4 . Obviously,
the accuracy of determining the central position relies on
the variance of t̄1 + t̄2. In addition, the relative velocity of
two objects can also be estimated by the Doppler effect.
The relation between the difference in frequency and the
difference in velocity can be described as

ω̄2 − ω̄1 =
(

c − v2

c + v2
ω̄0 − ω̄0

)
−

(
c − v1

c + v1
ω̄0 − ω̄0

)

� 2(v2 − v1)

c
ω̄0, (2)

where ω̄0 is the central frequency of the initial pulse and
ω̄1 and ω̄2 are the central frequencies of the returned
photons from different directions. Similarly, the accuracy of
determining the relative velocity of two objects relies on the
variance of ω̄2 − ω̄1.

To accomplish the task, we initially utilize a two-qubit
entangled state where two photons are emitted to these two

objects respectively. In this context, we are specifically fo-
cusing on the ideal scenario where the direction is precisely
defined and the photons experience highly efficient reflection.
Without loss of generality, the initial emitted state can be
described in the time domain

|ψ〉 =
∫∫

φ0(t1, t2)|t1〉|t2〉dt1dt2, (3)

where |ti〉 = â†(ti)|0〉 is a single-photon state at ti with
i = 1, 2, â†(ti ) is the creation operator, and φ0(t1, t2) is
biphoton temporal wave function. We choose φ0(t1, t2) =√

2
√

1−κ2σ 2
0

π
e−σ 2

0 (t2
1 +t2

2 −2κt1t2 )e−iω̄0(t1+t2 ), where ω̄0 and σ0 are the
carrier frequency and bandwidth for each single photon. The
parameter κ ∈ (−1, 1) quantifies the amount of entanglement
between the two photons. As κ approaches 1, the biphoton
state is positively correlated in time, whereas when κ ap-
proaches −1, the two photons will negatively correlated in
time; κ = 0 means they are separate states.

The two photons of the biphoton state experience backscat-
tering and subsequently exhibit a time delay upon their return
(a detailed derivation can be found in [35]; also refer to
Appendix B). Without loss of generality, the returned bipho-
ton state can be expressed as

|ψ ′〉 =
∫∫

φ(t1, t2)|t1〉|t2〉dt1dt2, (4)

where

φ(t1, t2) =
√

2
√

1 − κ2σ1σ2

π
e−iω̄1(t1−t̄1 )e−iω̄2(t2−t̄2 )

× e−
[

(t1−t̄1 )2σ 2
1 +(t2−t̄2 )2σ 2

2 −2κσ1σ2(t1−t̄1 )(t2−t̄2 )
]
,

with

σi = c − vi

c + vi
σ0, t̄i = 2ri

c − vi
,

ω̄1 = c − v1

c + v1
ω̄0, ω̄2 = c − v2

c + v2
ω̄0. (5)

As the goal is to compute the QFI matrix for the estima-
tion of the central position and relative velocity, according
to Eqs. (1) and (2), it is better to define the variables ω̄− =
ω̄2 − ω̄1, t̄+ = t̄1 + t̄2, ω̄+ = ω̄1 + ω̄2, and t̄− = t̄2 − t̄1. Af-
ter performing detailed and coherent calculations (refer to
Appendixes B and C 1), we derive a precise expression for
the QFI matrix, allowing us to accurately estimate t̄+ and ω̄−,

H (t̄+, ω̄−) =
(

2(1 − κ )σ 2 0
0 1

2(1+κ )σ 2

)
. (6)

According to the necessary and sufficient condition for
joint optimal estimation [31], we find Tr(ρ[Lt̄+ , Lω̄− ]) = 0,
where Lλ is the symmetric logarithmic derivative matrix.
Therefore, by utilizing an entangled photon state that exhibits
negatively temporal correlation as the emission source, we
can achieve the saturation of the QCRB [3,29–31], indicating
that the estimation of the time sum and the frequency
difference can be optimally achieved. Obviously, the variance
of the estimator t̄+ depends on the reciprocal of 2(1 − κ )σ 2,
while the variance of the estimator ω̄− depends on the
reciprocal of 1

2(1+κ )σ 2 . These two terms can be arbitrarily
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small simultaneously. The relation of estimating t̄+ and ω̄−
can be expressed as

δt̄+δω̄− �
√

1 + κ√
1 − κ

. (7)

Clearly, when κ → −1, the right-hand side of this relation
tends towards zero, indicating that the tradeoff in precision
between t̄+ and ω̄− can be alleviated. As κ deviates from −1,
the accuracy of joint estimation deteriorates progressively.
For every value of κ , the lower bound on Eq. (7) can be
attained by detecting the returned state through time-resolved
photon counting. In fact, the accuracy of joint estimation
of t̄+ and ω̄− directly influences the accuracy of estimating
the central position and the relative velocity. This analysis
is conducted directly and discussed in detail in Appendix A.
When κ = 0, the state of the two photons evolves into a
product of two single-photon states, and the accuracy of joint
estimation of t̄+ and ω̄− becomes δt̄+δω̄− � 1. Remarkably,
even when using a laser, which involves the product of two
coherent states rather than the product of two single-photon
states, the exact same uncertainty relation can be obtained.
We have supplied a rigorous proof in Appendix C 4. The
performance of coherent states was also shown in Ref. [36].

