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Enhancing quantum computation via superposition of quantum gates
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Overcoming the influence of noise and imperfections in quantum devices is one of the main challenges for
viable quantum applications. In this article, we present different protocols, which we denote as “superposed
quantum error mitigation,” that enhance the fidelity of single gates or entire computations by performing them
in coherent superposition. Our results demonstrate that via our methods, significant noise suppression can be
achieved for most kinds of decoherence and standard experimental parameter regimes. Our protocols can be
either deterministic, such that the outcome is never postselected, or probabilistic, in which case the resulting state
must be discarded unless a well-specified condition is met. By using sufficiently many resources and working
under broad assumptions, our methods can yield the desired output state with unit fidelity. Finally, we analyze our
approach for gate-based, measurement-based, and interferometric-based models, demonstrating the applicability
in all cases and investigating the fundamental mechanisms they rely upon.
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I. INTRODUCTION

Quantum computing [1,2] is one of the most remarkable
applications of the emergent quantum technologies [3–5], ca-
pable of solving problems whose solutions are inaccessible
with classical devices [6]. Despite the variety of approaches
towards quantum computation, both from the conceptual [4,6]
and the experimental [4,7] sides, decoherence and noise com-
ing from imperfect apparatuses [3,8] jeopardize the processes.
Significant effort has been invested in minimizing or cor-
recting several sources of noise, developing quantum error
correction codes [9–11], and fault-tolerant quantum computa-
tion [12,13]. However, despite all these efforts, many practical
applications [8,14] are still out of reach for the current devices,
and quantum supremacy has only been demonstrated [15] for
tailored problems with limited practical use.

A bottleneck encountered with quantum error correction
codes is that they generally require excessive resources to be
successfully employed in state-of-the-art apparatuses [8]. It is
therefore of paramount importance to develop new techniques
that can lower the detrimental effects of decoherence while
maintaining low computational costs.

In Ref. [16] we design a family of protocols, denoted as
“superposed quantum error mitigation” (SQEM), based on
performing computations in coherent superposition. Ideas in
the same spirit have been proved to be advantageous when
performing superposition of paths or causal orders [17–24].

*These authors contributed equally to this work.
†Jorge.Miguel-Ramiro@uibk.ac.at

We achieve error mitigation by applying the desired compu-
tation in superposition, such that it either affects the input
or some auxiliary state. The superposition is generated with
the assistance of a control register and auxiliary systems that
become correlated with the input. A measurement of these
registers collapses the state of the system and effectively leads
to error mitigation. This allows for significant noise reduction
for both single gates and whole computations. Here, we pro-
vide additional information, analytical results, and numerical
simulations supporting the results in Ref. [16].

Specifically, we introduce basic implementations of our
protocols for gate-based (GB) [2] and measurement-based
(MB) [25–27] quantum computation (QC). The former re-
lies on the application of unitary operations (chosen from
a set of elementary gates), while the latter processes highly
entangled states (called resource states) via single-qubit mea-
surements. Examples of GB-QC include the standard quantum
circuit model [2,28] and adiabatic quantum computation [29],
whereas the most important instance of MB-QC is the one-
way quantum computer [25,27,30].

We analyze the underlying mechanisms of our protocols,
and introduce different extensions that allow for further en-
hancing the protocol performance by increasing the number
of auxiliary states in the superposition. The user may specify
a priori this number of auxiliary qubits for the correction
process. A lower number generally reduces the precision im-
provement of the desired computation, yet may be required to
overcome hardware limitations. Importantly, our techniques
are designed to work with all quantum hardware and soft-
ware currently under development [3]. We also consider an
alternative interferometric implementation (IB-QC) of our
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schemes, where we make use of different effective paths to
create the coherent superposition at the basis of the fidelity
enhancement.

Our SQEM protocols reduce the effects of decoherence
by carrying out the computation in a coherent superposed
fashion. In their simplest version, our protocols are proba-
bilistic, meaning that the enhancement is achieved contingent
on the outcome of a (set of) measurement(s). However, we
also demonstrate how it is possible to combine our approach
with optimized correcting operations to obtain a deterministic
advantage. The main results of this work, which complement
Ref. [16], are as follows:

(i) We provide analytical and numerical demonstrations
that noise mitigation can be achieved via our protocols in
probabilistic and deterministic ways, for any GB- or MB-QC
implementation, and when the additional resources are also
noisy.

(ii) We introduce an alternative approach, called “nested
SQEM,” that maximizes error mitigation when many auxil-
iary subsystems are available. We derive asymptotic relations
which ensure that, under broad assumptions, a desired unitary
can be perfectly implemented on any input state with arbitrary
noise.

(iii) We introduce an interferometric-based (IB-QC)
SQEM implementation that relies on other available degrees
of freedom to substitute the auxiliary subsystems that are
employed in the other SQEM protocols.

(iv) We provide a detailed theoretical and numerical anal-
ysis for all SQEM implementations that we propose.

The paper is structured as follows. In Sec. II we review the
concepts and tools that are employed throughout the work.
We introduce the problem setting and the general idea of
our SQEM schemes in Sec. III. The GB-QC, MB-QC, and
interferometric implementations are introduced in Secs. IV,
V, and VI, respectively, supported with analytical and numer-
ical performance results. In particular, we provide a detailed
analytical protocol analysis in Sec. IV for GB-QC, where we
also analyze possible extensions, such as the nested protocol
or the use for quantum memories. Most of the results and
conclusions can be extended to the MB-QC setting. We sum-
marize and conclude in Sec. VII.

II. BACKGROUND

In this section, we summarize the relevant elements that are
required for the development of our protocols. These include
the formalisms used to describe noise processes, the noise
models considered, as well as a brief review of the related
literature.

A. Noise channels and computational fidelity

We review and summarize the mathematical description
of noise affecting a quantum state. This description will then
serve to characterize the fidelity of a given computation, and
eventually the improvement resulting from the application of
our SQEM protocols. Importantly, while the noise description
is crucial to understanding our methods and quantifying their
effectiveness, on a real device one can adopt our approaches

without any knowledge of the noise affecting the experimental
apparatus.

1. Operator sum representation and process matrix

A mathematical description of decoherence can be formu-
lated on the basis of the Stinespring theorem [2]. The idea
is that to accurately characterize the evolution of an open
quantum system, one must take into account its interaction
with the so-called environment (i.e., another inaccessible sys-
tem) that steers the computation away from the desired result.
Therefore, the composite state is an element of Hs ⊗ He,
where Hs and He are the Hilbert spaces of the system of
interest and the environment, respectively. One then assumes
that at an initial time the quantum state is pure and separa-
ble, ρin = ρs

in ⊗ ρe
in = ρs

in ⊗ |e0〉〈e0|, where ρe
in = |e0〉〈e0| is a

generally unknown environmental state.
Since the system and the environment together form a

closed system, at a later time the composite density matrix
ρout is obtained by applying a unitary operator Use to ρin, i.e.,
ρout = Use(ρs

in ⊗ ρe
in )U †

se. Tracing out the environment, it is
then possible to find

ρs
out = Tre

{
Use
(
ρs

in ⊗ |e0〉〈e0|
)
U †

se

}
=
∑

i

〈ei|Use
(
ρs

in ⊗ |e0〉〈e0|
)
U †

se|ei〉

=
∑

i

KiUsρ
s
inU †

s K†
i , (1)

where “Tre” indicates partial trace over subsystem “e,” {|ei〉}
is an orthonormal basis of the environment, and KiUs =
〈ei|Use|e0〉. These operators Ki acting on subsystem “s” are
usually known as Kraus operators [2] and fulfill the complete-
ness relation

∑
i K†

i Ki = 1, with 1 being the identity operator.
In this work, we indicate the map described in Eq. (1) with
EUs , such that ρs

out = EUs (ρ
s
in ).

This description allows us to analyze any quantum channel
as a unitary evolution in a larger Hilbert space, such that
according to the Stinespring theorem [2]

|ψ〉|ε0〉ε →
∑

j

UseKj |ψ〉 ⊗ | j〉ε, (2)

where the subscript ε denotes the environment into which the
information of the noise is leaked out during the evolution.
Observe again how by tracing out this environment one re-
covers the Kraus description of the noise, Eq. (1). In this work,
we call the description based on the Stinespring theorem the
environmental description. In fact, as the name suggests, by
explicitly including the environment we can characterize the
system with a larger pure state as in Eq. (2) rather than a
density matrix. For more information, see Appendix D 1.

Equivalently to the Kraus decomposition in Eq. (1), it is
possible to describe a quantum channel in the canonical rep-
resentation, also known as process matrix representation [2],
i.e.,

ρs
out =

∑
i, j

λi jσi
(
Usρ

s
inU †

s

)
σ

†
j . (3)

Here, σi are, for all i and an m-input state ρs
in, tensor products

of m Pauli operators {1, Z, X,Y }. For clarity, in this work we
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associate with i = 0 the identity σ0 = 1⊗m, and we call λ00 =
pne the probability not to have an error when the input state is
a Bell state.

Any channel in the Kraus decomposition can be brought
into the canonical representation [see Eq. (3)] by writing each
Kraus operator in the Pauli basis

Ki =
∑

j

αi, jσ j, (4)

where
∑

i, j |αi, j |2 = 1. We can then directly relate these coef-
ficients to the process matrix coefficients, such that

λmn =
∑

j

α jmα∗
jn. (5)

Both noise representations are therefore equivalent; we some-
times employ the latter, as there are circumstances where it is
simpler to work with Pauli matrices.

2. Computational fidelity

This general mathematical formalism can now be applied
to describe a noisy quantum computation acting on an input
state ρs

in. For simplicity, let us consider the noiseless case
first. Indicating with Us the unitary characterizing the whole
computation, owing to the absence of decoherence we can
express Use in Eq. (1) as Use = Us ⊗ Ue, where Ue describes
the free evolution of the environment. The Kraus operators Ki

then become Ki = Usαi, with αi being complex numbers such
that

∑
i |αi|2 = 1. Therefore, we obtain ρs

0 = Usρ
s
inU †

s , where
the subscript “0” has been included to indicate the absence
of decoherence. As expected, in the noiseless case the output
state ρs

0 of the computation corresponds to the state obtained
by applying Us to the initial state ρs

in.
When the computation is noisy, on the other hand, one

can generally not further simplify the output state ρs
out in

Eq. (1). However, it is still possible to quantify the decoher-
ence through the state fidelity [31,32]

F = Tr
{(√

ρs
0ρ

s
out

√
ρs

0

) 1
2
}2

, (6)

which yields one if and only if the noise does not affect the
computation. In the case that the input state is pure, ρs

in =
|ψin〉〈ψin|s, the ideal output can be expressed as |ψout〉s =
Us|ψin〉s and Eq. (6) becomes

F = 〈ψout|ρs
out|ψout〉s, (7)

where we recall that ρs
out = EUs (|ψin〉〈ψin|) is given by the

action of the unitary Us and noise acting on ρs
in, as described

in Sec. II A 1. Observe that, when the quantum channel is
described in terms of the process matrix of Eq. (3), the state
fidelity is lower bounded by F = λ00. In the following we
omit the label “s” for clarity.

B. Quantum computing implementations

Here, we review the different implementations considered
for performing the quantum computations. We elaborate on
the noise model associated with each of them.

1. Gate-based quantum computation (GB-QC)

Quantum gates are unitary operations acting as building
blocks for quantum circuits. They carry out arbitrary compu-
tations on a set of input qubits and are at the basis of GB-QC
[2]. To date, however, experimental apparatuses suffer from
decoherence [8], such that the desired effect of a given quan-
tum gate is never perfectly matched in practice. Therefore, an
accurate characterization of our system (in this case a quantum
computer) is often out of reach since the microscopic source
of the decoherence is inaccessible.

Noise model. In standard gate-based (GB) quantum com-
putation we consider an error model consisting of an ideal
application of each quantum gate followed by noise acting
on each of the qubits involved. In other words, given a cir-
cuit made of k quantum gates, each of them implementing a
unitary operation Ui with i = {1, . . . , k}, the noisy implemen-
tation of the computation U =∏k

i=1 Ui is given by

EU (ρin ) = ©k
i=1

[
EUi (ρin )

]
, (8)

where © indicates concatenation of the maps therein and
EUi (ρ) =∑ j Kj (UiρU †

i )K†
j is the map associated with the

imperfect implementation of Ui, as in Eq. (1).
Alternatively, in our analyses, we also model the cir-

cuit noise as the ideal implementation of the whole circuit
followed by the noise. Observe that both approaches are
equivalent and can be mapped to each other by finding the
corresponding relations between the Kraus operators.

While our protocols work with arbitrary noise of the forms
in Eqs. (1) and (3), for the results presented in Secs. IV E, V B,
and VI B we focus on dephasing and depolarizing channels
EU . For these, in the case of single-qubit unitaries U (with
m = 1) the Kraus operators are given by

Dephasing: K0 = √
p01, K1 =

√
1 − p0Z, (9a)

Depolarizing: K0 = √
p01, Ki =

√
1 − p0

3
σi, (9b)

where σi is the Pauli operator X , Y , or Z for i = 1, 2, 3,
respectively, and p0 is the probability of not having an error.
The corresponding channels when considering more qubits
m � 2 can then be constructed by taking all tensor products
of the possible permutations of m operators Ki (one per qubit)
in Eqs. (9). For instance, with m = 2 and considering the
dephasing channel, one can construct the map with the Kraus
operators K0 =

√
p2

01 ⊗ 1, K1 = √
p0(1 − p0)1 ⊗ Z , K2 =√

(1 − p0)p0Z ⊗ 1, K3 =
√

(1 − p0)2Z ⊗ Z . We remark that,
for a given value of m, the probability pne not having an error
becomes pm

0 .

2. Measurement-based quantum computation (MB-QC)

Measurement-based quantum computation (MB-QC) is an
alternative model for quantum computing that relies on en-
tanglement as a resource for carrying out the computation. Its
best-known implementation is the “one-way quantum com-
puter,” which relies on single-qubit measurements [25–27] for
modifying a given input state.

MB-QC makes use of graph states [33] as a resource.
Graph states are multiqubit quantum states that are stabi-
lized [34] by the elements of the Pauli group, i.e., they are
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eigenstates with +1 eigenvalues of the operators Sn =
Xn
∏

k∈Nn
Zk , where Nn represents the neighborhood of qubit

n. Here, subscript “n” (“k”) indicates that the corresponding
Pauli operator acts on the nth (kth) qubit. Graph states exhibit
correlations corresponding to classical graphs [33], and can
be represented by a graph G = (V, E ), where V is the set of
vertices and E to the set of edges of the graph.

The so-called two-dimensional (2D) cluster state |G〉 [35],
on which one-way quantum computers are based, is a highly
entangled graph state that allows for universal computations
[25]. A way to visualize this state is given by placing N qubits
on a 2D lattice, individually initializing them in |+〉 = (|0〉 +
|1〉)/

√
2, and applying CZi j = |0〉〈0|i ⊗ 1 j + |1〉〈1|i ⊗ Zj to

all pairs i, j that are connected by an edge, i.e.,

|G〉 =
∏

{i, j}∈E

CZi j |+〉⊗N . (10)

In practice, there are several approaches for building cluster
states that do not rely on the application of CZi j gates. Pho-
tonic ones, for instance, can make use of parametric down
conversion to produce several thousands of entangled photons
[36,37].

To carry out a desired computation, input qubits are en-
coded into the leftmost qubits of the cluster state. Quantum
gates are implemented by performing local measurements on
ancilla qubits,1 either in the eigenbasis of the Pauli operators
X , Y , Z , or in the rotated basis R(θ ) ≡ {(|0〉 ± eiθ |1〉)/

√
2}.

Depending on the measurement outcomes, the system is
probabilistically projected onto different states. By-product
operators and adaptive measurements are in general required
in order to make the computation deterministic. It is notewor-
thy that in MB-QC all nonadaptive measurements (i.e., the
Clifford part [38] of the corresponding circuit, corresponding
to all measurements in the X , Y , and Z bases) can be simul-
taneously performed at the beginning of the calculation, or
even simulated efficiently classically [39]. This often results
in fewer steps required to carry out a desired computation, and
consequently less time for the system to decohere. We refer to
Ref. [40] for further details.