Compared with the biphoton state, we can initially uti-
lize two single-photon states as the emitted resource where
two photons are emitted to these two objects indepen-
dently. Each single-photon state can be described as |ψi〉 =∫

ψ0(ti )|ti〉dti initially, where the temporal distribution is

ψ0(ti ) = ( 2σ 2
0

π
)1/4e−t2

i σ 2
0 e−iω̄ti with the same spectrum φ0(t1, t2)

as in Eq. (3). These two photons experience backscattering
and subsequently exhibit a time delay upon their return. The
density matrix of the returned two single-photon states can be
described by [35,37]

ρ1 = (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), (8)

where |ψi〉 = ∫
ψi(ti )|ti〉dti and the temporal distribution is

ψi(ti ) = ( 2σ 2
i

π
)1/4e−(ti−t̄i )2σ 2

i e−iω̄i (ti−t̄i ). It is important to note
that, in order to compare with other strategies using the same
photon number, Eq. (8) is not normalized.

As illustrated in Appendix C2, the QFI matrix that allows
us to accurately estimate the estimators t̄+ and ω̄− is given by

H =
(

Ht̄2+ 0
0 Hω̄2−

)
, (9)

where Ht̄2+ = 2σ 2 + εt̄+ > 0, Hω̄2− = 1
2σ 2 + εω̄− > 0, εt̄+ � 0,

and εω̄− � 0 (see Appendix C2 for detailed expressions
of εt̄+ and εω̄− ). Clearly, we find Ht̄2+ � 2σ 2 and Hω̄2− �

1
2σ 2 . Likewise, the estimation of the time sum and the
frequency difference can be achieved optimally because
Tr(ρ[Lt̄+ , Lω̄− ]) = 0. Hence, the joint estimation for t̄+ and ω̄−
satisfies

δt̄+δω̄− � 1. (10)

Obviously, due to entanglement, the biphoton state can
achieve a much lower bound in terms of joint measurement
accuracy of the time sum and frequency difference, and this
advantage will be lost when κ � 0.

Likewise, we can also measure the multibody rela-
tive velocity and the central position using the quantum
illumination-based scheme, as discussed by Huang et al. [35].
To accomplish the task, we need two pairs of entangled pho-
tons; the signal photon of each pair will emit to the two objects
respectively, while their idler photons remain. By jointly mea-
suring each scattered signal photon and the corresponding
idler photon, the distance and velocity of each object can be
obtained from the time delay and frequency shift of the scat-
tered signal photon respectively. Hence the relative velocity
and central position of this multibody system are estimated by
first measuring the distance and velocity information of each
object. Therefore, this scheme is actually similar to the single-
photon scheme; the density matrix of the used state can be
expressed as ρ2 = 1

2 (|�1〉〈�1| + |�2〉〈�2|), where |�i〉 is a
biphoton entangled state as defined Eq. (4). Unlike the single-
photon scheme, the tradeoff in simultaneously estimating both
time and frequency can be weakened when one uses entangled
states as probe states. Similarly, we can derive the QFI matrix
that allows us to accurately estimate the estimators t̄+ and ω̄−,
which is

H =
(

Ht̄2+ 0
0 Hω̄2−

)
,

where Ht̄2+ = σ 2 + εt̄+ and Hω̄2− = 1
4(1−κ2 )σ 2 + εω̄− . In this

scheme, the joint estimation for t̄+ and ω̄− satisfies

δt̄+δω̄− � 2
√

1 − κ2. (11)

This implies that the uncertainty of simultaneously estimating
t̄+ and ω̄− can be reduced by a factor 2

√
1 − κ2 using this

scheme.
As depicted in Fig. 2(a), we can compare the estima-

tion accuracy of the central position and relative velocity for
various types of detection sources and strategies. To ensure
fairness, we maintain consistency by employing an equal
number of photons for different probing strategies. The lower
bound of the uncertainty of simultaneously estimating t̄+ and
ω̄−, denoted by min(δt̄+δω̄−), is a function of the param-
eter κ for different strategies. In our strategy, we achieve
min(δt̄+δω̄−) =

√
1+κ√
1−κ

(blue line), while the quantum illumi-

nation scheme yields min(δt̄+δω̄−) = 2
√

1 − κ2 (green line).
In the single-photon strategy, min(δt̄+δω̄−) remains constant
at 1 throughout.

It is clearly shown that when utilizing a negatively time-
correlated entanglement source for estimation, κ ∈ (−1, 0),
our scheme proves to be optimal. However, for a positively
time-correlated entanglement source, the situation varies de-
pending on the quality of the entanglement. Our strategy
and the quantum illumination strategy fall short of the per-
formance achieved by the single-photon strategy, when the
entanglement is relatively weak, κ ∈ (0,

√
3

2 ). Conversely,
when the entanglement source approaches ideal positively
correlated in time, κ ∈ (

√
3

2 , 1), the quantum illumination
strategy emerges as the optimal solution.

The same analytical strategy can be readily extended to
more general scenarios. For instance, in the context of multi-
body systems, we can estimate both the central position of
the entire system and the relative velocity between a fixed
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FIG. 2. (a) Accuracy limit of the simultaneous estimation of the time sum and frequency difference for different strategies. (b) Accuracy
limit of the simultaneous estimation of the time difference and frequency sum for different strategies. The blue, green, and yellow lines
correspond to our strategy, quantum illumination strategy, and single-photon strategy, respectively.

subsystem and the remaining subsystems. Supposed that N
photons are emit toward N objects with different positions
respectively and arrive at them after travel times t̄1

2 , . . . , t̄N
2 ;

the central position among these N objects is �r = �r1+···+�rN
N =

�c1 t̄1+···+�cN t̄N
2N . The objects are located at a considerable distance

from the radar, enabling the central position of N objects to be
�r = c(t̄1+···+t̄N )

2N . The accuracy of the central position depends
on the time sum of N photons. Different probe states result in
different detection accuracies. Compared with the N-photon
separate state, the N-photon entangled state can achieve a
much lower accuracy bound [3,38]. Similarly, the Doppler ef-
fect can also be used to estimate the relative velocity between
the ith object and the remaining objects. This relation between
the difference in frequency and the difference in velocity

can be expressed as ω̄i −
∑N−1

n=1,n �=i ω̄n

N−1 � 2(vi−�v)
c ω̄0, where �v =∑N−1

n=1,n �=i vn. The accuracy of determining the relative velocity

of two objects relies on the variance of ω̄i −
∑N−1

n=1,n �=i ω̄n

N−1 . It is
important to stress that this task is the most straightforward
among those applicable to multibody systems. In the context
of multibody systems, there exists a plethora of more intricate
and intriguing tasks deserving of exploration.

III. MEASURING THE RELATIVE SIZE AND VELOCITY
OF MOVING OBJECTS

We present a method to precisely measure the size and
velocity of moving objects. In our scenario, we focus on
measuring a far-field moving target with velocity in the detec-
tion direction. The targets have well-defined sizes and radial
distributions. We are particularly interested in measuring the
relative radial distance between two distinct regions of the
target and the velocity of the target. By iteratively performing
this procedure, we can achieve comprehensive imaging of the
target. As illustrated in Fig. 3, the object moves in the radial
direction of the radar with velocity v.

Assuming that the distances between two distinct points
on an object, labeled A and B, and the radar are R0 and
R0 + x, respectively, where x represents the relative difference
in size between the two points. To accomplish this task, a
minimum of two photons is required. When the radar emits

two photons simultaneously that are backscattered by the two
distinct points of the object respectively, each photon will re-
turn with a travel time t̄i and a central frequency ω̄i. According
to Eq. (5), it is easy to obtain that t̄1 = 2R0

c−v
and t̄2 = 2R0+2x

c−v
.

Hence the time difference caused by the size of the object is
t̄2 − t̄1 = 2x

c−v
≈ 2x

c , and the distance between the two distinct
points can be given as

x = c(t̄2 − t̄1)

2
. (12)

Clearly, the accuracy of determining the distance x relies on
the variance of t̄2 − t̄1. Likewise, the velocity of the object
can be estimated by analyzing the frequency shift of the re-
turned photons. According to the Doppler effect, the carrier
frequency of the returned photons will change as ω̄i = c−v

c+v
ω̄0,

so the frequency shift determines �ωi = ω̄i − ω̄0 ≈ 2ω̄0v
c . Al-

though it is possible to measure velocity using a single photon,
at least two photons are necessary for the complete task,
especially for measuring the size of the object. Hence, we
analyze the process of employing two photons to measure the
velocity of an object. At first glance, this may seem like a triv-
ial process. Assuming that two photon pulses have identical
initial central frequencies and the velocity of each part of the
object is the same, the frequency shift of the returned photons
will satisfy �ω1 = �ω2 = �ω. The velocity of the object can
be estimated by summing up the frequency shifts of the two

FIG. 3. Illustration showing the measurement of the relative size
and velocity of a moving object.
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photons, which can be given as

v = c

2ω̄0
(ω̄1 + ω̄2 − 2ω̄0) = c�ω

ω̄0
. (13)

Hence, the accuracy of determining the velocity relies on the
variance of ω̄1 + ω̄2. It is possible to reduce this variance to
infinitesimal levels using specialized photon states, thereby
enhancing the precision of measuring velocity.

Likewise, employing a two-photon entangled state (3) as
the emission source directed towards the object, and sub-
sequently the photons reflected back, the returned biphoton
state will change as Eq. (4). After performing detailed and
coherent calculations (refer to Appendixes B and D1), we
derive a precise expression for the QFI matrix, allowing us
to accurately estimate t̄− and ω̄+,

H (t̄−, ω̄+) =
(

2(1 + κ )σ 2 0
0 1

2(1−κ )σ 2

)
. (14)

We compute the necessary and sufficient condition
Tr(ρ[Lt̄− , Lω̄+ ]) = 0, indicating that the parameters t̄− and ω̄+
can be optimally estimated jointly. Obviously, the variance of
t̄− depends on the reciprocal of 2(1 + κ )σ 2, while the variance
of ω̄+ depends on the reciprocal of 1

2(1−κ )σ 2 . Therefore, we
can obtain

δt̄−δω̄+ �
√

1 − κ√
1 + κ

. (15)

Notably, when κ → 1, the right-hand side of this relation
tends towards zero. As κ deviates from 1, the accuracy of joint
estimation deteriorates progressively. For every value of κ ,
the lower bound on Eq. (15) can be achieved by detecting the
returned state through time-resolved photon counting. When
κ = 0, the state of the two photons transforms into a prod-
uct of two single-photon states. In this case, the accuracy of
jointly estimating t̄− and ω̄+ yields δt̄−δω̄+ � 1. Remarkably,
this same uncertainty relation can also be achieved even when
a laser is used, which combines two coherent states rather than
two single-photon states.