In MB-QC the main source of noise is the imperfect prepa-
ration of 2D cluster states and the imperfect single-qubit
measurements [41]. Errors do not affect the computational
level directly. They affect the output state in a highly nontrivial
way, depending on the size of the resource state, the local
measurements performed, and their outcomes. Different kinds
of noise have vastly different effects on the outcome of the
computation. For instance, 1D MB-QC is resilient against bit
flips that leave the output state unaffected [41].

An important remark is that, given any MB computation,
one can always describe the noise with the map in Eq. (1)
acting on the input qubit. However, even when it is possible to
describe the noise affecting the preparation and measurement
of the MB resource state in terms of dephasing or depolarizing
errors, the Kraus operators in Eq. (1) become highly nontriv-
ial. They generally depend on the properties of the considered

1Throughout this paper, we reserve the word “ancilla” for the qubits
in the resource states that are measured to perform the MB-QC.

computation, such as the size, the measurements performed
on the cluster state, and their outcomes.

Noise model. Here we describe the noise model employed
in our work when considering MB-QC. After the resource
state is built but before any measurement is performed, we
assume that each qubit is affected by local noise, i.e.,

ρG =
N∏

j=1

E j (|G〉〈G|), (11)

where |G〉 is the N-qubit cluster state defined in Eq. (10)
and the map E j describes an arbitrary noisy channel E j =∑

i Kiρ
jK†

i acting on the jth qubit [see Eq. (1)]. As in GB-
QC, the Ki affecting the resource state in MB-QC depend on
the specific noise. While our protocols work for all kinds of
noise, below we mainly focus on dephasing and depolarizing
channels, as in Eqs. (9a) and (9b), respectively. Our formalism
is suitable for describing noise contributions arising from both
imperfect state preparation and imperfect measurements. This
is done by redefining the Kraus operators.

In the purified version treatment of an MB-QC pro-
cess based on the Stinespring theorem (see Sec. II A 1 and
Appendix D 1), which we denote as the environmental formal-
ism, we assign an environmental subsystem to each cluster
state, such that we can analyze the process based on the
unitary evolution defined by the global Kraus operators of
the form Ki =⊗ j K ( j)

i , with i ∈ {0, . . . , rN } where r is the
number of Kraus operators affecting each qubit and N the
number of cluster qubits.

3. Interferometric-based quantum computing (IB-QC)

Aside from GB- and MB-QC, we also consider an alterna-
tive “interferometric” approach (IB-QC) where a computation
is applied to a system of interest depending on an extra phys-
ical degree of freedom [42]. While this degree of freedom is
arbitrary, a simple way to think at this interferometric picture
is via superposed branches, i.e., a system is routed towards
different trajectories simultaneously (in a quantum superpo-
sition fashion), and then recombined afterward. Within each
of these paths an identical computation occurs, which can be
implemented in either GB or MB fashion. Similar approaches
have been investigated, both theoretically and experimentally,
in recent works. These include superposition of either orders
of gates [43,44] or trajectories [20,21,45].

What makes IB-QC interesting is that when the state is sent
into several branches and then recombined, it interferes with
the vacuum, rather than an auxiliary subsystem. As discussed
in more details in Sec. VI and Ref. [46], this allows for distin-
guishing different errors that have occurred, and consequently
correcting for them. Importantly, aside from the physical
degree of freedom encoding the “which path” information,
the IB-QC implementation of our SQEM protocols does not
require auxiliary states [as in the GB and MB versions (see
Secs. IV and V]. To experimentally achieve IB-QC, moreover,
there are several possible approaches including photonic and
ions [42] as well as superconducting qubits [47].

Noise model. The noise model considered in IB-QC de-
pends on how the computation is practically carried out in
each branch. For concreteness, we assume to use GB-QC,
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such that the noise in each branch is modeled as in Sec. II B 1.
Specifically, a perfect implementation of each gate is applied,
followed by a noise channel characterized by Kraus opera-
tors {Ki}. In the purified analysis of this strategy based on
the Stinespring theorem (see Sec. II A 1), we assign an en-
vironmental system to each branch of the superposition; in
this case, the initial state of the environmental system has a
physical meaning on account of the interference with vacuum.
For more information, see Appendix E.

C. Relation to previous work

SQEM protocols for standard GB- and MB-QC rely on
implementing a desired computation U via a superposition
of different branches, where a branch is defined as each of
the orthogonal elements or combinations in the superposition.
This is accomplished by exploiting the interference between
errors occurring on the input and some auxiliary states that are
first mixed together and then separated again after the com-
putation. To achieve this, we develop the basic tools that we
previously introduced in Refs. [48,49] and introduce different
ones. With the details described in the following sections,
here we briefly summarize relevant works in the literature that
share the idea of employing more resources (e.g., number of
qubits) to enhance the fidelity of a desired operation.

In contrast to other error mitigation approaches in
Refs. [50–52], SQEM is not restricted to the estimation of
expectation values. Instead, it provided an output state with
enhanced fidelity by exploiting noise interference and keep-
ing the state. Moreover, SQEM only requires a single copy
of the input state and is resilient against noise affecting the
additional operations required for its operation.

Superposition has been analyzed and exploited in different
quantum communication and computing contexts. Applied to
causal orders, it has been proved to be advantageous in mul-
tiple scenarios, including superposition of orders of channels,
also known as the quantum switch [22,23,43,44,53], or orders
of quantum gates [19]. Superposition of paths and trajectories
have been analyzed from theoretical [20,21,45] and experi-
mental [24] points of view, where noise mitigation has been
shown. One of our protocols, namely, the interferometric-
based one (see Sec. VI), is related to these last works. Here,
however, it is employed for a different task, i.e., enhancing the
fidelity of quantum computation. Moreover, we try to provide
some insights into the fundamental physical understanding of
the problem.

III. PROBLEM SETTING AND GENERAL IDEA

Current quantum computers suffer from noise and im-
perfections [3]. Our protocols, introduced below, exploit
available imperfect resources to enhance the fidelity of a
computation. At the cost of resorting to more (noisy) qubits
and performing operations multiple times, we do not require
error correction or tomography techniques. Furthermore, our
strategies are effective regardless of the type or the form of the
noise.

Although the working principles at the basis of our pro-
tocols depend on the specific implementation (see below),
the underlying idea is the same. Consider a m-qubit input

(a) (b)

(c)

FIG. 1. Illustration of our SQEM method applied to an arbitrary
computation U acting on m input qubits. (a) The fidelity F is cal-
culated with respect to the output of the perfect computation. In the
noiseless case, the absence of error guarantees unit fidelity F = 1.
When considering realistic settings, noise acting on the system low-
ers the fidelity F < 1. In (b) and (c) we schematically represent the
underlying idea behind our protocols. By creating a superposition of
two (or more) identical computations, it is possible to enhance the
fidelity of the computation.

state |ψin〉 that undergoes some noisy quantum computation
described by EU , such that the outcome is given by ρ =
EU (|ψin〉〈ψin|) [see Eq. (1)]. Indicating with U the desired
(noiseless) unitary operation associated with the computa-
tion, we investigate the detrimental effects of decoherence via
Eq. (6), which can be rewritten as

F 0 = Tr(ρoutU |ψin〉〈ψin|U †). (12)

This equation allows determining the expected fidelity F 0 of
the considered computation U with a given input state |ψin〉
and noise EU . In this paper, we refer to F 0 as the incoherent
fidelity. As schematically represented in Fig. 1, our goal is to
enhance F 0 by exploiting coherent interference between two
or more states undergoing the same (noisy) computation EU .

The special case where U = 1 can be seen as a particular
implementation of a quantum memory [54,55], where quan-
tum information is stored and our protocols allow to mitigate
the noise during the storing process. We refer to the imple-
mentation of our protocols for this case as coherent quantum
memories.

As discussed in Sec. II, EU can be modeled by applying
arbitrary noisy channels either to the state after implementing
the gates within the computation (GB-QC), or to all qubits
after the creation of the resource state (MB-QC). We remark
that, while these noise models are general, our formalism
can be extended to other noisy models, resulting in similar
qualitative results (see Secs. IV and V for more details).

To explain the underlying idea of our protocols, let us
consider the simplest case in Fig. 1(b) first, which shall be
generalized later. An auxiliary degree of freedom, which is
initialized in the state |+〉c, constitutes a control register. As
depicted in Fig. 1(b), we apply the noisy computation EU to
|ψin〉 multiple times, each controlled by the state of a control
system.
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As a result of the coherent superposition [see Fig. 1(c)],
the noises acting on the maps EU interfere with each other,
resulting in partial cancellation of the errors. A final measure-
ment of the control register in the X basis leads to two possible
states (corresponding to each outcome) with fidelities F1 and
F2, each found with probabilities p1 and p2, respectively. We
show that, following our protocols, one finds probabilistic im-
provement max{F1, F2} > F 0 and deterministic improvement
(p1F1 + p2F2) > F 0. While the latter usually requires unitary
corrections to be applied to the output state, the first does
not (but can benefit from them). The fidelity enhancement is
significant in all settings we have investigated.

The above example for the two degrees of freedom rep-
resented by the control register |+〉c can be generalized.
Superposition of more than two elements can be achieved
by preparing the control register as a qudit in |+d〉c =

1√
d

∑d−1
i=0 |i〉. As described in Sec. IV, with an overhead of

resources that is constant in the dimension d , it is possible
to further improve the fidelity and asymptotically reach unit
fidelity for a variety of settings.

A. Figure of merit

The state fidelity of a noisy computation highly depends
on the input state. To better quantify the advantages of our
protocols for all input states, we introduce in this section a
figure of merit based on Eq. (6).

The Choi-Jamiołkowski (CJ) isomorphism [56] is a practi-
cal way to describe the effects of noise on quantum operations
via the tools offered by quantum states. In this context, we
use the isomorphism to analyze how close a noisy quantum
operation is with respect to its ideal implementation. Consider
a maximally entangled state

|	+〉t,r = |0〉t|0〉r + |1〉t|1〉r√
2

, (13)

where subscripts “t” and “r” stand for test and result, respec-
tively, and indicate two (entangled) subsystems. The “result”
subsystem undergoes a computation, either a standard one as
in Fig. 1(a) or a parallel one as in Figs. 1(b) and 1(c), which is
generally noisy. The CJ fidelity is then defined as

CJ fid. : FCJ = 〈	+|t,r (1 ⊗ U †)ρ t,r
out (1 ⊗ U )|	+〉t,r, (14)

where ρ t,r
out is the state of the composite target and result sys-

tems after the computation is applied to the latter, and 1 ⊗ U
is an operator acting U on the result subsystem.

For an m-qubit input state we require 2m qubits for calcu-
lating the CJ fidelity, which generalizes to

FCJ = 〈	+
m |t,r (1t ⊗ U †)ρ t,r

out (1t ⊗ U )|	+
m〉t,r, (15a)

|	+
m〉t,r =

( |0〉t|0〉r + |1〉t|1〉r√
2

)⊗m

, (15b)

where 1t and U act on the m qubits constituting the test and
the result states, respectively, and |	+

1 〉t,r = |	+〉t,r .
Given an arbitrary input state, FCJ provides a lower bound

on the fidelity of the computation [57]. In fact, if the result
subsystem of the maximally entangled state |	+

m〉 in Eq. (15b)
decoheres, the entanglement with the test subsystem is re-
duced and consequently FCJ. By using half the qubits in |	+

m〉

as input for some process, from a teleportation point of view,
one can see that the CJ fidelity is a lower bound for any fidelity
F obtained with an arbitrary input state, as long as the protocol
is run under the same settings.

IV. GATE-BASED SQEM APPROACH

As mentioned above, there are different ways to carry out
a quantum computation: GB- and MB-QC being the better
known. In the remainder of this work, we introduce three
different SQEM protocols to coherently enhance quantum
computations. The first, explained in this section, is applicable
to GB-QC; the second (Sec. V) to MB-QC, while the third em-
ploys interferometric principles (Sec. VI). Here, we consider
GB-QC with decoherence arising from imperfect quantum
gates. As already explained in Sec. II A, noise is modeled via
the application of quantum channels to qubits after the desired
unitary evolution.

In this section, we first introduce the relevant notation and
explain the protocol in Sec. IV A. In Sec. IV C 1 we then
describe the implementation called “probabilistic” where, de-
pending on the outcomes of the measurements on the auxiliary
systems, the output state is either kept or discarded. Later in
Sec. IV C 2, we introduce the other variant named “quaside-
terministic,” in which the user, at the cost of performing
additional correcting operations, can enhance the probability
of keeping the state, possibly making the protocol fully deter-
ministic. Finally, in Sec. IV D, we explain how to generalize
both these variants in a “nested” fashion, which allows for
overcoming the limits of the first two in some parameter
regimes and further enhance the fidelity of the resulting state.

A. Protocol

The aim is to apply a circuit corresponding to the unitary
U to an unknown m-qubit input state |ψin〉. In general, if the
gates within U are noisy the effective action of the circuit can
be described via the map EU in Eq. (1) such that

ρ0 ≡ EU (|ψin〉〈ψin|) =
∑

i

KiU |ψin〉〈ψin|U †K†
i , (16)

with Ki being Kraus operators (see Sec. II A). In the follow-
ing, we refer to ρ0 as the “incoherent” output, as opposed
to the coherent one, ρout, resulting from the application of
our strategies outlined below. From Eq. (6) it is possible to
determine the fidelity of ρ0 with respect to the desired output
state U |ψin〉〈ψin|U †, i.e.,

F 0 = 〈ψin|U †ρ0U |ψin〉, (17)

which we label as incoherent fidelity.
As shown in Fig. 2 and thoroughly described below, our

SQEM protocol relies on the idea of performing the compu-
tation in superposition, such that the desired computation U
is independently applied to the input and auxiliary registers.
Depending on the state of a control register, the input state
is spread throughout all branches and correlated with chosen
auxiliary states. In Fig. 2, d branches are depicted, the first
(“a”) corresponding to the input and the remaining d − 1
(“bi,” i = 1, . . . , d − 1) to the auxiliary registers.
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FIG. 2. Schematic representation of Protocol 1. Vertical dashed
lines, marked with numbers from one to six, identify the system’s
state after the corresponding steps of the protocol, as explained in
the main text. We explicitly include the initial |ψin〉a and auxiliary
|φ0〉bi (i = 1, . . . , d − 1) states, as well as the noisy computations
EU . The multiqubit gates between lines 1 and 2, as well as 3 and 4,
are CSWAP operations defined in Eq. (20).

The superposition is achieved with controlled-SWAP
(CSWAP) gates applied to the input and auxiliary states in
a coherent fashion [48]. Identical noisy operations are then
implemented in each system, followed by another round of
CSWAPs for reassembling the desired output state. Under the
assumption that the noise affecting each register is indepen-
dent, measurements of the auxiliary states project the system
state vector such that noise is mitigated for the output state.

Our goal is to design a procedure that, at the expense of
more resources in terms of qubits and gates, produces an
output state ρout whose fidelity F is higher than F 0. This
procedure is summarized in Protocol 1. Here, we present an
accurate description that step by step provides insight on the

Protocol 1. SQEM for a GB-QC implementation.

Input: An initial state |ψin〉 and a noisy computation EU

implementing the unitary U with a fidelity F 0.
1. Prepare a control qudit in the state |+d 〉c as in Eq. (18), and

auxiliary qubits in
⊗d−1

i=0 |φ0〉bi .
2. Apply a CSWAP operation, Eq. (20), coherently swapping the

main and auxiliary register states. A superposition is
generated.

3. Implement the noisy computation on the main and auxiliary
registers independently.

4. Apply again the CSWAP gate for reassembling.
5. Measure the control register in the generalized X basis in

Eq. (23) and the auxiliary qubits in suitable bases.
6. Postselect the state depending on the measurement outcomes

of the control and the auxiliaries, unless the protocol is fully
deterministic. If desired, apply correcting unitaries depending
on the measurement outcomes.

Output: State ρout characterized by a fidelity F > F 0, in both the
probabilistic and (on average) the deterministic protocols.

protocol and the mathematical tools that will be used in the
following.