For the probing state being two single-photon states, ac-
cording to the photon’s travel time and frequency shift, the
photon state returned can be expressed as Eq. (8). As il-
lustrated in Appendix D 2, the QFI matrix that allows us to
accurately estimate t̄− and ω̄+ is

H =
(

Ht̄2− 0
0 Hω̄2+

)
, (16)

where Ht̄2− = 2σ 2 + εt̄− > 0 and Hω̄2+ = 1
2σ 2 + εω̄+ > 0, with

εt̄− � 0 and εω̄+ � 0 (refer to Appendix D 2 for detailed ex-
pressions of εt̄− and εω̄+). Also, we compute the necessary and
sufficient condition Tr(ρ[Lt̄− , Lω̄+ ]) = 0. The joint estimation
for the time difference and frequency sum is shown as

δt̄−δω̄+ � 1. (17)

The bound on the estimated time difference and frequency
sum of the two single-photon states is much higher than that
of the biphoton entangled state, and this advantage will be lost
when κ � 0. Moreover, we can achieve precise measurements
of the size and velocity of the moving target by employing
a quantum illumination-based strategy. This approach also

requires two pairs of entangled photons. A detailed discussion
of the method is provided in the Appendix D 3 for reference.
In this scheme, the joint estimation for t̄− and ω̄+ satisfies

δt̄−δω̄+ � 2
√

1 − κ2. (18)

This implies that the uncertainty of simultaneously estimating
t̄− and ω̄+ can be reduced by a factor 2

√
1 − κ2.

As depicted in Fig. 2(b), we can compare the estima-
tion accuracy of the size and velocity of moving objects for
various types of detection sources and strategies. To ensure
fairness, we maintain consistency by employing an equal
number of photons for different probing strategies. The lower
bound of the uncertainty of simultaneously estimating t̄− and
ω̄+, denoted by min(δt̄−δω̄+), is a function of the param-
eter κ for different strategies. In our strategy, we achieve
min(δt̄−δω̄+) =

√
1−κ√
1+κ

(blue line), while the quantum illumi-

nation scheme yields min(δt̄−δω̄+) = 2
√

1 − κ2 (green line).
In the single-photon strategy, min(δt̄−δω̄+) remains constant
at 1 throughout.

It is clearly shown that, when utilizing a positively time-
correlated entanglement source for estimation, κ ∈ (0, 1), our
scheme proves to be optimal. However, for a negatively time-
correlated entanglement source, the situation varies depending
on the quality of the entanglement. Our strategy and the
quantum illumination strategy fall short of the performance
achieved by the single-photon strategy, when the entangle-
ment is relatively weak, κ ∈ (−

√
3

2 , 0). Conversely, when the
entanglement source approaches ideal negatively correlated
in time, κ ∈ (−1,−

√
3

2 ), the quantum illumination strategy
similarly emerges as the optimal solution.

IV. CONCLUSION

We have presented a quantum strategy for simultaneous
estimation of two distinct physical quantities in various ap-
plication scenarios, utilizing different quantum entanglement
resources. Specifically, we explored the utilization of photons
with positive or negative time correlation.

The first aspect of our work focused on proposing a method
for detecting the central position and relative velocity of a
multibody system through the measurement of time sum and
frequency difference. Additionally, we presented a technique
for precise measurement of the size and velocity of moving
objects.

To provide a comprehensive analysis, we investigated the
accuracy limits of the estimation parameters mentioned above,
comparing them with the quantum illumination strategy and
the single-photon strategy discussed earlier. Notably, our re-
sults highlight that when appropriate entanglement sources
are utilized and the entanglement degree is relatively high,
the proposed quantum strategy exhibits a superior quantum
advantage over the other two strategies.

Overall, this study sheds light on the potential of leverag-
ing quantum entanglement in simultaneous estimation tasks,
demonstrating its superiority under certain conditions. These
findings contribute to advancing our understanding of quan-
tum strategies for accurate measurements in diverse scenarios.

As a prospective application, it is both intriguing and sig-
nificant to extend the discussion to the three-dimensional case
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with robustness against noise. For this extension, we can draw
insights from recent work using Gaussian entangled sources
to enable three-dimensional positioning [39]. In this context,
we can take into consideration the longitudinal and transverse
transmission of light during propagation, bringing us closer
to a practical scenario. The use of specialized entanglement
sources, such as those with positive correlations in time and
momentum [40,41], can lead to higher-precision spatial mea-
surements [25]. In addition, previous work [25] also provides
valuable insights for addressing the three-dimensional situ-
ation. Regarding noise resistance, several strategies [42–44]
have been proposed to reduce its impact, albeit at the cost
of resolution. For instance, partially entangled states exhibit
more resilience to photon loss, retaining some information
about the object’s position. Furthermore, exploring alternative
sources for suitable compression is worth discussing [45]. Re-
cent approaches involving the utilization of random coherent
states also warrant further investigation [46]. The exploration
of these topics is left for future research.
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APPENDIX A: QUANTUM FISHER INFORMATION

We review the basic concepts of quantum Fisher infor-
mation. In many cases, the estimation of certain physical
parameters relies on the association with another covariate.
For example, the position of a target can be estimated based
on the travel time of single photons. In the context of unbiased
estimators, the QCRB determines the precision of the param-
eter estimation

δλ2 � 1

NH
, (A1)

where λ represents the estimated parameter, H denotes the
QFI matrix, and N corresponds to the number of measure-
ments. The QFI matrix is given by

H = 1
2 Tr

[
ρ
(
Lλi Lλ j + Lλ j Lλi

)]
, (A2)

where ρ = ∑
ρi j |ei〉〈e j | is the density matrix of the state

expanded in an orthogonal basis and Lλi and Lλ j are the sym-
metric logarithmic derivative (SLD) matrices [31]. The SLD
matrix can be given as

Lλi j = 2
〈ei|∂λρ|e j〉
ρii + ρ j j

, (A3)

where ρii and ρ j j are the elements of the density matrix and
Lλi j is the element of the SLD matrix. If the joint estimation
of multiparameters is considered, a necessary and sufficient
condition for the joint and optimal estimation is that the SLD
operators commute, i.e.,

Tr
(
ρ
[
Lλi , Lλ j

]) = 0. (A4)

If the estimated parameter is not the expected parameter, the
correspondence between the covariate and parameter can be
given as

Lγ̄ = 2
〈ei| ∂ρ

∂λ̄

∂λ̄
∂γ̄

|e j〉
ρii + ρ j j

, (A5)

where γ̄ and λ̄ are the actual estimated parameter and the
covariate, respectively. In this discussion, we use time and
frequency to estimate distance and velocity, respectively. The
partial derivatives are

∂ t̄

∂r
= 2

c(1 − �)
,

∂ t̄

∂�
= 2r

(1 − �)2
,

∂ω̄

∂r
= 0,

∂ω̄

∂�
= − 2ω̄0

(1 − �)2
, (A6)

with � = v
c , which has been given in [35]. The SLD matrix of

the velocity and position and the QFI matrix can be written in
correspondence to the above.

APPENDIX B: REFLECTED PHOTON STATE
IN THE TIME DOMAIN

Assuming that the distance between the moving target and
the radar at time t0 = 0 is r and the photon emitted at time t is
reflected by the target, the photon will return at the time

τ = t + 2r + 2vt

c − v
= t + 2r

c − v
+ 2vt

c − v
, (B1)

where v is the velocity of the moving target. Due to the
Doppler effect, the frequency will change as

ω̄ = c − v

c + v
ω̄0, (B2)

where ω̄ is the carrier frequency of returned photons.
If two moving targets with radial velocities are v1 and v2,

respectively, we assume that the two photons encountered the
two targets and returned to the radar. The two photons emitted
at t1 and t2 will return to the radar at τi = ti + 2ri

c−vi
+ 2viti

c−vi
,

with i = 1, 2. Without loss of generality, the returned photons
are described by the state

|ψ ′〉 =
∫∫

φ(τ1, τ2)|τ1〉|τ2〉dτ1dτ2. (B3)

Combining Eqs. (B1)–(B3), we obtain Eq. (4) in the main text.
The calculation for two independent single-photon states

is similar. If the two photons are backscattered by the targets,
they will return with a time delay given by Eq. (B1). However,
since the scattering source is incoherent, the returned two-
photon state is a mixed state as defined in Eq. (8).

APPENDIX C: ESTIMATES OF THE CENTRAL POSITION
AND RELATIVE VELOCITY OF THE MULTIBODY

SYSTEM

1. Our strategy

The returned biphoton entangled state is Eq. (4). To obtain
the QFI matrix, we first derive the orthogonal basis

|en〉 =
∫

en(t+, t−)|t+〉|t−〉dt+dt−, (C1)
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where n = 1, 2, 3, and the temporal distribution can be
expressed as

e1(t+, t−) = φ,

e2(t+, t−) = 2

√
1

σ 2
1 + σ 2

2 − 2κσ1σ2

× [(t+ + t− − t̄+ − t̄−)σ 2
1 − 2κσ1σ2(t+ − t̄+)

+ σ 2
2 (t+ − t− − t̄+ + t̄−)]φ,

e3(t+, t−) = 2

√
(1 − κ2)σ 2

1 σ 2
2

σ 2
1 + σ 2

2 + 2κσ1σ2
(t− − t̄−)φ. (C2)

Second, the SLD matrices for the estimation of the time sum
t̄+ and frequency difference ω̄− can be derived,