Step 1. In the first step, a d-level qudit system, playing the
role of control register (hence the subscript “c”), is prepared
in the state

|+d〉c = 1√
d

d−1∑
i=0

|i〉c. (18)

The dimension d indicates the number of branches (see also
Fig. 2) into which the input state will be distributed to create
the noise interference at the basis of the fidelity enhancement.
The role of the control register is to keep track of the states
in all branches, in order to reconstruct the desired output
at step 4 of our protocol. We remark that, in practice, it is
always possible to realize a d-level qudit control system by
embedding n � log2 d qubits each in the |+〉 state.

Additionally, we prepare d − 1 m-qubit auxiliary systems
in the

⊗d−1
i=1 |φ0〉bi state. The choice of |φ0〉 is not unique and,

together with the measurement basis of the auxiliary regis-
ters (see step 5 below), determines the amount of advantage
achieved by the protocol.

The state of the whole system at step 1 is therefore charac-
terized by the equation

step 1: |+d〉c|ψin〉a

d−1⊗
i=1

|φ0〉bi , (19)

where we use subscripts “a” and “bi” (i = 1, . . . , d − 1) to
indicate the registers associated with the input |ψin〉 and aux-
iliary |φ0〉 states, respectively.

Step 2. In the second step, a controlled-SWAP (CSWAP)
operation, which is a generalization of the Fredkin gate
[58–60], is applied to the state in Eq. (19). The action of the
CSWAP is described by the unitary operator

CSWAP =|0〉〈0|c ⊗ 1 +
d−1∑
i=1

|i〉〈i|c ⊗ SWAPa,bi . (20)

Here, the SWAP gate defined as SWAPn,n′ =∑i, j |i〉〈 j|n| j〉
〈i|n′ exchanges states n and n′, and we omitted the subscripts
in the kets; e.g., |i〉〈 j|n indicates |i〉n〈 j|n. We remark that in
the case of multiqubit input and auxiliary states, the SWAP
can be constructed by exchanging, qubit by qubit, the state
vectors of the two registers to which it is applied. Note that
a CSWAP gate can be decomposed into two controlled-NOT
(CNOT) and one Toffoli (T) gate [61], for which high-fidelity
implementations have been achieved [62].

The CSWAP in Eq. (20) distributes the input |ψin〉a among
all branches. Specifically, if the control is in |i〉c, the register
bi with its m-qubit auxiliary state is swapped with the input
|ψin〉a initially stored in the register a. Therefore, at the end of
step 2, the system state is given by the coherent superposition

step 2:
1√
d

⎛
⎝|0〉c|ψin〉a

d−1⊗
j=1

|φ0〉b j

+
d−1∑
i=1

|i〉c|φ0〉a|ψin〉bi

d−1⊗
j �=i

|φ0〉b j

⎞
⎠. (21)
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Step 3. In the third step, the desired computation U is
carried out in each register a, bi, i ∈ {1, . . . , d − 1}. Realistic
implementations of U are associated with noise arising from
the imperfect application of the quantum gates within U (see
Sec. II A), yielding the maps EU [see Eq. (16) and Fig. 2].

Here, we make two assumptions. First, noise acting on
different registers must be uncorrelated.2 This is required to
ensure that the noise interference that is built at step 4 of our
protocol cancels (some of) the errors affecting the resulting
output state once the control and all auxiliary systems are
measured. Second, we assume that each register is subjected
to the same decoherence. This is motivated by the fact that all
computations are carried out identically. However, we remark
that device imperfections may introduce different decoher-
ence effects in each branch. Our protocols, particularly the
quasideterministic version, are resilient against differences in
the Kraus operators acting on separate registers, and tolerate
weak correlations between them.

The system state vectors at the end of steps 3 and 4 are
lengthy and the same physical insight is obtained after the
collapse of the state following the measurements in step 5.
Therefore, we omit the mathematical expression here and
point at Appendix A for further information.

Step 4. In the fourth step a second CSWAP of the form
of Eq. (20) is applied, with the purpose of reassembling the
desired state and building the interference at the basis of noise
cancellation. In the absence of decoherence, the composite
system state becomes

|+d〉cU |ψin〉a

d−1⊗
j=1

U |φ0〉b j , (22)

i.e., the CSWAPs in steps 2 and 4 do not contribute to the
dynamics of the system.

When noise is present, on the other hand, the state at this
point of the protocol is not separable into its branches’ state
vectors, but is entangled. As will become clear in the next
step, this entanglement is the essential ingredient for partially
or completely correcting the errors affecting the input state.
In fact, since the first CSWAP distributed |ψin〉a among all
branches, by measuring the auxiliary system we can either
postselect the outcome that is ensured to yield minimal error
(see Sec. IV C 1), or correct via unitary operations the output
state to boost its fidelity (see Sec. IV C 2).

The CSWAP operations are central to this protocol, and
an important question to be addressed is how noise result-
ing from their application affects the protocol output. This
is investigated in Sec. IV E, where we show that for com-
mon experimental settings decoherence from the CSWAPs is
tolerated.

Step 5. In this step, control and auxiliary subsystems are all
measured. The state vector collapses, resulting, either prob-
abilistically or deterministically (see next step), in an output
state characterized by a higher fidelity compared to the inco-
herent case in Eqs. (16) and (17). We need first to specify the
bases used for the measurements.

2We remark that our protocol works even if, within each branch,
noise is correlated.

The control is projected onto elements of the generalized
d-level X basis, i.e.,{

1√
d

d−1∑
k=0

e
2π ikl

d |k〉c

}d−1

l=0

. (23)

This choice is motivated since, as outlined above, prior to this
step and in the absence of noise we expect to recover the state
in Eq. (22). Therefore, we want to be able to discern when the
control register is in the |+d〉c state. In principle, the other
elements in the control measurement basis in Eq. (23) are
arbitrary, and one could even optimize their choice to further
enhance the protocol.3 We selected the generalized d-level X
basis for concreteness. In fact, when the control register is a
collection of qubits (see step 1), with the basis in Eq. (23) all
the measurements can be implemented locally by performing
a Pauli X measurement on each qubit.

On the other hand, the basis chosen for the auxiliary
subsystem generally depends on the characteristics of the
unitary U , the state |φ0〉, and the noise. As discussed below
in Sec. IV C 2, its choice can even be optimized. Ideally,
following a similar argument as for the control basis, it is
desirable to project all auxiliary subsystems onto U |φ0〉 [see
Eq. (22)]. This naturally occurs when |φ0〉 is an eigenstate of
the unitary U . However, depending on U and |φ0〉, this may
be impractical. Different choices of the measurement basis
for the auxiliary registers lead to different fidelity enhance-
ments. A more detailed discussion on this topic is given in
Sec. IV C 1.

Step 6. The last step regards postprocessing of the result,
which is different depending on whether the SQEM protocol
is run in its probabilistic or quasideterministic version. We
summarize the main features here, and expand in the follow-
ing Secs. IV C 1 and IV C 2.

As the name suggests, the probabilistic scheme involves
postselection of the resulting state depending on the mea-
surement outcomes of the control and auxiliary subsystems.
If all measurements at step 5 yield the desired result, ρout is
kept; otherwise, it is discarded. The most appealing aspect
of this variant is that it does not require any information on
the input state, the unitary, or the noise. It is a plug-and-play
protocol that is readily implemented and ensures, under broad
assumptions, that the resulting state is characterized by a
better fidelity than the incoherent case.

While the probabilistic SQEM protocol does not require
any information on the hardware, one may ask whether and
how accessing extra knowledge (e.g., the noise characteris-
tics) can help improve the resulting state fidelity. Furthermore,
the likelihood to obtain all the desired measurement out-
comes in step 5 decreases exponentially with the number
of branches d , making the probabilistic protocol unfeasible
for large values of d . These two observations motivate the
quasideterministic version of our protocol, where one can
both improve the output fidelity and enhance the postselection
probability to a user-specified threshold. The most appealing

3Notice that this is equivalent to applying unitary operations on the
control register at the beginning of the protocol, in step 1.
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FIG. 3. Schematic representation of the evolution of correlations
between the systems and environments during the process.

aspect of this scheme is that it employs a black-box opti-
mization that guarantees the best possible performances given
the unknown noise characteristics and the chosen threshold.
Notice that, if required, the protocol can work in a completely
deterministic way, i.e., without requiring postselection.

A direct intuition about how the protocol works can also
be found analyzing the correlations of the environment spaces
where information is leaked out because of noise. Thanks to
the coherent superposition, the subspaces corresponding to
the environments associated with the input and auxiliary sub-

systems get correlated with each other and with the system’s
state vector before the measurements at step 5 (see Fig. 3). At
the end of the process, the measurement of the auxiliary and
control qubits (partially) reveals to us the nature of the inter-
actions between the system and the environments, effectively
suppressing the errors. We refer the reader to Appendix D for
details.

In the following subsections, we formally introduce the
probabilistic and the quasideterministic versions of our pro-
tocol. Bounds and asymptotic limits of, e.g., the resulting
fidelities and the success probabilities will be derived and
applied to relevant examples.

B. Protocol analysis

We provide now an analysis of the protocol. For clarity,
in this section, we assume projecting all auxiliary subsystems
onto the same state, which we indicate with |φf〉. With the
control and all auxiliary subsystems projected onto |+d〉c and
|φf〉, respectively, the resulting unnormalized density matrix
ρout of the system “a” reads as (after tracing out the measured
systems)

ρout = Ad

d

⎡
⎣∑

i

KiU |ψin〉〈ψin|U †K†
i + (d − 1)

∑
i, j

(
〈φf |KjU |φ0〉〈φ0|U †K†

i |φf〉
A2

)
KiU |ψin〉〈ψin|U †K†

j

⎤
⎦, (24a)

Ad =
(∑

i

|〈φf |KiU |φ0〉|2
)d−1

. (24b)

The trace Tr(ρout ) corresponds to the probability of measuring
the chosen state |+d〉c

⊗d−1
j=1 |φf〉b j for the control and auxil-

iary subsystems.
From Eq. (24a) it is possible to understand how the pro-

tocol works. The first term in the square brackets describes
the input state |ψin〉 always remaining in register “a.” Noise
interference from the other registers bi is absent, and thus this
case resembles, up to an overall constant, the incoherent one in
Eq. (16). The interesting term of Eq. (24a) is the second one:
it is enhanced by a factor d − 1 and thus becomes dominant
for large d . This contribution to ρout contains all cases where
the input has been distributed within all other registers bi

(i = 1, . . . , d − 1) and later on brought back into its original
register. Noise interference is evident from the products

〈φf |KjU |φ0〉〈φ0|U †K†
i |φf〉, (25)

which suppress decoherence the more the state U |φ0〉 is “sen-
sitive” to the Kraus operators and the less |φf〉 is orthogonal
to U |φ0〉. In our terminology, |ψ〉 is fully sensitive to Kj if
〈ψ |Kj |ψ〉 = 0. By comparison, |ψ〉 is called insensitive to Kj

if it is one of its (nonzero) eigenstates, i.e., Kj |ψ〉 ∝ |ψ〉.
Equations (24a) and (25) tell us that the less |φf〉 is or-

thogonal to U |φ0〉 and the more the state U |φ0〉 is affected
by the noise, the better our protocol works. This rather coun-
terintuitive fact is better understood by thinking in terms of
the noise. After step 2, the input and the auxiliary states are
in a coherent superposition, and thus subjected to the same
noise. By measuring the control and auxiliary subsystems in

step 5, we can learn the kind of noise that has been applied
to both U |φ0〉 and U |ψin〉, but only if U |φ0〉 is sensitive to
the associated Kraus operators. Moreover, this information is
accessible only if |φf〉 is not orthogonal to U |φ0〉.

In order to quantify the noise mitigation obtained with our
protocol, we introduce the parameters

ω1 = 1 −
∑

j�1 |〈φ0|U †KjU |φ0〉|2
1 − pne

, (26a)

ω2 = |〈φf |U |φ0〉|2, (26b)

where pne is the probability not having an error of any kind.
From the properties of the Kraus operators (see Sec. II A 1), it
is possible to bound the right-hand side of Eq. (26a) between
0 and 1, with the former (latter) being achieved if and only
if U |φ0〉 is completely insensitive (sensitive) to all Kraus
operators. Therefore, the extreme points (ω1, ω2) = (1, 1)
and (ω1, ω2) = (0, 0), respectively, relate with maximum and
minimum mitigation of the error affecting the computation
U . Any other pair of values of (ω1, ω2) generally indicates
a certain degree of noise mitigation and the corresponding
advantage of our protocols.

1. (ω1, ω2 ) = (1, 1)

To better understand how our scheme works, let us consider
first the best possible scenario, i.e., the chosen auxiliary state
|φ0〉 and |φf〉 are such that U |φ0〉 is fully sensitive to all Kraus
operators and 〈φf |U |φ0〉 = 1, such that (ω1, ω2) = (1, 1) in
Eqs. (26).
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For (ω1, ω2) = (1, 1), of all possible products in Eq. (25),
only the one with i = j = 0 survives, and the resulting state
ρout in Eq. (24a) becomes

ρout = pd−1
ne

d

∑
i�1

KiU |ψin〉〈ψin|aU †K†
i + pd

neU |ψin〉〈ψin|aU †.

(27)

For sufficiently many branches d � 1, we can approx-
imate this last equation (after normalization) by ρout ≈
U |ψin〉〈ψin|aU †, recovering the perfect outcome. In other
words, (ω1, ω2) = (1, 1) is a sufficient condition to achieve
the desired outcome in the limit d � 1.

In order to obtain ω1 = 1, a necessary and sufficient re-
quirement is that each term in the sum within Eq. (26a) is
zero, i.e., the auxiliary state is orthogonal to all the eigenvec-
tors of all Kraus operators different from the identity 1. For
some kinds of noise (e.g., the depolarizing channel) this is
not possible without resorting to larger entangled states since
these eigenvectors form a basis of the Hilbert space within
which |φ0〉 resides. However, for rank-2 noise [2], ω1 = 1 is
attainable with nonentangled auxiliary states. For instance,
with dephasing we can set each qubit of |φ0〉 to be in an
eigenstate of either the Pauli X or Y operator, ensuring ω1 =
1. Alternatively, one can always ensure complete sensitivity
to any Kraus operator by employing m Bell states for each
auxiliary |φ0〉.

Another question is how to obtain ω2 = 1, i.e., postselect-
ing the measurements at step 5 which are associated with
noise suppression and hence fidelity improvement. As men-
tioned above, a possibility is to apply the reverse computation
U † to the auxiliary states after the second CSWAP, and to post-
select |φ0〉 (which is known) after the measurement. While
this strategy could be a viable option, undoing the unitary U
is a noisy process that (while still being advantageous) lowers
the resulting fidelity of the output state ρout. It is thus relevant
to investigate the scenarios where one can ensure ω2 = 1
without applying U † before the measurements of the auxiliary
states.

To have ω2 = 1 it is required to know U and how it acts
on |φ0〉. The simplest scenario is when |φ0〉 is one of its
eigenstates, such that U |φ0〉 = |φ0〉 and it becomes redundant
to apply U †. For instance, for U being a rotation on the Bloch
sphere, we can pick |φ0〉 along the rotational axis, e.g., |0〉 or
|1〉 for U = T , where T is the T = eiπZ/4 gate.

When U is a Clifford gate [38], it is possible to generalize
this approach to a larger class of auxiliary states. In this
scenario, we consider |φ0〉 to be a stabilizer state [34], such
that it is classically efficient to determine U |φ0〉. Specifically,
by ensuring that all stabilizers of both |φ0〉 and U |φ0〉 are bit-
wise commuting, we can prepare |φ0〉 and measure U |φ0〉 by
employing local rotations only. We remark that the CNOT gate,
which is a limiting factor to scaling up quantum computation
[3], is a Clifford gate and as such suited to this choice for the
state |φ0〉.

We refer to Appendix B for further analysis.

2. (ω1, ω2 ) < (1, 1)

We have identified above different scenarios where max-
imum noise mitigation can be obtained with our SQEM

protocols. However, to achieve (ω1, ω2) = (1, 1), one may
require additional resources that themselves can contribute to
the noise affecting the output of our SQEM protocols. This is
the case with, e.g., entangled auxiliary states (with the over-
heads and additional noise associated), or with |φf〉 = U |φ0〉
which requires an additional application of U .

When (ω1, ω2) < (1, 1), it is possible to avoid these hid-
den resources. For instance, one may restrict the available
correction operations to, e.g., only single-qubit unitary correc-
tions when implementing a multiqubit gate, or only Clifford
operations when implementing a T gate. As we demonstrate
numerically in Sec. IV E and theoretically in the following
Sec. IV C, the SQEM probabilistic protocol is robust for
(ω1, ω2) < (1, 1) in a broad range of relevant settings. Finally,
to further enhance the advantage of the SQEM protocols, we
introduce the nested variation in Sec. IV D 1, which uses dif-
ferent auxiliary states to lower the noise acting on the resulting
state after the measurement at step 5.

C. Protocol postprocessing variants

Below, we analyze in detail the possible postprocessing
alternatives in step 6 of our SQEM protocols, namely, the
probabilistic and the quasideterministic versions.

1. Probabilistic SQEM

The probabilistic protocol postselects the resulting state
ρout depending on the measurement outcomes of step 5.
Here, for the sake of clearness, we consider the case of local
noise and describe a procedure that ensures (ω1, ω2) = (1, 1).
In these settings, analytical results are more compact, and
the basic principles on which our schemes rely are better
understood. We analyze the protocol under the action of depo-
larizing noise and we generalize afterward to arbitrary noise.
We discuss the practical implementation of our schemes and
consider more realistic scenarios in which the auxiliary states
can be efficiently prepared in the following Sec. IV D.

Depolarizing noise. Here, we investigate the case of de-
polarizing noise affecting each of the m qubits undergoing
a desired operation U , such that the Kraus operators are
the ones in Eq. (9b). We remark that depolarizing noise is
widely considered as one of the most difficult to handle [2], as
with probability 2(1 − p0)/3 the resulting state is completely
mixed, i.e., no information survives.

Recalling that p0 is the probability that each of the m qubits
is not subject to an error, we have that pne = pm

0 and the
resulting CJ fidelity F 0 (Sec. III A) in the incoherent case is

F 0 = pne = pm
0 . (28)

Employing our protocol with the auxiliary state and measure-
ment in Eqs. (15b), we find that

〈φ0|U †KiU |φ0〉 = √pm
0 δi,0 (29)

for all i = 0, . . . , 4m − 1. From Eq. (29) we conclude that
〈φf |U |φ0〉 = 1 and the auxiliary state is fully sensitive to all
Kraus operators acting on the system, such that (ω1, ω2) =
(1, 1) making it is possible to employ Eq. (27) for determining
ρout.
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Specifically, the postselection probability P = Tr(ρout ) and
a lower bound of the fidelity F of the state are (see also
Appendix A)

P = pmd
0 + pmd

0

d

(
1

pm
0

− 1

)
, (30a)

F � d pm
0

pm
0 (d − 1) + 1

, (30b)

where, for the same reasons for which it is maximally sensi-
tive to the noise, the auxiliary state |φ0〉 in Eq. (15b) saturates
the inequality in Eq. (30b) [and F becomes the CJ fidelity
(see Sec. III A)]. For d � 1, we thus find P ≈ pmd

0 and F ≈ 1.
As formally proven below, increasing the number of channels
within our protocol is always beneficial, and when the aux-
iliary state is maximally sensitive to all Kraus operators we
consistently achieve unit fidelity for d � 1.

Arbitrary noise. Above, we analyzed the protocol per-
formance for depolarizing noise, and demonstrated through
Eqs. (30) that our scheme is always beneficial and achieves
unit fidelity for d � 1. Here, we consider the general case
with arbitrary noise. For practical reasons, it is better to work
in the process matrix representation, such that the map EU

takes the form in Eq. (3).
With the chosen auxiliary |φ0〉 and projecting onto the state

|φf〉 = U |φ0〉, these assumptions can be again formulated as
(ω1, ω2) = (1, 1). Furthermore, as one can see from Eq. (3),
the coefficient associated with the identity Pauli operator is
λ00, such that we have pne = λ00.

Through the same steps that took us to Eq. (24), the appli-
cation of our protocol yields a state ρout that can be described
with a noisy map as in Eq. (3), but with coefficients λi j → λ′

i j
defined by

λ′
00 = λd

00

P
, (31a)

λ′
i j = λ

(d−2)
00 [λ00λi j + (d − 1)λi0λ0 j]

dP
, (31b)

P = 1

d

[
λ

(d−1)
00 + (d − 1)λ(d−2)

00

(∑
i

|λi0|2
)]

, (31c)

where the λ′ are normalized to ensure Tr(ρout ) = 1. Here, P
is the success probability, and lower bounds for the fideli-
ties after the application of our protocol and the incoherent
one are F = λ′

00 and F 0 = λ00, respectively. We remark that
λi j = λ∗

ji, which follows from the Hermiticity of the map
EU in Eq. (3), implies λ′

i j = (λ′
ji)

∗. Equations (31) can be
derived from Eqs. (24) (and vice versa), via the change of
basis described in Sec. II A 1, which allows to switch from
the Kraus to the Pauli decomposition of the noise.

As shown in Appendix C, it is possible to demonstrate that

λ′
00 > λ00 (32)

whenever λ00 ∈ ( 1
2 , 1). Furthermore, larger values of λ′

00 are
associated with higher d . Therefore, our protocol is always
advantageous independently of the noise affecting the desired
computation, and the resulting fidelity is always enhanced
when increasing the number of branches d .

Observe that Eqs. (31) can be used to rederive the results
in Eqs. (30) when depolarizing noise affects locally each of
the m input qubits in an uncorrelated way. This follows from
the fact that any diagonal coefficient can be written as λii =√

(1 − p0/3)k pl
0 for certain non-negative integers k and l such

that k + l = m, and λi j = 0 for all i �= j. The coefficient λ′
00

then reduces to Eq. (30b).

2. Quasideterministic SQEM

The probabilistic protocol investigated above has the ad-
vantage of being plug and play. Even with both the input
state |ψin〉 and the noise (i.e., the Kraus operators) completely
unknown, one can choose an auxiliary state |φ0〉 and obtain
an improved fidelity F � F 0. The quasideterministic protocol
discussed in this section, on the other hand, addresses a com-
plementary situation. Namely, it assumes that the user wants
to maximize the success probability of the protocol, possibly
achieving deterministic advantage.

As described in Sec. IV A, the only different step be-
tween the probabilistic and the quasideterministic versions
of our scheme is the sixth one. Indeed, while the probabilis-
tic protocol keeps the resulting ρout only for a single set of
measurement outcomes, the quasideterministic one allows for
more, possibly all (in this case it is fully deterministic).

However, now correcting unitaries must be applied to the
output state, depending on the measurement outcomes of the
control and auxiliary states. Determining the correcting uni-
taries may be challenging, particularly with many branches
and/or large input and auxiliary states. Furthermore, it is
fundamental to ensure that these correcting unitaries are char-
acterized by much smaller errors than the desired computation
U . While an analytical approach can be pursued, in this work
we restrict to a numerical analysis of the process. We intro-
duce in the following an optimization process for evaluating
the protocol performance. The process is also capable of de-
termining the best auxiliary state and measurement bases to
be employed, and is independent of the computation and the
noise.

The idea is to perform an initial calibration to gain knowl-
edge about the noise affecting the setup. This knowledge
is then used to choose the best auxiliary states, correcting
unitaries, and measurement bases to be employed, such that
when the protocol is run with some state |ψin〉 as input, the
highest possible fidelity is achieved with a desired postse-
lection probability. The q = {1, . . . , r} different output states
that are postselected and corrected are jointly considered by
evaluating the weighted average of the associated CJ fidelities
F (q)

CJ ,

FCJ = 1

P

r∑
q=1

P(q)F (q)
CJ , (33)

where P =∑r
q=1 P(q) is the probability not to discard the

measurement outcomes at step 5.
Since FCJ is a lower bound on the fidelity for an arbitrary

input state, it is well suited as a cost function to be maximized
for determining the best auxiliary states, correcting unitaries,
and measurement bases to be employed. These represent the

062604-11



JORGE MIGUEL-RAMIRO et al. PHYSICAL REVIEW A 108, 062604 (2023)

knobs4 that can be modified within the quasideterministic
protocol. In general, one has some freedom in deciding how to
tune these knobs, which can be also limited by experimental
constraints. Owing to the presence of noise, we follow a spe-
cific route (below) to limit the detrimental effects from various
sources of decoherence. However, we remark that optimizing
the CJ fidelity can be done in different ways and, in principle,
one may even want to use different cost functions, e.g., the
Haar fidelity [63], that may be more suited to the specific setup
in consideration.

In general, varying both the auxiliary state and the mea-
surement basis may seem redundant, particularly if one wants
to ensure that U |φ0〉 is one of the elements that can be
discerned by the measurement. However, since in practical
implementations there can be inhomogeneities that are not
captured by our analytic calculations, we keep the mea-
surement bases’ optimization independent to compensate for
those. For instance, if the branches were characterized by dif-
ferent (possibly correlated) decoherence processes, the extra
knob could allow for better performances of the protocol. One
of the appealing aspects of the quasideterministic scheme is
that, being based on a black-box optimization, it is quite insen-
sitive to all sorts of inhomogeneities, even unforeseen ones, as
long as it has enough knobs to act on. Specific performance
results are shown in Sec. IV E.

Given the features of the probabilistic and the quasideter-
ministic protocols, the former approach could be particularly
useful for increasing the fidelity of whole computations, while
the latter could be advantageous when one wants to optimize
one or a few gates that are repeated within a larger circuit. This
scenario is encountered in most quantum computations, where
a set of universal gates is used for carrying out any desired
unitary transformation [2]. Our quasideterministic protocol
can then be used to enhance the fidelity of each of those gates
(or the ones most susceptible to errors), while keeping a large
overall postselection probability.

D. Protocol extensions

In the sections above, we have introduced and analyzed
the probabilistic and quasideterministic SQEM protocols. The
first can be employed without any knowledge of the noise
acting on the system, and always yields an improved fidelity
compared to the incoherent one. The latter optimizes the
choice of several parameters for further enhancing the process
success probability.

As it is possible to infer from Eq. (24a), however, when
the auxiliary state is (partially) insensitive to the noise, even
in the asymptotic case d � 1 unit fidelity cannot be achieved.
Furthermore, in several experimental scenarios, the decoher-
ence is such that it is not possible to choose auxiliary states
that are fully sensitive to the noise: consider, for instance, the
depolarizing channel.

4In principle, one could also optimize the state of the control reg-
ister. While in the settings considered in this work this is redundant,
it would be important in the scenario in which noise affects different
branches differently.

FIG. 4. Example of three concatenations of the nested approach
that allows one to effectively implement our protocol with a super-
position of n channels by using only the basic CSWAP operations
[Eq. (20)] for d = 2.

In the following, we introduce a nested extension of our
protocol that employs an iterated application of either the
probabilistic or the quasideterministic scheme. It is capable
of correcting for most errors and greatly enhances the fidelity
of the output state ρout.

1. Nested SQEM protocol

In this section we introduce an extension of our SQEM
protocol for, first, scaling up the setup without the requirement
of additional higher-dimensional systems and operations and,
second, maximizing error mitigation when using unentangled
auxiliary states. As schematically represented in Fig. 4, this
extension consists in nesting basic runs of the protocol into
each other, such that each run is an effective building block
of the next one. Based on this observation, it is then possible
to understand and analytically describe the effective action of
the whole nested extension by studying each building block
separately.

The fidelity enhancement from the nested extension comes
from using different auxiliary states such that, if one is (par-
tially) insensitive to a kind of noise characterized by one
or more Kraus operators, another will compensate for that.
Different auxiliary states |φ0〉, |φ1〉,..., |φn−1〉 work together at
each of the different n layers, each correcting certain types of
decoherence, such that the resulting state approximates well
the desired one.

We remark that it is in general not possible to directly
employ different auxiliary states in either the probabilistic or
the quasideterministic protocol. By dedicating a fraction of
the d branches to |φ0〉, another one to |φ1〉, and so on, we
find cross terms such as 〈φk|U †KjU |φk〉〈φl |U †K†

i U |φl〉 in ρout

that, for different k and l , retain errors in the computation. The
nested extension cancels in consecutive iterations each kind
of noise contribution. This is the reason behind its iterative
nature, which is evident from Fig. 4 and explained in more
detail below.
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As one can see in the figure, the fundamental idea is that
each application of either the probabilistic or the quaside-
terministic SQEM protocol within the nested scheme can
be viewed as a noisy map that depends on all previous
applications. Therefore, the whole process is described by
� �d [{|φk〉}n−1

k=0], where n and �d = {d0, . . . dn−1} refer to the
numbers of iterations and their associated branches, respec-
tively. For completeness, we also indicated the auxiliary states
{|φk〉}n−1

k=0 used at each application.
To better understand how the nested extension works, we

first give the map � �d [{|φk〉}n−1
k=0] for a specific example, and

later on discuss its form in more general settings. For making
the following clearer, in the remainder of this section we
consider the scenario in which we apply the nested extension
to the probabilistic protocol with ω2 = 1, i.e., we assume that
at step 5 (see Sec. IV A) of the kth iteration we always project
control and auxiliary registers onto

|+dk 〉c

dk−1⊗
j=1

U |φk〉b j , (34)

for all k = 0, . . . , n − 1. We remark, however, that with the
quasideterministic version there is no qualitative difference.
The maps � �d [{|φk〉}n−1

k=0] and the probability with which we
postselect the outcomes would generally vary, but the physics
behind it remains unchanged.

Same auxiliary state. An illustrative way to explain how the
nested extension works is to analyze its characterizing map
� �d [{|φ0〉}n−1

k=0] with ω1 = 1 and all auxiliary states being the
same |φ0〉 for all k = 0, . . . , n − 1. As previously done for
deriving Eq. (27), we assume 〈φ0|U †KiU |φ0〉 = √

pneδi,0, i.e.,
the auxiliary and |φf〉 = U |φ0〉 are chosen to be fully sensitive
to all Kraus operators. Furthermore, for simplicity, we assume
here that at each iteration of the protocol we employ the same
number of branches, i.e., dk = d for all k = 0, . . . , n − 1.

For n = 1 the nested scheme is the same as the proba-
bilistic protocol. Therefore, the map � �d [{|φ0〉}0

k=0] applied
to |ψin〉〈ψin| yields the output state in Eq. (27). From this
equation, we conclude that the first (n = 1) application of the
protocol can be described with a noisy map with new Kraus
operators

ρout = �d
[{|φ0〉}0

k=0

]
(|ψin〉〈ψin|)

=
∑

i

K (1)
i U |ψin〉〈ψin|U †(K (1)

i

)†
, (35)

where K (1)
i takes different forms depending on d . Specifically,

we have that

K (1)
0 =

√
d

(d − 1)pne + 1
K0, (36a)

K (1)
i =

√
1

(d − 1)pne + 1
Ki for i � 1, (36b)

with Ki being the original Kraus operators describing the noise
in the incoherent case.

Once it is understood how the map � �d [{|φ0〉}0
k=0] looks

for n = 1, it is possible to investigate what happens when
more iterations are performed (n � 2): the noise affecting

the input state within the kth application is described by the
Kraus operators found in the (k − 1)th one. For instance, in
the considered example and for n = 2 the map � �d [{|φ0〉}1

k=0]
is found following the same steps that took us to Eqs. (35)
and (36) with the substitution Ki → K (1)

i . Therefore, after n
applications we find

ρout = � �d
[{|φ0〉}n−1

k=0

]
(|ψin〉〈ψin|)

=
∑

i

K (n)
i U |ψin〉〈ψin|U †(K (n)

i

)†
, (37a)

K (n)
0 =

√
βd,n

(βd,n − 1)pne + 1
K0, (37b)

K (n)
i =

√
1

(βd,n − 1)pne + 1
Ki for i � 1, (37c)

where βd,n = d2n−1
is the total number of registers employed

in the whole protocol.
From these last equations, it is finally possible to ob-

tain a lower bound for the fidelity F [d, n] of the whole
nested protocol when n iterations each with d branches are
employed:

F [d, n] � 1 − 1 − pne

1 + (βd,n − 1)pne
. (38)

The lower bound is derived as in Sec. IV C 1, namely, by
assuming that the decoherence affecting the system is maxi-
mally detrimental to U |ψin〉, resulting in an incoherent fidelity
of F 0 = pne. As one can see from the equation, F [d, n] → 1
when either the parameter d or n is much bigger than one.
Specifically, we can set d = 2 and n � 1 to get unit fidelity.