Lt̄+ =

⎛
⎜⎜⎝

0
√

σ 2
1 + σ 2

2 − 2κσ1σ2 0√
σ 2

1 + σ 2
2 − 2κσ1σ2 0 0

0 0 0

⎞
⎟⎟⎠

and

L
ω̄− =

⎛
⎜⎜⎜⎜⎝

0 0 − i
2

√
σ 2

1 −2κσ1σ2+σ 2
2

(1−κ2 )σ 2
1 σ 2

2

0 0 0

i
2

√
σ 2

1 −2κσ1σ2+σ 2
2

(1−κ2 )σ 2
1 σ 2

2
0 0

⎞
⎟⎟⎟⎟⎠. (C3)

Therefore, the QFI matrix is

H (t̄+, ω̄−) =
(

σ 2
1 − 2κσ1σ2 + σ 2

2 0

0 σ 2
1 −2κσ1σ2+σ 2

2

4(1−κ2 )σ 2
1 σ 2

2

)
. (C4)

Finally, we obtain the relation

δt̄+δω̄− �
√

1

Ht̄+Hω̄−
= 2

√
1 − κ2σ1σ2

σ 2
1 − 2κσ1σ2 + σ 2

2

. (C5)

As σ1 ≈ σ2, the relation is approximately δt̄+δω̄− �
√

1+κ
1−κ

.

2. Single-photon strategy

For two single-photon states, the returned photons are inco-
herent and can be described by Eq. (9). The orthogonal basis
|en〉 can be derived as

|e1〉 =
√

1

c1
(|ψ1〉 + ei(t̄−ω̄+ )/2|ψ2〉),

|e2〉 =
√

1

c2
(|ψ1〉 − ei(t̄−ω̄+ )/2|ψ2〉),

|e3〉 =
√

1

c3
(|∂t̄−e1〉 − 〈e1|∂t̄−e1〉|e1〉),

|e4〉 =
√

1

c4
(|∂t̄−e2〉 − 〈e2|∂t̄−e2〉|e2〉), (C6)

where c1, c2, c3, and c4 are normalization factors. The mixed
state (8) can be expressed in the orthogonal basis as

ρ1 = C1(|e1〉〈e1| + C2|e2〉〈e2|), (C7)

with

C1 =

⎛
⎜⎜⎜⎝1 +

√
2σ1σ2 exp

(
−ω̄2

−−4t̄2
−σ 2

1 σ 2
2

4(σ 2
1 +σ 2

2 )

)
√

σ 2
1 + σ 2

2

⎞
⎟⎟⎟⎠

and

C2 =

⎛
⎜⎜⎜⎝1 −

√
2σ1σ2 exp

(
−ω̄2

−−4t̄2
−σ 2

1 σ 2
2

4(σ 2
1 +σ 2

2 )

)
√

σ 2
1 + σ 2

2

⎞
⎟⎟⎟⎠.

According to Eq. (A3), we can obtain that

Lt̄+ =

⎛
⎜⎜⎝

0 2a12 0 2a14

2a21 0 2a23 0
0 2a32 0 0

2a41 0 0 0

⎞
⎟⎟⎠, (C8)

with a∗
21 = a12 = C1〈∂t̄+e1|e2〉 + C2〈∂t̄+e2|e1〉, a∗

41 = a14 =
〈∂t̄+e1|e4〉, and a∗

32 = a23 = 〈∂t̄+e2|e3〉. Similarly,

Lω̄− =

⎛
⎜⎜⎝

a11 0 2a13 0
0 a22 0 2a24

2a31 0 0 0
0 2a42 0 0

⎞
⎟⎟⎠, (C9)

with a11 = ∂ω̄−C1

C1
, a∗

31 = a13 = 〈∂ω̄−e1|e3〉, a22 = ∂ω̄−C2

C2
, and

a∗
42 = a24 = 〈∂ω̄−e2|e4〉. So the QFI matrix is

H =
(

Ht̄2+ 0
0 Hω̄2−

)
, (C10)

where Ht̄2+ = σ 2
1 + σ 2

2 + εt̄+ and Hω̄2− = σ 2
1 +σ 2

2

4σ 2
1 σ 2

2
+ εω̄− , with

εt̄+ � 0 and εω̄− � 0. We calculated the necessary and suffi-
cient condition for joint optimal estimation, Tr(ρ[Lt̄+ , Lω̄− ]) =
0. As σ1 ≈ σ2, we can determine that

Ht̄2+ = 2σ 2 − 2 exp

(
− ω̄2

− + 4t̄2
−σ 4

4σ 2

)
t̄2
−σ 4,

Hω̄2− = 1

2σ 2
− t̄2

−
2

[
−1 + exp

(
ω̄2

− + 4t̄2
−σ 4

4σ 2

)]−1

.