Before considering the more interesting case in which we
use different auxiliary states at each iteration, let us make an
important remark. The fidelity resulting from the application
of the nested extension in Eq. (38) is the same as found for
the probabilistic protocol in Eq. (30b), provided we substitute
βd,n ↔ d . This is unsurprising, considering that we always
employ the same auxiliary state |φ0〉, which is maximally
sensitive to the noise. However, this does not mean that the
practical implementations of these two protocols are equally
demanding. Compared to the probabilistic protocol, the nested
scheme with d = 2 requires simpler CSWAP operations to
generate the superposition [see Eq. (20)]. In particular, having
two parameters (d and n) to tune can be useful when we an-
alyze the influence of the noise resulting from the application
of different numbers of CSWAPs with varying d .

Different auxiliary states. Above, we have investigated
how the nested extension works when employing, at each
application, the same auxiliary state |φ0〉 that is maximally
sensitive to the noise. Here, we examine the more interesting
case in which at each iteration we apply a different |φk〉, k =
0, . . . , n − 1. We also consider general settings, namely, that
there are kinds of noise to which each auxiliary state is (par-
tially) insensitive. Therefore, within a given kth application of
the nested scheme, Eq. (27) is not valid anymore. Instead, we
must fall back on Eq. (24a) with |φf〉 as in Eq. (34).

Following the same steps as above, we find recursive
relations (in n) for the maps � �d [{|φk〉}n−1

k=0]. Unfortunately,
when the auxiliary states are not fully sensitive to the noise,
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Eqs. (37) also cease to be valid. Because of the cross terms
on the right-hand side of Eq. (24a), the representation of
� �d [{|φk〉}n−1

k=0] in terms of Kraus operators cannot be simply
derived. To avoid this problem, we make use of the process

matrix representation in Eq. (3). Rather than the Kraus oper-
ators, we then base our analysis on the coefficients λi j and
investigate how they are updated at each application of the
nested protocol.

By plugging Eqs. (4) and (5) into Eqs. (24), we express

ρout = � �d
[{|φk〉}n−1

k=0

]
(|ψin〉〈ψin|) =

∑
i, j

λ
(n−1)
i j σiU |ψin〉〈ψin|U †σ

†
j , (39a)

λ
(k)
i j = A(k)

dk

dk

⎡
⎣λ

(k−1)
i j + dk − 1

A(k)
2

∑
n,m

λ
(k−1)
m j λ

(k−1)
in 〈φk|U †σmU |φk〉〈φk|U †σ †

n U |φk〉
⎤
⎦, (39b)

A(k)
d =

⎛
⎝∑

i, j

λi j〈φk|U †σiU |φk〉〈φk|U †σ
†
j U |φk〉

⎞
⎠

d−1

, (39c)

where k = 0, . . . , n − 1 and in Eq. (39b) for k = 0 the co-
efficients λ

(−1)
i j = λi j are those characterizing the channel in

the incoherent case. We remark that, as in Eqs. (24), the
resulting density matrix ρout is not normalized. Tr(ρout ) is
the postselection probability associated with all measurement
outcomes at step 5 of each iteration yielding the desired result
[see Eq. (34)].

While cumbersome to evaluate, Eqs. (39) can be qualita-
tively investigated to help understand several characteristics
of the nested protocol. Specifically, there are two fundamental
observations on which we base our following strategy in terms
of auxiliary states |φk〉 and �d to be employed. The first is that
the Pauli operator σ0 = 1 is “special,” as 〈φk|U †σ0U |φk〉 = 1
for all U and |φk〉. On the one hand, since σ0 = 1 is associated
with the absence of noise, this is the reason for which our
protocol works, as the corresponding term λ

(k)
00 in Eq. (39b)

is generally enhanced. On the other hand, this also limits
the maximum achievable noise suppression. In fact, when
ω1 < 1 [see Eq. (26a)] for each iteration k = 0, . . . , n − 1, the
auxiliaries are (partially) insensitive to the noise and there are
cross terms contributing to λ

(k)
0i and λ

(k)
i0 for i �= 0 in Eq. (39b).

These cross terms cannot be suppressed at the next iterations
by using another auxiliary state that is insensitive to the asso-
ciated noise, as one of the corresponding Paulis is the identity
and as such will always survive. How to limit their detrimental
effect is related to the second observation below.

Even though the highest achievable fidelity is ultimately
limited by the coefficients λ

(n)
i0 (i �= 0), it is possible to sup-

press them via interference between subsequent iterations. For
simplicity, let us consider the kth and (k + 1)th applications
of the nested protocol, and assume that λ

(k−1)
0i = λ

(k−1)
i0 = 0

for all i �= 0. The idea is that if the state U |φk〉 is insensitive
to a specific kind of noise, say σi (i �= 0), then after the kth
iteration there will be nonzero contributions to λ

(k)
i0 and λ

(k)
0i

[see Eq. (39b)]. These contributions will have the sign of
〈φk|U †σ

†
i U |φk〉, which depends on the auxiliary |φk〉. There-

fore if, at the next iteration k + 1, we choose an auxiliary
|φk+1〉 such that 〈φk+1|U †σ

†
i U |φk+1〉 has the opposite sign, we

can reduce the magnitude of both λ
(k+1)
i0 and λ

(k+1)
0i (compared

to the previous iteration) and thus enhance the fidelity of the
output.

We remark that this trick does not set λ
(k+1)
i0 and λ

(k+1)
0i to

zero, as their relative change depends on the other values λ
(k)
i j ,

which have been modified after the kth iteration. However, as
long as dk and dk+1 are both small, cancellation of λ

(k+1)
i0 and

λ
(k+1)
0i can be substantial and leads to improvements of several

orders of magnitude in the resulting fidelity (see Sec. IV E).
The reasons for which dk and dk+1 must be small is that if
(say) the second is negligible compared to the first, then we
suppress too much the coefficients λ

(k)
i j that at the following

(k + 1)th iteration contribute to the cancellation of λ
(k+1)
i0 and

λ
(k+1)
0i .

Based on these two observations we outline our strategy,
in terms of �d and |φk〉 (k = 0, . . . n − 1), when applying the
nested protocol. Specifically, on the one hand, the procedure
should employ different auxiliary states such that for each
kind of noise, there is at least one |φk〉 that is sensitive to
it. On the other hand, the chosen |φk〉 must ensure as much
suppression as possible of the elements λ

(k+1)
i0 and λ

(k+1)
0i (i �=

0). For the reasons explained above, we choose the number
of branches dk at each iteration to be dk = 2 for all k. This
ensures that at each step k the relative change in the magnitude
of λ

(k)
i j is small enough to be able, at the next iteration, to

compensate for the detrimental contributions to λ
(k+1)
i0 and

λ
(k+1)
0i (i �= 0). This compensation is then secured by choosing

auxiliary states |φk〉 such that the signs of 〈φk|U †σ
†
i U |φk〉

are, for all i > 0 and in subsequent iterations, as different as
possible. A simple way for doing this is to set

{|φk〉}n−1
k=0 = {|1〉⊗m, |0〉⊗m, |+〉⊗m, |−〉⊗m,

|R〉⊗m, |L〉⊗m, . . . }, (40)

where the ellipsis indicates repeating the pattern and |R〉,
|L〉 are the eigenstates of the Pauli Y with eigenvalues ±1,
respectively.

We highlight that our strategy, with dk = 2 for all k =
0, . . . , n − 1 and the auxiliaries {|φk〉}k as in Eq. (40), may not
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be optimal. Specifically, different approaches may yield better
results depending on the input state and the noise. Also, in
higher dimensions m > 1, it is possible to devise alternatives
based on other stabilizer states. However, as demonstrated
in Sec. IV E, this strategy consistently and considerably out-
performs the probabilistic protocol, is noise and input state
independent, and works well even when both ω1 and ω2 are
much smaller than one.

2. Coherent memories

To conclude this section, we consider a specific case of the
nested extension, namely, when the applied unitary U is the
identity U = 1. Rather than a computation, this is a quantum
memory [54,55], where information is stored, and the goal is
to mitigate the decoherence affecting the input state.

In this case, independently of the noise, we can make
use of depolarization techniques [57] to ensure that the noise
affecting any run of the protocol is described by an effective
depolarizing channel (see Sec. II B 1). This has two important
advantages. First, with the Kraus operators known (up to a
multiplying constant), we can determine a priori the best
possible auxiliary state(s) to be employed. Specifically, Bell
states are characterized by (ω1, ω2) = (1, 1) while any nonen-
tangled states, thanks to the symmetry of the depolarizing
channel, are characterized by the same ω1 < 1. Second, by
means of depolarization techniques [57], we are guaranteed
to suppress all terms λi0 and λ0i in Eq. (3) that are the
main limiting factor to the maximum achievable fidelity (see
Sec. IV C 1).

We remark that, generally, it is not possible to apply depo-
larization techniques when both U and the noise are arbitrary
[57], and therefore generalization of this simplified approach
is only possible for some selected U and kinds of noise.

E. Protocol performance: Numerical analysis

In this section, we study the performance of the proba-
bilistic, quasideterministic, and nested SQEM strategies under
different assumptions and settings. As a figure of merit, we
consider the infidelity ratio R between the incoherent and
coherent results:

R = 1 − F 0
CJ

1 − FCJ
, (41)

where FCJ (F 0
CJ) is the CJ fidelity when our protocol is (not)

employed. Note that F 0
CJ = pne (see Sec. III A for more de-

tails). To characterize our protocols, we consider first the ideal
case in which the control register and the CSWAP operations
are perfect. In real-world scenarios, however, CSWAP gates
are noisy and will contribute to the infidelity of the resulting
state ρout. Therefore, we also include the noise affecting the
CSWAP and control registers, and numerically demonstrate
that it sets an upper bound on the maximum achievable fi-
delity. This suggests that most advantage is obtained with the
nested extension (with dk = 2 for each k = 0, . . . , n − 1, see
Sec. IV D 1), and when the considered U comprises several
gates whose total noise contribution is dominant over that of
the CSWAP. We consider Pauli rank-2 (e.g., dephasing) and

FIG. 5. Infidelity ratio R [see Eq. (41)] of the probabilistic pro-
tocol for a U = T gate with depolarizing noise, d = 2 and p0 =
0.97 [see Eq. (9b)]. In (a), the auxiliary state is set to |φ0〉 =
cos (θ/2)|0〉 + sin (θ/2)eiφ |1〉, while the measurement basis is the X
basis. In (b), the auxiliary state is |φ0〉 = (|0〉 + eiθ |1〉)/

√
2 and the

measurement basis contains the element (|0〉 + eiφ |1〉)/
√

2. In both
panels, the chosen state |φf〉 for the postselection at step 5 of the
protocol is the one characterized by the largest probability.

depolarizing noises associated with the imperfect implemen-
tations of U ’s.

In our analysis we study two of the building blocks for
arbitrary computations. We analyze the T and the CNOT gates
for systems of one and two input qubits, respectively. In the
former case, Clifford operations in, e.g., the preparation of an-
cilla qubits or correcting operations are assumed noiseless by
analogy with magic-state distillation [64]. In the CNOT case,
single-qubit states and operations are assumed noiseless by
analogy with standard multiqubit computation formalisms [3].
We remark, however, that these assumptions are not required
for the SQEM protocols to work and are only meant to make
the results clearer. We then extend the study to concatenation
of gates.

1. General protocol performance

We start our analysis by showing how the performance of
our protocols is not jeopardized when (ω1, ω2) < (1, 1) in
Eq. (26). In Fig. 5 we set d = 2 and present the advantage
of the probabilistic protocol when using different auxiliary
states and measurement bases. Specifically, |φf〉 is generally
different from U |φ0〉, which in turn is not maximally sensitive
to the noise. We consider the U = T gate with depolarizing
noise, and the auxiliary states are chosen as single-qubit states
around the Bloch sphere. As one can see from the figure,
R varies depending on both |φf〉 and |φ0〉. Yet, even for the
smallest possible ω2, R is consistently above 1. The advantage
comes from the fact that when the probability of not having
an error pne is larger than 0.5, it is always more likely to
postselect the outcome that is associated with no errors.

The performance of all our protocols for imperfect T and
CNOT gates affected by either dephasing or depolarizing noise
is reported in Fig. 6 for different values of d . As discussed in
Sec. IV C 1, when increasing the number of branches d in the
probabilistic protocol, R is always enhanced. Specifically, for
(ω1, ω2) = (1, 1) we have that R = pne(d − 1) + 1, where
pne equals p0 and p2

0 for the T and the CNOT imperfect gates,
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FIG. 6. Performance of the probabilistic (first column), quasideterministic (second column), and completely deterministic (third column)
protocols applied to a T gate (first row, m = 1) and a CNOT gate (second row, m = 2). For the T (CNOT) gate we consider dephasing
(depolarizing) noise, with single-qubit no-error probability p0 (see Sec. II B 1). Colors are used to indicate different values of d , as shown
in the legend, and we set (ω1, ω2) = (1, 1). For the quasideterministic and completely deterministic protocols, only single-qubit Clifford
operations are considered as correcting unitaries (see Sec. IV C 2).

respectively. Notice that in the limit pne → 1 we find R = d ,
in agreement with the figure.

While the probabilistic protocol consistently achieves siz-
able improvements, the associated success probability (see
right-hand side axes) is also the lowest, and is reduced
exponentially when increasing d . To overcome this limita-
tion, we apply the quasideterministic protocol introduced in
Sec. IV C 2. For the sake of convenience, instead of setting
a fixed lower limit for the postselection probability, here we
discard only the outputs q with the worst fidelity F (q)

CJ in
Eq. (33) at step 6 of the protocol. As one can see in the central
panels of Fig. 6, the quasideterministic protocol has similar
performances as the probabilistic one for large no-error prob-
abilities pne. In particular, it achieves the same limit R → d
for pne = 1. Yet, to ensure high postselection probabilities, it
must include outcomes that are generally associated with low
fidelities. Hence, when increasing d the quasideterministic
scheme is ensured to yield higher R only for large values
of pne. However, there are instances in which some of the
outcomes that were discarded by the probabilistic protocol
can have a higher (on average) fidelity. This is the case of
the d = 2 quasideterministic advantage for the T gate, which
is consistently higher than the corresponding advantage of the
probabilistic scheme.

Similar conclusions are drawn for the deterministic pro-
tocol, whose results are reported in the rightmost panels of
Fig. 6. Without any postselection, all outcomes are kept,
including the ones characterized by the smallest fidelity.
Therefore, the obtained values of R are always lower com-
pared to the quasideterministic protocol. Yet, even in this
case R > 1 for a wide range of the no-error probability pne,
showing consistent advantage against the incoherent case.

2. Nested protocol

The advantage of the nested extension can be found in
Fig. 7. The shadow blue area indicates the limits of the proto-
col, and we set ω2 = 1 for clarity. The probabilistic protocol
(at parity of resources, i.e., total number of auxiliary states) is

FIG. 7. Performance of the nested protocol applied to a CNOT

(m = 2) with depolarizing noise. In (a) we vary the single-qubit
no-error probability p0 (see Sec. II B 1), while in (b) we vary the
number of iterations n and the associated total number of aux-
iliary states (equivalent branches) employed dtot =∑n−1

k=0 dk . Dark
blue dots are obtained with ω1 = 1, and represent the upper bound
on the ratio R that can be achieved by our protocols (hence the
shadowed area). Light blue dots are derived for |φk〉 = | + +〉 for
all k = 0, . . . , n − 1, while blue dots are found from the auxiliary
states in Eq. (40). Vertical lines indicate the values of p0 = 0.9 and
n = 12 (i.e., dtot = 4096) that are employed in the other panel. We set
ω2 = 1 for clarity, and numerical results are obtained by simulating
Eqs. (39).
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s

FIG. 8. Performance of the quasideterministic protocol (d = 2)
for circuits U of different depth. The number of layers NL of CNOT

and T gates (corresponding to the circuit depth) is plotted against R.
Success probability is given in the inset. A single layer comprises a
CNOT followed by two T gates applied to each of the m = 2 qubits.
The auxiliary is chosen such that ω2 = 1 and the noise is modeled
by depolarizing channels after each gate, with p0 = 1−3 × 10−4. As
reported in the legend, colored dotted lines are associated with differ-
ent relative error probabilities, i.e., prelative = (1 − pCSWAP )/(1 − p0)
characterizing the depolarizing channels acting after each of the two
Fredkin gates that a CSWAP is decomposed into.

equivalent to the nested one when either ω1 = 1 (dark blue
dots) or the same auxiliary state with ω1 < 1 is employed
(light blue dots). We also plot the result of employing the
strategy outlined in Sec. IV D 1, i.e., choosing different auxil-
iary states with ω1 < 1 at successive iterations (blue dots). In
any case, we achieve remarkable advantage with respect to the
incoherent case (red dotted line) when increasing the number
of auxiliary states.

As one can see from the two panels in Fig. 7, when varying
either the total number of branches (equivalently, auxiliary
states) dtot =∑n−1

k=0 dk or the no-error probability pne = p2
0,

there is ample margin in which, for fixed ω1 < 1, the nested
extension yields results that are considerably better than the
probabilistic protocol. With the additional advantage that the
CSWAP operations are simpler, the nested protocol represents
a promising route in scaling up our protocols.

3. Noisy CSWAP

Finally, we investigate the scenario in which both the
CSWAPs and the computation U are noisy. Specifically, here
U comprises NL layers acting on m = 2 qubits; each layer
contains one CNOT gate followed by one T gate on each qubit,
with depolarizing channels acting after each operation. In
Fig. 8, we consider the quasideterministic SQEM protocol
and present the ratio R against NL for different CSWAP er-
ror probabilities. Each CSWAP can be decomposed into two
Fredkin gates; the relative error probability of each CSWAP
is prelative = (1 − pCSWAP)/(1 − p0), where pCSWAP is the no-
error probability associated with the depolarizing channels

acting after each Fredkin gate on its control and both of its
targets.

For the case in which the CSWAPs are noiseless, the results
are in agreement with Fig. 6 and the associated R is constantly
above 1. However, with the CSWAPs becoming noisier, our
protocol ceases to be advantageous for sufficiently small val-
ues of NL. This suggests that the most advantage is achieved
for large computations U or in situations in which the CSWAP
is particularly stable (e.g., [65–68] and Sec. VI). As a last
observation, we remark that the postselection probability is
not significantly changed by the presence of noise affecting
the CSWAPs (see the inset in Fig. 8).

V. MEASUREMENT-BASED SQEM APPROACH

As in GB-QC, one of the obstacles to large-scale MB-QC
is the presence of decoherence, which severely limits the size
and complexity of achievable computations. Although noise
arises from different sources compared to GB-QB, our SQEM
protocols outlined in Sec. IV can be adapted to MB-QC. In
Sec. V A, we first explain how to generalize the probabilis-
tic, quasideterministic, and deterministic schemes to MB-QC.
Then, in Sec. V B, we consider the main error sources of
MB-QC and study the performance of our protocols.

A. Protocol

In this section, we describe the protocol for enhancing the
fidelity of a noisy MB-QC, where the computations are carried
out in the standard MB-QC fashion [25–27]. Aside from this
and the specific form of the Kraus operators, the process is
conceptually identical to the standard GB procedure presented
in Sec. IV.

To allow a better comparison with the interferometric-
based (IB-QC) implementation in Sec. VI, here we employ
the environmental formalism for deriving the main results. As
explained in more detail in Sec. II, the action of a noisy chan-
nel with Kraus operators Ki acting on a state ρin = |ψin〉〈ψin|
can be also described as a unitary evolution in a larger Hilbert
space including the environment [see Eq. (2)], into which
information leaks in the decoherence process. By tracing the
environment out, from Eq. (2) one recovers the standard ac-
tion of a channel in Eq. (1), showing the equivalence of the
two approaches. The advantage of the representation based
on the Stinespring theorem is that the state of the system is
always pure. Detailed derivations of the results presented in
this section are given in Appendix D 1.

As with the GB-QC, we consider an m-qubit input state
|ψin〉 upon which a given computation U acts. As in standard
MB-QC, this computation is performed via a 2D cluster state
that is, however, noisy. For reducing the impact of decoher-
ence affecting the computation, it is possible to follow the
procedure presented in Protocol 2. Below, we present a more
detailed description (see also Fig. 9) with the main results.

Step 1. The scope is to prepare the cluster state re-
quired for the protocol and initialize its input qubits to
|+d〉c|ψin〉a

⊗d−1
i=1 |φ0〉bi . The control qudit system |+d〉c of

dimension d in Eq. (18) is prepared by embedding more qubits
initialized into |+〉, as explained in Sec. IV A. If we explicitly
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Protocol 2. SQEM for an MB-QC implementation.

Input: An initial state |ψin〉 and a noisy cluster state
implementing the map EU , characterized by a fidelity F 0 with
respect to the desired output state U |ψin〉.

1. Prepare a cluster state that is sufficiently large for
implementing the CSWAP gates in steps 3 and 5, and the
desired computation U in step 4. Initialize the input qubits of
the cluster state in |+d 〉c|ψin〉a

⊗d−1
i=1 |φ0〉bi .

2. Apply the CSWAP gate in Eq. (20) (in an MB-QC fashion) for
distributing the input and auxiliary states into all d branches.

3. Implement the computation U by measuring the dedicated
ancilla qubits in the cluster [25–27].

4. Apply again the CSWAP gate for reassembling.
5. Fix the output state by means of by-product operators (see

Sec. II B 2 and Refs. [25–27]).
6. Proceed as in Protocol 1 for steps from 5 to 6, i.e., measuring

the control and auxiliary systems and running the
probabilistic or deterministic protocol.

Output: State ρout characterized by a fidelity F > F 0, in both the
probabilistic and (on average) the deterministic protocols.

consider the noise, the system is characterized by

|+d〉c

∑
q0

Kq0 |Gψin〉a|q0〉εa

d−1⊗
i=1

⎛
⎝∑

qi

Kqi

∣∣Gφ0

〉
bi
|qi〉εbi

⎞
⎠, (42)

which, aside from the cluster states explicitly included, corre-
sponds to Eq. (19). Observe that, unlike the GB case, noise
already affects the systems at this stage. We associate an
environmental system with each cluster state and |Gψin〉 and
|Gφ0〉 represent cluster states with the first qubits prepared
in the states |ψin〉 and |φ0〉, respectively (see Appendix E for
details).

Step 2. To generate a superposition, we apply a CSWAP
operation, which can be implemented in an MB fashion (for

FIG. 9. Schematic representation of the SQEM process for an
MB-QC implementation, which enhances the fidelity of any noisy
computation EU. A control register of dimension d generates the
superposition by swapping in a controlled way the m-qubit input state
with d m-qubit auxiliaries. All the operations can be performed in a
measurement-based fashion, where noise arises from the imperfect
preparation of the resource state.

details, see Appendix F). Ancilla qubits in the cluster are
measured to effectively implement Eq. (20) (see Fig. 9). The
state of the system becomes

1√
d

|0〉c

∑
q

Kq

∣∣Gψin

〉|q〉εa

d−1⊗
i=1

∑
qi

Kqi

∣∣Gφ0

〉
bi
|qi〉εi

+ 1√
d

d−1∑
j=1

| j〉c

∑
q0

Kq0

∣∣Gφ0

〉
a
|q0〉εa

∑
q j

Kqj

∣∣Gψin

〉
b j

|q j〉εb j

⊗
i �= j

∑
qi

Kqi

∣∣Gφ0

〉
bi
|qi〉εbi

, (43)

by analogy with Eq. (21), where the cluster states |Gψin〉a and
|Gφ0〉b represent remaining clusters once the corresponding
qubits have been measured in the application of the CSWAP
operation.

Steps 3 to 6. From steps 3 to 6, the computation U followed
by the second CSWAP is implemented via the measurements
of ancilla qubits. In the environmental formalism, this equa-
tion reads as

1√
d

|0〉c

∑
q

LqU |ψin〉a|q〉εa

d−1⊗
i=0

∑
qi

LqiU |φ0〉bi
|qi〉εbi

+ 1√
d

d−1∑
j=1

| j〉c

∑
q0

Lq0U |φ0〉b j
|q0〉εa

∑
q j

LqjU |ψin〉a

∣∣q j
〉
εb j

⊗
i �= j

∑
qi

LqiU |φ0〉bi
|qi〉εbi

, (44)

where we recall that, compared to the GB version, here the
Kraus operators Li depend [41] on the noise acting locally on
each of the qubits of the cluster state prepared at step 1 and
given by Kraus operators Ki.

In the final step 6, control and auxiliary subsystems are
measured in bases modified to take into account the by-
product operators, so as to obtain the desired output ρout of our
protocol. Assuming the measurement outcomes are |+d〉c and
|φf〉, respectively, one recovers Eq. (24) by simply tracing out
the environment systems. For the details of the probabilistic
implementation, see Appendix E.

The total number of logical qubits involved in the protocol
is dm + log2 d , taking into account input, auxiliary and con-
trol registers. Therefore, denoting the depths of the incoherent
computation and the CSWAP by K and S, respectively, the
whole Protocol 2 requires a cluster state of size O[(dm +
log2 d ) × (K + 2S)].

B. Protocol performance: Numerical analysis

In this section, we analyze the performance of the prob-
abilistic, quasideterministic, and deterministic MB SQEM
protocols under different assumptions and settings. We con-
sider the figure of merit R in Eq. (41); numerical results are
obtained by simulating all qubits in the system and the noise
affecting them. This includes input, auxiliary, control, and an-
cilla qubits in the cluster. To do that, our numerical simulator
is based on a series of steps such that only the qubits that
must be measured and the ones directly connected to them are
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FIG. 10. Performance of the Protocol 2 for mitigating the noise of a T gate and a CNOT gate in an MB setting, whose imperfect
implementation is modeled by depolarizing noise with no-error probability p0 acting on every qubit of the resource state. In this case, the
auxiliary state, measurement bases, and correcting operations are all chosen from the Clifford group, such that ω2 < 1 for the T gate, ω2 = 1
for the CNOT gate, and ω1 < 1.

considered each time. The process is therefore carried out in a
concatenated way, a feature allowed for MB implementations
[25]. The noise is introduced by applying a channel as in
Eq. (1) to all (or a subset of) qubits within the cluster (see
Fig. 9 and Sec. II B 2 for details). Specifically, in Fig. 10 noise
affects only the portions of the cluster that are dedicated to
implementing U , while in Fig. 11 it affects all ancilla qubits
that are required for both CSWAP (see Appendix F) and the
computation U .

s

FIG. 11. Advantage ratio, Eq. (41), of MB-QC with noisy
CSWAP gates, where each CSWAP operation is implemented in
an MB fashion, and each qubit involved is subjected to the same
depolarizing noise (with no-error probability p0) as the rest of the
resource qubits (i.e., the ones that carry out the computation). As in
the GB case, each of the NL layers comprises a CNOT followed by
two T gates applied to each of the m = 2 qubits.

Despite the differences in the Kraus operators acting on
the output state ρout, the performance of the protocol is qual-
itatively similar to the GB scheme in Sec. IV E. This can be
seen from Fig. 10, presenting the results for the T and the
CNOT gates, where each qubit of the cluster state is affected
by depolarizing noise with parameter p0. We remark that in
the probabilistic implementation we always employ |+〉⊗m

both as auxiliary state |φ0〉 and for the postselection in step
6. As demonstrated by Fig. 5, this is a viable choice, albeit
it generally implies ω1 < 1 and (for the T gate) ω2 < 1 and
thus slightly lowers R and the success probability Ps. This is
the reason for which, in the limit p0 → 1, the probabilistic
implementation of the T gate in Fig. 10 is characterized by
Ps < 1.

Figure 10 shows that for the same single-channel no-error
probability p0, the gain R of the MB protocols is lower
compared to the GB case (see Sec. IV E). This stems from
the fact that the probability 1 − p0 of getting an error refers to
many qubits within the cluster, implying that the overall Kraus
operators Li affecting the output ρout in Eq. (44) describe a
much more disruptive channel. However, despite the fact that
both ω1 and ω2 in Eq. (26) are generally lower than one, the
advantage compared to the incoherent case is still consistent
and the salient features are unchanged compared to the GB
case.

In Fig. 11 we study the impact to the infidelity ratio R of
the noise affecting the two CSWAPs. Following the example
of Fig. 8, we consider NL layers of CNOT plus T gates and
the probabilistic implementation with |+〉 as auxiliary state
and for the postselection. Here, we investigate the scenario in
which every ancilla qubit in the cluster is affected by the same
noise with probability 1 − p0, and different colors are used
for the values of p0 reported in the legend. The horizontal,
black dotted line serves as a reference to discriminate when
our protocol is advantageous. As in the GB case, the noise
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FIG. 12. Illustration of the strategy for enhancing the fidelity of a
noisy computation in an interferometriclike circuit model. The noisy
computation is identically applied in all branches of the superposition
and no dedicated auxiliary system is needed. The control register can
be encoded in some extra degree of freedom of the input qubit(s).
System-vacuum correlations (see text) allow us to dilute the effect of
the noise and lead to computational fidelity advantage.

affecting the CSWAP poses a limitation to the advantage of
our protocols, which are beneficial when the computation U
is noisier than the two CSWAP gates. From the figure, we
conclude that there is an ample window both in the value of
p0 and the size of the employed cluster state (proportional to
NL) in which the MB scheme yields an advantage over the
incoherent case.

VI. INTERFEROMETRIC-BASED SQEM APPROACH

Both the GB and MB implementations of our SQEM pro-
tocols are limited by the noise affecting the two CSWAP gates
that are required for the creation of superposition between the
d branches. This is numerically investigated in Figs. 8 and
11, and discussed in the corresponding sections. Qualitatively,
our schemes are beneficial as long as the noise affecting the
computation U is stronger than the one affecting the CSWAP
operations. It is therefore of paramount importance to find
ways to create the superposition between different branches
with high fidelity.

In this section, we propose an alternative SQEM approach
for an interferometric-based (IB) implementation. Specifi-
cally, it employs additional physical degrees of freedom that
are naturally available, instead of the CSWAP, in a way
similar to what has been done (with different scopes) in
Refs. [18,20,21,24,42,45,49]. The idea is that, instead of using
auxiliary states |φi〉 that are later measured to gain information
about the noise, the input |ψin〉 alone is coherently distributed
into different branches along with the vacuum. The simplest
way to understand the working principle is to use one of
the possible physical implementations of our IB protocols,
namely, a photonic interferometer (see Fig. 12). While we
base our analysis on the photonic platform, we stress that other
setups, such as ions [42] and superconducting qubits [47], are
also suitable for our IB schemes.

In Sec. VI A below we describe the protocol, highlighting
the main differences with respect to the GB and the MB
alternatives in Secs. IV A and V A, respectively. The work-
ing principle of the IB scheme is based on interference with
the vacuum. We propose a theoretical model based on the
stochastic Hamiltonian formulation [69,70] in Sec. VI A 1.
Finally, we present different possible realizations of the IB

Protocol 3. SQEM for a IB-QC implementation.

Input: An initial state |ψin〉 and a noisy computation EU ,
implementing the unitary U with a fidelity F 0.

1. Find a suitable physical degree of freedom, the control
system, and initialize it in |+d 〉c as in Eq. (18).

2. Distribute the input state |ψin〉 into d branches according to
the state of the control system. Specifically, create the
superposition of all d states labeled by i = 0, . . . , d − 1,
where |ψin〉 is in the ith branch and vacuum is in all other
branches.

3. Implement the noisy computation EU in every path.
4. Recombine the paths such that, in the absence of noise,

U |ψin〉 is deterministically found in a chosen branch i = 0,
and all others i = 1, . . . d are empty.

5. Measure the control register in the generalized X basis and
run the probabilistic or deterministic protocol as in step 6 of
the GB Protocol 1.