The relation between t̄+ and ω̄− is

δt̄+δω̄− � 1. (C11)

3. Quantum illumination strategy

For the quantum illumination strategy, the returned state
can be described as

ρ2 = 1
2 (|�1〉〈�1| + |�2〉〈�2|), (C12)
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where |�i〉 is defined in Eq. (5). The orthonormal basis is [35]

|e1〉 =
√

1

c1
(|ψ1〉 + ei(t̄−ω̄+ )/2|ψ2〉),

|e2〉 =
√

1

c2
(|ψ1〉 − ei(t̄−ω̄+ )/2|ψ2〉),

|e3〉 =
√

1

c3
(|∂t̄−e1〉 − 〈e1|∂t̄−e1〉|e1〉),

|e4〉 =
√

1

c4
(|∂t̄−e2〉 − 〈e2|∂t̄−e2〉|e2〉),

|e5〉 =
√

1

c5
(|∂ω̄−e1〉

− 〈e1|∂ω̄−e1〉|e1〉 − 〈e3|∂ω̄−e1〉|e3〉),

|e6〉 =
√

1

c6
(|∂ω̄−e2〉

− 〈e2|∂ω̄−e2〉|e2〉 − 〈e4|∂ω̄−e2〉|e4〉), (C13)

where c1, c2, c3, c4, c5, and c6 are normalization factors. So
the state can be diagonalized as

ρ2 = C1(|e1〉〈e1| + C2|e2〉〈e2|), (C14)

with

C1 =
[

1 + exp

(
−ω̄2

− − 4(1 − κ2)t̄2
−σ 4

8(1 − κ2)σ 2

)]
,

C2 =
[

1 − exp

(
−ω̄2

− − 4(1 − κ2)t̄2
−σ 4

8(1 − κ2)σ 2

)]
.

The SLD matrices for t̄+ and ω̄− are

Lt̄+ = 2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a12 0 a14 0 0
a21 0 a23 0 0 0
0 a32 0 0 0 0

a41 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C15)

with a∗
21 = a12 = C1〈∂t̄+e1|e2〉 + C2〈∂t̄+e2|e1〉, a∗

41 = a14 =
〈∂t̄+e1|e4〉, and a∗

32 = a23 = 〈∂t̄+e2|e3〉, and

Lω̄−=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 2a13 0 2a15 0

0 a22 0 2a24 0 2a26

2a31 0 0 0 0

0 2a42 0 0 0 0

2a51 0 0 0 0 0

0 2a62 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C16)

with a11 = ∂ω̄−C1

C1
, a∗

31 = a13 = 〈∂ω̄−e1|e3〉, a22 = ∂ω̄−C2

C2
, a∗

42 =
a24 = 〈∂ω̄−e2|e4〉, a∗

51 = a15 = 〈∂ω̄−e1|e5〉, and a∗
62 = a26 =

〈∂ω̄−e2|e6〉. The QFI matrix is

H =
(

Ht̄2+ 0
0 Hω̄2−

)
, (C17)

where Ht̄2+ = σ 2 + εt̄+ and Hω̄2− = 1
4(1−κ2 )σ 2 + εω̄− , with εt̄+ �

0 and εω̄− � 0, and

εt̄+ = − exp

(
− ω̄2

− + 4(1 − κ2)t̄2
−σ 4

4(1 − κ2)σ 2

)
t̄2
−σ 4,

εω̄− = − t̄2
−
4

[
−1 + exp

(
ω̄2

−
4(1 − κ2)σ 2

+ t̄2
−σ 2

)]−1

.

Finally, we can obtain the relation

δt̄+δω̄− � 2
√

1 − κ2. (C18)

4. Performance of our strategy using two separate
coherent states

We evaluated the performance using laser light. We em-
ployed two coherent states with an average photon number of
1 as the emitted resource, which can be described as

|ψ〉 = |α1〉|α2〉, (C19)

where |αi〉 = ∑
e−|αi (ti )|2/2 αi (ti )n

n! â†(ti)n|0〉, and αi(ti) has time

distribution φ0(ti ), where φ0(ti ) = ( 2σ 2
0

π
)1/4e−t2

i σ 2
0 e−iω̄ti . These

two states experience backscattering and subsequently exhibit
a time delay upon their return. The returned states can be
described by

|ψ ′〉 = |α′
1〉|α′

2〉, (C20)

where α′
i (ti ) has time distribution φ(ti ), with φ(ti ) =

( 2σ 2
i

π
)1/4e−(ti−t̄i )2σ 2

i e−iω̄i (ti−t̄i ).
As we know, the quantum Fisher information satisfies

H (ρ1 ⊗ ρ2) = H (ρ1) + H (ρ2) for product states. We can de-
rive the QFI matrix for each ρi, where ρi = |αi〉〈αi|. Taking
ρ1 as an example, the orthogonal basis for ρ1 can be described
as

|e1〉 = |α1〉,

|e2〉 =
(

t1 − t̄+ − t̄−
2

)
σ

∫
dt1(α1â+ − α∗

1 â)|α1〉.

After calculation, we can obtain the SLD matrices

Lt̄+ =
(

0 σ

σ 0

)
(C21)

and

L
ω̄− =

(
0 −i

2σ
i

2σ
0

)
. (C22)

Hence, the QFI matrix for ρ1 is

H (t̄+, ω̄−) =
(

σ 2 0
0 1

4σ 2

)
. (C23)

Similarly, we can give the QFI matrix for ρ2,

H (t̄+, ω̄−) =
(

σ 2 0
0 1

4σ 2

)
. (C24)

Therefore, the total QFI matrix can be expressed as

H (t̄+, ω̄−) =
(

2σ 2 0
0 1

2σ 2

)
. (C25)
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Finally, we can obtain the relation

δt̄+δω̄− � 1. (C26)

This indicates that, even when employing a laser, which en-
tails the combination of two coherent states rather than two
single-photon states, the exact same uncertainty relation re-
mains achievable.

APPENDIX D: MEASURING THE SIZE AND VELOCITY
OF MOVING TARGETS

1. Our strategy

The biphoton state obtained by the radar is Eq. (5). We
estimate two parameters t̄− and ω̄+ by QFI. The orthonormal
basis can be given by

|en〉 =
∫

en(t+, t−)|t+〉|t−〉dt+dt−, (D1)

where n = 1, 2, 3 and the spectral distribution functions are

e1(t+, t−) = φ,

e2(t+, t−) =
√

2(1 − κ )σ (t+ − t̄+)φ,

e3(t+, t−) =
√

2(1 + κ )σ (t− − t̄−)φ. (D2)

The SLD matrices are

Lt̄− =
⎛
⎝ 0

√
2(1 + κ )σ 0√

2(1 + κ )σ 0 0
0 0 0

⎞
⎠ (D3)

and

L
ω̄+ =

⎛
⎜⎝ 0 0 −i

2
√

1−κσ

0 0 0
i√

2(1−κ )σ
0 0

⎞
⎟⎠. (D4)

The QFI matrix is

H (t̄−, ω̄+) =
(

2(1 + κ )σ 2 0
0 1

2(1−κ )σ 2

)
. (D5)

Therefore,

δt̄−δω̄+ �
√

1 − κ

1 + κ
. (D6)

2. Single-photon strategy

For two single-photon states, similarly, the returned state
and the basis vectors used to derive the QFI refer to Eqs. (C6)
and (C7). The SLD matrices for t̄− and ω̄+ are

Lt̄− =

⎛
⎜⎜⎝

a11 0 2a13 0
0 a22 0 2a24

2a31 0 0 0
0 2a42 0 0

⎞
⎟⎟⎠,

with a11 = ∂t̄−C1

C1
, a∗

31 = a13 = 〈∂t̄−e1|e3〉, a22 = ∂t̄−C2

C2
, and

a∗
42 = a24 = 〈∂t̄−e2|e4〉, and

Lω̄+ =

⎛
⎜⎜⎝

0 2a12 0 2a14

2a21 0 2a23 0
0 2a32 0 0

2a41 0 0 0

⎞
⎟⎟⎠, (D7)

with a∗
21 = a12 = C1〈∂ω̄+e1|e2〉 + C2〈∂ω̄+e2|e1〉, a∗

41 = a14 =
〈∂ω̄+e1|e4〉, and a∗

32 = a23 = 〈∂ω̄+e2|e3〉. Then we can obtain
the QFI matrix

H =
(

Ht̄2− 0
0 Hω̄2+

)
, (D8)

with Ht̄2− = 2σ 2 − ω̄2
−

2 (−1 + e(ω̄2
−+4t̄2

−σ 4 )/4σ 2
)−1 and

Hω̄2+ = 1
2σ 2 − e−(ω̄2

−+4t̄2
−σ 4 )/4σ 2 ω̄2

−
8σ 4 . With the condition

Tr(ρ[Lt̄− , Lω̄+ ]) = 0, the relation of t̄− and ω̄+ is

δt̄−δω̄+ � 1. (D9)

3. Quantum illumination strategy

For the quantum illumination strategy, the returned state
and the basis vectors used to derive the QFI refer to Eqs. (C13)
and (C14). The SLD matrices for t̄− and ω̄+ are

Lt̄− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 2a13 0 0 0

0 a22 0 2a24 0 0

2a31 0 0 0 0

0 2a42 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D10)

with a11 = ∂t̄−C1

C1
, a∗

31 = a13 = 〈∂t̄−e1|e3〉, a22 = ∂t̄−C2

C2
, and

a∗
42 = a24 = 〈∂t̄−e2|e4〉, and

Lω̄+ = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a12 0 a14 0 a16

a21 0 a23 0 a25 0

0 a32 0 0 0 0

a41 0 0 0 0 0

0 a52 0 0 0 0

a61 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D11)

with a∗
21 = a12 = C1〈∂ω̄+e1|e2〉 + C2〈∂ω̄+e2|e1〉, a∗

41 = a14 =
〈∂ω̄+e1|e4〉, a∗

61 = a16 = 〈∂ω̄+e1|e6〉, a∗
32 = a23 = 〈∂ω̄+e2|e3〉,

and a∗
52 = a25 = 〈∂ω̄+e2|e5〉. The QFI matrix is

H =
(

Ht̄2− 0
0 Hω̄2+

)
, (D12)

where Ht̄2− = σ 2+ εt̄− and Hω̄2+ = 1
4(1−κ2 )σ 2 + εω̄+ , with εt̄− � 0,

εω̄+ � 0, εt̄− = −(eω̄2
−/4(1−κ2 )σ 2+t̄2

−σ 2 − 1)−1 ω̄2
−

4 , and εω̄+ =
−e−ω̄2

−/4(1−κ2 )σ 2−t̄2
−σ 2 ω̄2

−
16σ 4 . We can obtain the relation

δt̄−δω̄+ � 2
√

1 − κ2. (D13)
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