Output: State ρout characterized by a fidelity F > F 0, in both the
probabilistic and (on average) the deterministic protocols.

schemes in Sec. VI A 2, and provide numerical simulations in
Sec. VI B.

A. Protocol

Since the IB schemes do not rely on auxiliary states |φi〉,
we must use the environmental formalism (outlined in Ap-
pendix D 1), previously employed for describing the MB
protocols in Sec. V A. The underlying idea of the IB schemes
is similar: distributing the input between different branches, it
is possible to either postselect the best outcome or (partially)
correct the resulting state based on the knowledge gathered
from the protocol. Before, these processes were based on the
measurement outcomes on the auxiliary states. As we shall
see, here they result from probing an extra physical degree of
freedom such as the path taken within an interferometer. In the
following we describe, one by one, the steps in the IB scheme
presented in Protocol 3 and schematically shown in Fig. 12.

Step 1. First, a control qudit of dimension d is initialized
in the state |+d〉c [see Eq. (18)] such that the system can be
described by

step 1: |+d〉c|ψin〉
d−1⊗
i=0

|εi〉εi
, (45)

where |ψin〉 is the m-qubit input. We explicitly keep track
of the environment state |εi〉εi , which is generally unknown,
inaccessible, and associated with the input in the ith path (see
Appendix D 1). The physical meaning of the control regis-
ter is the d possible paths or branches of an interferometer
with d inputs and outputs, as shown in Fig. 12. Initializing
the corresponding state in |+d〉c is equivalent to saying that
|ψin〉, alongside the vacuum at all other input ports, is equally
distributed between all branches with the same phase. This no-
tation is convenient, as it allows a better comparison with the
GB and MB protocols, where the control registers are actual
qudits (or qubits) and are essential to the CSWAP operations.

Step 2. The superposition is generated in an interferometric
fashion [42], such that for each state |i〉c within |+d〉c, the
input state follows a different branch. Therefore, at this point
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of the protocol we can describe the composite state vector by

step 2:
1

d

d−1∑
j=0

| j〉c|ψin〉( j)
d−1⊗
i=0

|εi〉εi
, (46)

where |ψin〉( j) indicates the input state in the j path and we
omit the vacuum for clarity. We point out that in the corre-
sponding GB and MB situations in Eqs. (21) and (43) the
superposition is created with known auxiliary states and a
CSWAP gate. Here, on the other hand, it resembles the action
of a generalized beam splitter with d inputs and outputs (see
Fig. 12).

Steps 3 to 5. As shown in Fig. 12, the same noisy com-
putation EU is applied in each branch to the input state |ψin〉.
The action of the noise is given by the environmental formal-
ism (see also Appendix D 1). The state after tracing out the
environmental systems reads as

1

d

∑
i

|i〉c〈i|
∑

r

KrUρinU †K†
r

+ 1

d

∑
i �= j

|i〉c〈 j|
(∑

r

〈εi|r〉Kr

)
UρinU †

(∑
s

〈s|ε j〉K†
s

)
,

(47)

where Ki are the Kraus operators affecting the m-qubit input.
Afterwards, we apply the inverse of the transformation that

distributed |ψin〉 into all branches at step 2. Practically, this
is done by measuring the control register in the X basis. In
the absence of noise this measurement yields the outcome
|+d〉c deterministically, i.e., U |ψin〉 is found at the desired
output branch of the interferometer, which for convenience is
indicated with the same index “0” as the input one.

When noise is present, on the other hand, there is a finite
probability to get any of the d outcomes and the corresponding
state, not only the desired 0th one. A given combination of
errors corresponds to a particular probability distribution of
finding ρout at different outputs. It is then possible to acquire
knowledge about the noise acting on the system, and from
this we can choose the best unitary operation to be applied to
correct ρout, or postselect ρout if |+d〉c is obtained.

In practice, this corresponds to running the probabilistic,
quasideterministic, or the fully deterministic versions of the
IB SQEM protocol. In the probabilistic version, only the states
ρout that are found at the 0th output branch are kept. In-
deed, they indicate noise suppression without the requirement
of correcting unitaries. For the other two versions, one can
proceed with the same steps as in the GB or MB quaside-
terministic (deterministic) schemes, except that there are no
auxiliary qubits to be measured, and the correction depends
only on the measurement outcome of the control register, i.e.,
the specific branch ρout found at the output. Aside from this
difference, the optimization for enhancing the fidelity is done
as described in Sec. IV C 2.

For clarity, let us here consider the probabilistic scheme.
The state of the system after the projection onto |+d〉c is

Ad

d

∑
r

KrUρinU †K†
r

+ Ad

d

∑
i �= j

(∑
r

〈εi|r〉Kr

)
UρinU †

(∑
s

〈s|ε j〉K†
s

)
, (48)

which is compared to Eqs. (24) and (44) for the GB and
MB protocols, respectively. From this comparison, we see the
main difference between the IB and the other schemes: the
unitary operation U in Eq. (48) acts exclusively on the input
|ψin〉, with the vacuum being unaffected.

However, the vacuum does play an important role in deter-
mining how advantageous the IB protocols are. This can be
understood from the operators

∑
r

〈εi|r〉Kr, (49)

which are known by the different names of “transformation
matrices” [20] and “vacuum interference operators” [45]. As
we explain in more details in Ref. [46], these terms follow
from the linearity of quantum mechanics and are physically
understood in terms of relative phases between the environ-
ment states (see Appendix G).

In the incoherent case, the GB and the MB protocols, |ψin〉
is not distributed along with the vacuum between the branches
and one can redefine the vacuum and environment state |ε0〉ε
in Eq. (2) by a global phase, leaving the dynamics unaffected.
However, in the IB protocol, the relative differences between
these phases acting on each of the d branches modify the
interference at step 4 of the protocol, and hence the probability
distribution of finding ρout at different outputs. Ultimately,
this changes the efficiency of the IB protocols and thus the
resulting fidelity of the output ρout. Furthermore, determining
and (possibly) controlling these phases can be challenging in
realistic scenarios. While a detailed discussion on these as-
pects is given in Ref. [46], in Sec. VI A 1 below we consider a
model that allows calculating the vacuum phases and therefore
investigating the efficiency of the IB protocols under realistic
experimental conditions.

1. Classical noise and stochastic Hamiltonian formalism

As highlighted above, the performance of the IB SQEM
protocols depends on the vacuum interference operators in
Eq. (49). However, as the microscopic details of the environ-
ment are difficult to access, their determination is generally
infeasible. In practice, it is convenient to represent the envi-
ronment by classical random variables. For instance, in the
ion setting, stray magnetic fields are a common source of
qubit decoherence, and are easily modeled as classical random
variables fluctuating with time. In this section, we show how
to determine the vacuum interference operators corresponding
to such classical noises. Specifically, we employ the stochastic
Hamiltonian formalism, while a more thorough analysis is
provided in Ref. [46].

Let us assume the noise takes the form of a number
of classical random variables r that parametrize the system
Hamiltonian H (r). The noisy computation is then described
by the set of corresponding unitary evolution operators of the
system, Vr = T exp[−i

∫
dt H (r)/h̄], where T is the time-

ordering operator and we have suppressed the possible time
dependence of H (r). Vr is generally different from the unitary
U characterizing the noiseless computation. If we denote the
probability distribution of the random variables as pr, the
output of the incoherent computation is simply the ensemble
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average over all possible noise realizations,

ρin →
∑

r

prVrρinV †
r ; (50)

the Kraus operators of the stochastic Hamiltonian are thus
identified as

Kr = √
prVrU

†. (51)

In an interferometriclike system comprising d branches,
the time evolution is governed by the total Hamiltonian
Htotal =∑d−1

i=0 Hi(ri ); here ri labels the noise variables in
branch i. Since all Hi commute with each other, the uni-
tary evolution operator is the product of evolution operators
in individual branches, Vtotal =∏d−1

i=0 Viri . To apply the IB
SQEM scheme in Protocol 3, we also make the following
two standard assumptions: the noise in different branches is
independent, so that the averaging over all noise variables
factorizes into branches

∏d−1
i=0 (

∑
ri

pri ); the vacuum state in
each branch is nondegenerate, so that the unique vacuum state
in branch i is an eigenstate of Viri with eigenvalue νiri .

When we implement the noisy computation by applying
Vtotal, we need to average over all noise variables. As in
Eq. (47), the output density matrix has both diagonal and
off-diagonal terms in the Hilbert space of the control system.
In each diagonal term |i〉c〈i|, the evolution of any branch
other than i gives a trivial identity factor which remains trivial
upon noise averaging, and we recover the incoherent form in
Eq. (50). Meanwhile, each term proportional to |i〉c〈 j| con-
tains two nontrivial noise averages.

The state of the system after projecting the control system
onto |+d〉c is

Ad

d

∑
i

∑
ri

piriViriρinV †
iri

+ Ad

d

∑
i �= j

⎛
⎝∑

ri

piriViriν
∗
iri

⎞
⎠ρin

⎛
⎝∑

r j

p jr jV
†
jr j

ν jr j

⎞
⎠, (52)

where we are able to move ν∗
iri

to the left of ρin and ν jr j to
the right because they are pure phases rather than operators.
Comparing Eq. (52) with (48), we recognize the objects∑

ri

piriViriν
∗
iri

U † (53)

as the vacuum interference operator of branch i in Eq. (49),
with the difference that now piri and Viri can be easily deter-
mined from a stochastic Hamiltonian that contains much less
intractable microscopic detail on the environment.

As a simple example, let us consider the aforementioned
stray magnetic fields acting on a trapped-ion qubit. Depending
on the direction of the stray fields, the noise channel can be
dephasing or depolarizing. If the fields are confined in the z
direction, the qubit Hamiltonian is written as

H (μ) = h̄μ

2
√

�t
Z; (54)

here μ is a time-dependent classical random variable propor-
tional to the field strength, and �t is the timescale on which μ

can be approximated as a constant.5 For simplicity, we assume
μ follows a Gaussian distribution with variance 2�, i.e.,∑

r

pr →
∫

dμ√
4π�

e− μ2

4� . (55)

The diagonal elements of the qubit density matrix are
unaffected by the noise, which is itself diagonal in the compu-
tational basis. On the other hand, the noise-averaged evolution
of the off-diagonal elements of the density matrix during the
short-time interval �t has the following form:

|1〉〈0| →
∫

dμ√
4π�

e− μ2

4� e− i
h̄ H�t |1〉〈0|e i

h̄ H�t

= e−��t |1〉〈0|. (56)

Thus, over a finite amount of time t , the off-diagonal density
matrix elements decay exponentially as e−�t . This corre-
sponds to a dephasing noise with a no-error probability

p0 = 1
2 (1 + e−�t ). (57)

It is also possible to calculate the vacuum interference
operator during �t ,∑

r

prVr →
∫

dμ√
4π�

e− μ2

4� e− i
h̄ H�t = e− 1

4 ��t1. (58)

Over a finite amount of time t , this becomes

e− 1
4 �t1 = (2p0 − 1)

1
4 1. (59)

It is interesting to note that the vacuum interference operator
(59) vanishes for the completely dephasing noise p0 = 1

2 ; in
other words, the IB scheme ceases to be effective in the limit
t → ∞.

On the other hand, a qubit in spatially isotropic stray fields
is described by the Hamiltonian

H (μx, μy, μz ) = h̄

2
√

�t
(μxX + μyY + μzZ ), (60)

where μx, μy, and μz are assumed to independently follow
the distribution (55). A similar calculation shows that the
noise is depolarizing, with a no-error probability

p0 = 1
4 (1 + 3e−2�t ) (61)

and a vacuum interference operator

e− 3
4 �t1 =

(
4p0 − 1

3

) 3
8

. (62)

Again, the vacuum interference operator (62) vanishes for the
completely depolarizing noise p0 = 1

4 .

2. Generating the superposition with
different physical realizations

In this section, we briefly discuss possible physical imple-
mentations for the IB schemes. In the protocol description
above, we employed a control register to analytically derive

5In the continuum limit �t → 0, the normalization factor
√

�t
ensures that � is well defined.
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the main results. Here, we explain different ways to split the
input state and at the same time perform in each branch the
desired unitary computation.

The most illustrative implementation is inspired by pho-
tonic interferometry [24,71], where time or path encodings
can be employed, as well as other recently investigated de-
grees of freedom such as the orbital angular momentum
[72,73]. A most promising feature of these implementations
is that high controllability has been demonstrated in photonic
setups [73,74]. In contrast to, e.g., path encodings demon-
strated for communication [24], we do not fall into impractical
assumptions such as noiseless control registers. This suggests
that the creation of the superposition at the basis of our
protocols can be achieved with limited losses that do not
jeopardize the outcome fidelity (see Figs. 8 and 11, and related
discussions). On the other hand, multiphoton interactions are
challenging to obtain and superpositions of large cluster states
have not been directly investigated. Our work shall perhaps
suggest this last route for future research.

Photonic setups are not the only ones in which the IB pro-
tocols can be implemented. To distribute |ψin〉 into different
branches, it is also possible to employ auxiliary levels that are
naturally available in, e.g., ions [42] or superconducting qubits
[47]. The mathematical description is then analogous to the
one presented above, with the different branches represented
by different (pairs of) levels in the setup. In this case, the
most promising aspect is that one could use systems that have
already demonstrated quantum computing capabilities [3]. On
the other hand, the number d of branches is here limited
by the accessible stable levels. Furthermore, the number of
controls required (e.g., lasers or microwave pulses) also scale
up linearly in d . Recent progresses in manipulating qudit
systems in ion-based setups [75,76] show that this route is
indeed possible for near-term applications.

B. Protocol performance: Numerical analysis

In this section, we provide a numerical analysis of the per-
formance of the IB protocols. All the numerical calculations
are computed using the stochastic Hamiltonian formalism
introduced in Sec. VI A 1, based on either the dephasing chan-
nels (57) and (59) or the depolarizing channels (61) and (62),
with error probability 1 − p0 each time U is implemented (see
Sec. II B 1). In Fig. 13 we present the results for a T gate and
a CNOT gate for different values of d = 2, 3, 4. Here we only
show the probabilistic and deterministic runs because aside
from the ideal output with the index “0,” all output states yield
the same CJ fidelity F (q)

CJ in Eq. (33), meaning discarding the
worst outcome (as we have done previously for the quaside-
terministic protocol) is the same as the probabilistic protocol.

As one can see, the IB schemes present similar features
as the GB-QC and MB-QC cases. For large p0 we ob-
serve increasing values of the ratio R with respect to the
value d , both for the probabilistic and deterministic runs of
the protocol. Specifically, R → d for p0 approaching one
in the probabilistic implementations. Since the noise acts as
in standard GB-QC, it is meaningful to compare the T-gate
results here presented with the ones in Fig. 6 (first row).
The main difference is that the GB protocol achieves higher
values of R for the same p0. The reason for this lies in the

/3 /3

FIG. 13. Performance of IB SQEM protocol applied to a T gate
and a CNOT gate, affected by depolarizing and dephasing noises,
respectively. The performance in our coherent protocol is based on
the stochastic magnetic field models (54) and (60) with each field
component following the Gaussian distribution (55); the vacuum
interference operators of these models are given by Eqs. (59) and
(62), respectively.

different abilities of distinguishing errors. For the GB pro-
tocols the auxiliary states were chosen such that (ω1, ω2) =
(1, 1), resulting in the maximum advantage R. Here, the vac-
uum states and their interaction with the experimental setup
are set by the considered physical model, which in this case
is outlined in Sec. II B 1. Therefore, we have less control over
the probabilities and the evolution operators in Eq. (53) [or
more generally the phases and weights of the Kraus operators
from Eq. (49)], which affect the outcome ρout in Eq. (52) [or
Eq. (48)] and thus the protocol advantage.

VII. OUTLOOK AND CONCLUSIONS

In this work, we have extended and analyzed several pro-
tocols for mitigating the noise associated with any quantum
computation, denoted as superposed quantum error mitigation
(SQEM) and introduced in Ref. [16]. In contrast to error cor-
rection and fault-tolerant quantum computing, where errors
are corrected actively, our protocols work via interference
between the noise acting in different branches. The key idea
behind our strategies consists in performing identical com-
putations in coherent superposition, such that the imperfect
quantum gates act either on the desired input or on some
auxiliary states (or the vacuum). We demonstrated how this
principle leads to a consistent advantage in several parameter
regimes. Furthermore, we showed its applicability to different
setups based either on GB- or MB-QC, as well as an IB
approach introduced here (see also Table 1).

We have provided analytical and numerical evidence of the
advantage of our approaches. We analyzed how the choice
of the auxiliary states and measurement bases influence the
achievable advantage in the GB and MB settings. Crucially,
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TABLE I. Comparison table between implementations.

Gate based Measurement based Interferometric based

Computational setting Quantum circuits Measurement patterns on entangled state Any
Superposition generation CSWAP gates CSWAP gates Interferometers
How? Artificial noise interference Artificial noise interference Interference with the vacuum
Ancillas required? Yes Yes No
Free tunability? Yes Yes No

our protocols can tolerate noise arising from the additional
systems employed for generating the desired superposition.
The techniques and methods that we introduce are plat-
form independent and are applicable to different setups and
approaches.

The strategies we have introduced entail a viable near-term
approach for mitigating noise in quantum computations. Sim-
ilar ideas will be explored in the context of self-calibrating
quantum networks in a future work [46].

Note added. Recently, we became aware of a similar ap-
proach independently put forward in [77,78].
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APPENDIX A: ENHANCED STANDARD CIRCUIT
GATE-BASED COMPUTATION USING AUXILIARY

QUBITS: ANALYTIC ANALYSIS BASED ON
THE DENSITY MATRIX FORMALISM

We consider the protocol introduced in Sec. IV and de-
tail the mathematical evolution of the input states step by
step, making use of the standard density operator formalism.
We provide analytical evidence that the probabilistic protocol

leads to an advantage without correcting unitaries. We start
by analyzing the case with two branches, d = 2, and analyze
the general situation afterward. Moreover, for the sake of a
better understanding, we restrict in this section to a simplistic
case where (ω1, ω2) = (1, 1) in Eq. (26) and rank-2 noise.
Generalization to arbitrary settings is straightforward and the
results of it are stressed in the main text in Sec. IV.

Consider first the case with a single-qubit input and a
single-qubit auxiliary system prepared in the states |ψin〉a and
|φ0〉b respectively. Consider also a certain computation U ,
whose realistic implementation leads to some noisy compu-
tation EU [see Eq. (8)], modeled by the ideal one followed
by a certain noisy channel with Kraus operators {Ki}, where
we assume identical noise in each branch for simplicity. The
incoherent effect of the noisy computation acting on the input
state simply reads as

ρout =
∑

i

Ki(U |ψin〉〈ψin|aU †)K†
i , (A1)

so that the incoherent fidelity is given by F 0 =
〈ψin|U †ρoutU |ψin〉.

Consider now the SQEM process introduced in Sec. IV. A
control register is also prepared in the state |+〉c. A controlled-
SWAP operation [Eq. (20)] is applied to coherently swap the
main and auxiliary registers depending on the state of the
control, i.e.,

|+〉c|ψin〉a|φ0〉b
(2)→ 1√

2
|0〉c|ψin〉a|φ0〉b + 1√

2
|1〉c|φ0〉a|ψin〉b.

(A2)
The noisy computation is then applied in both registers, the
main and auxiliary, such that the resulting state (after step 3)
reads as

1

2
|0〉〈0|c

∑
i, j

(Li|ψin〉〈ψin|aL†
i )(Lj |φ0〉〈φ0|bL†

j ) + 1

2
|1〉〈1|c

∑
i, j

(Li|φ0〉〈φ0|aL†
i )(Lj |ψin〉〈ψin|bL†

j )

+ 1

2
|0〉〈1|c

∑
i, j

(Li|ψin〉〈φ0|aL†
i )(Lj |φ0〉〈ψin|aL†

j ) + 1

2
|1〉〈0|c

∑
i, j

(Li|φ0〉〈ψin|aL†
i )(Lj |ψin〉〈φ0|bL†

j ), (A3)

where we have defined Li = UKi. A second CSWAP gate is subsequently applied (step 4), i.e.,

1

2
|0〉〈0|c

∑
i, j

(Li|ψin〉〈ψin|aL†
i )(Lj |φ0〉〈φ0|bL†

j ) + 1

2
|1〉〈1|c

∑
i, j

(Li|ψin〉〈ψin|aL†
i )(Lj |φ0〉〈φ0|bL†

j )

+ 1

2
|0〉〈1|c

∑
i, j

(Li|ψin〉〈ψin|aL†
j )(Lj |φ0〉〈φ0|bL†

i ) + 1

2
|1〉〈0|c

∑
i, j

(Lj |ψin〉〈ψin|aL†
i )(Li|φ0〉〈φ0|bL†

j ), (A4)
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where we can observe a correlation between the noise (Kraus operators) in the coherence terms. Finally, the control and auxiliary
registers are measured in the Pauli X and some suitable basis, respectively. The effect of a measurement in the X basis of the
control register can be better understood by rewriting Eq. (A4) as

1

2
|+〉〈+|c

⎡
⎣∑

i, j

(Li|ψin〉〈ψin|aL†
i )(Lj |φ0〉〈φ0|bL†

j ) +
∑
i, j

(Li|ψin〉〈ψin|aL†
j )(Lj |φ0〉〈φ0|bL†

i )

⎤
⎦

+ 1

2
|−〉〈−|c

⎡
⎣∑

i, j

(Li|ψin〉〈ψin|aL†
i )(Lj |φ0〉〈φ0|bL†

j ) −
∑
i, j

(Li|ψin〉〈ψin|aL†
j )(Lj |φ0〉〈φ0|bL†

i )

⎤
⎦, (A5)

from which one can see how, in the absence of noise, the probability of measuring the |+〉〈+|c outcome is 1.
We focus in this analytical derivation on the branch where desired outcomes are obtained, in order to show how an advantage

can be probabilistically always found independently of the input state and the noise, without any correcting operation. See
Sec. IV E for further details and numerical evidence that deterministic enhancement can be also always achieved.

For a better understanding, we assume rank-2 Pauli noise where the probability that the computation is implemented in a
noiseless way is � 1

2 , i.e., Ki = {K0, K1} = {√p01,
√

1 − p0K1} with p0 � 1
2 . We show afterward how this can be extended for

arbitrary noise.
Moreover, we restrict to the case where (ω1, ω2) = (1, 1) in Eq. (26), such that the state |φ0〉 is mapped to orthogonal states

under L0 and L1, i.e., |φ′
0〉 = L0|φ0〉 satisfies 〈φ′

0|L1|φ0〉 = 0. Considering that the control register is measured in the X basis and
the outcome |+〉c, while the auxiliary system is measured in the {|φ′

0〉〈φ′
0|,1 − |φ′

0〉〈φ′
0|} basis, and the first outcome is found, the

remaining state reads as
1

2

∑
i

(Li|ψin〉〈ψin|aL†
i ) + 1

2

∑
i, j

(Lj |ψin〉〈ψin|aL†
i )〈φ′

0|(Li|φ0〉〈φ0|bL†
j )|φ′

0〉b, (A6)

up to normalization. Since only terms of the form 〈φ′
0|L0|φ′

0〉 survive in the right part of the previous expression, one can see
from this simplified assumption how the contribution of the noiseless-computation terms (associated with the Kraus K0) gets
enhanced. The fidelity of this state is

F = N
∑

i

〈ψout|(Li|ψin〉〈ψin|aL†
i )|ψout〉 + N〈ψout|(L0|ψin〉〈ψin|aL†

0 )|ψout〉, (A7)

where |ψout〉 = U |ψin〉 is the ideal output state and N is a normalization factor. In order to find an advantage in the coherent case,
the following expression has to be fulfilled:

F = N
∑

i

〈ψout|(Li|ψin〉〈ψin|aL†
i )|ψout〉 + N〈ψout|(L0|ψin〉〈ψin|aL†

0 )|ψout〉 > F 0, (A8)

where F 0 is the incoherent fidelity from Eq. (A1). For concreteness, we consider the case where the only term that contributes
to the fidelity of the |ψin〉a state is L0, as in the CJ fidelity analysis, Eq. (14).

Given the fact that K0 = √
p01, and F 0 = p0, we therefore find N = 1

p0+1 , such that Eq. (A8) reduces to

2p0

p0 + 1
> p0, (A9)

which is always satisfied, proving the advantage of our protocol under the circumstances considered.
Consider now the case where the input, as well as the computation, involve m > 1 qubits. An auxiliary system of the same

number of qubits (m) is required in this case. The same results above apply in this case. However, in order to better understand
the protocol performance with multiqubit states, we can analyze the particular case where each qubit is locally affected by the
same noise as before. Equation (A5) becomes

1

2
|+〉〈+|c

⎡
⎢⎣∑

q1...qm
r1...rm

(
Lqm . . . Lq1 |ψin〉〈ψin|aL†

q1
. . . L†

qm

)(
Lrm . . . Lr1 |φ0〉〈φ0|bL†

r1
. . . L†

rm

)⎤⎥⎦

+ 1

2
|+〉〈+|c

⎡
⎢⎣∑

q1...qm
r1...rm

(
Lqm . . . Lq1 |ψin〉〈ψin|aL†

r1
. . . L†

rm

)(
Lrm . . . Lr1 |φ0〉〈φ0|bL†

q1
. . . L†

qm

)⎤⎥⎦

+ 1

2
|−〉〈−|c

⎡
⎢⎣∑

q1...qm
r1...rm

(
Lqm . . . Lq1 |ψin〉〈ψin|aL†

q1
. . . L†

qm

)(
Lrm . . . Lr1 |φ0〉〈φ0|bL†

r1
. . . L†

rm

)⎤⎥⎦

+ 1

2
|−〉〈−|c

⎡
⎢⎣∑

q1...qm
r1...rm

(
Lqm . . . Lq1 |ψin〉〈ψin|aL†

r1
. . . L†

rm

)(
Lrm . . . Lr1 |φ0〉〈φ0|bL†

q1
. . . L†

qm

)⎤⎥⎦. (A10)
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By measuring the control and auxiliary registers, under the same assumptions as before, with Kraus operators {K0, K1} =
{√p01,

√
1 − p0K1}, and the desired measurement outcomes, we find the fidelity of the remaining state to be

N

[∑
q1...qm

〈ψin|a
(
Lqm . . . Lq1 |ψin〉〈ψin|aL†

q1
. . . L†

qm

)|ψin〉a + 〈ψin|a(L0 . . . L0|ψin〉〈ψin|aL†
0 . . . L†

0 )|ψin〉a

]
, (A11)

with N = 1
1+pm

0
. Note that the fidelity of the incoherent process is F 0 = pm

0 now. We can then obtain the advantage infidelity ratio
for the probabilistic run of the protocol, i.e., the infidelity of the incoherent process over the infidelity of the coherent one,

1 − F 0
CJ

1 − FCJ
= 1 − pm

0

1 − 2pm
0

1+pm
0

= 1 + pm
0 . (A12)

The advantage depends on m for equivalent noise affecting each qubit locally.
We have shown how one can always find a probabilistic advantage, i.e., when the desired outcomes are found. As explained

in Sec. IV, this advantage can be increased by adding more branches to the superposition (and therefore making use of more
auxiliary qubits) such that an asymptotically perfect computation F → 1 can be achieved. This can be also seen from the
simplistic example treated above.

Consider again a single-qubit input and (d − 1) single-qubit auxiliary systems prepared in the states |ψin〉a and
⊗

i |φ0〉bi ,
respectively. Consider again some computation U , whose realistic implementation led to some noisy implementation EU ,
modeled by the ideal one followed by a certain noisy channel with Kraus operators {Ki}. Moreover, a d-dimensional control
register is prepared in the state |+d〉c = 1√

d

∑d−1
i=0 |i〉d

c . The effect of the CSWAP in this case is

d−1∑
i=0

1√
d

|i〉c|ψin〉bi

d−1⊗
j �=i

|φ0〉b j , (A13)

where we relabel system a ≡ b0 for convenience. The effect of the noisy computation can be written as

1

d

d−1∑
q=0

|q〉〈q|c
∑

j0,..., jn

(
Ljq |ψin〉〈ψin|bq L†

jq

) d−1⊗
s �=q

(
Ljs |φ0〉〈φ0|bs L

†
js

)

+ 1

d

d−1∑
q,l=0

|q〉〈l|c
∑

j0,..., jn

(
Ljq |ψin〉〈φ0|bq L†

jq

)(
Ljl |φ0〉〈ψin|bl L

†
jl

) d−1⊗
s �=q,l

(
Ljs |φ0〉〈φ0|bs L

†
js

)
, (A14)

where again we define Li = UKi and consider identical noise in all the channels (note that this assumption can be relaxed and
the protocol still works). Finally, the application of the final CSWAP leads to

1

d

d−1∑
q=0

|q〉〈q|c
∑

j0,..., jn

(
Lj0 |ψin〉〈ψin|bq L†

j0

) d−1⊗
s �=0

(
Ljs |φ0〉〈φ0|bs L

†
js

)

+ 1

d

d−1∑
q,l=0

|q〉〈l|c
∑

j0,..., jn

(
Ljq |ψin〉〈ψin|b0 L†

jl

)(
Lj0 |φ0〉〈φ0|bq L†

jq

)(
Ljl |φ0〉〈φ0|bl L

†
j0

) d−1⊗
s �=q,l

(
Ljs |φ0〉〈φ0|bs L

†
js

)
. (A15)

As before, the final step consists in measuring the control and auxiliary registers. For this analytical analysis, we focus only on
one branch of the possible measurement outcomes. We remark that deterministic enhancement can also always be achieved on
average (see Sec. IV E). In this case, the fidelity of the output register reads as

F = N
1

d
F 0 + N

1

d
d (d − 1)

∑
i, j

〈ψout|(L0|ψin〉〈ψin|aL†
0 )|ψout〉. (A16)

Taking into account the normalization and that F 0 = p0 as before, we find

F = d p0

1 + p0(d − 1)
d→∞−→ 1, (A17)

which asymptotically converges to a regime of noiseless im-
plementation of U , independently of the strength of the noise.
Observe how this is also satisfied for extremal noisy (p0 = 1

2 )
computations.

Similar results can be derived for another kind of noise
associated with the computation, with a higher rank [2]. For

instance, one can see in this case how, in the right part of
Eqs. (A6) and (A7) more than one term survives but, taking
the normalization into account, the weight corresponding to
the fidelity gets increased. Analogously, the asymptotically
noiseless computation can be also achieved in this case, even
in the completely depolarizing case (see main text for details).
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APPENDIX B: FURTHER ANALYTICAL ANALYSIS:
TWO-QUBIT CASE

In this Appendix we show a two-qubit relevant example
under realistic assumptions, where we find that the protocol
leads to partial, but still significant, advantage.

In most available quantum platforms, the main source of
noise comes from entangling unitaries, generally either the
CX or the CZ gate [3]. It is therefore meaningful to an-
alyze our protocol for those specific resources. For clarity,
we consider similar settings as in the previous single-qubit
example. We assume that the dominating noise is dephasing,
now with Kraus operators K0 = p01112, K1 = p1Z1Z2, K2 =√

p0 p111Z2, and K3 = √
p0 p1Z112. As before, p1 (p0) is the

probability that either qubit is (not) subject to an error. Notice
that, while in the previous example p0 was the probability pne

of not having an error, here pne = p2
0.

For what concerns the input state and unitary U , we choose
|ψin〉 = | + +〉 and U = CZ . In the noiseless case this pre-
pares an m = 2 qubits cluster state and, as in the m = 1 case,
it yields the minimum incoherent fidelity

F 0 = p2
0 = pne. (B1)

Since U = CZ is an entangling gate, the choice of the
auxiliary state |φ0〉 requires more care. Ideally, we would like
to pick |φ0〉 = | + +〉 (i.e., choose X1 and X2 as stabilizers) to

have 〈φ0|U †KiU |φ0〉 = p0δi,0 for all i = 0, . . . , 3. Under this
circumstance, we could follow the same steps as in the pre-
vious example and get the same (upon substitution p0 → p2

0)
postselection probability and fidelity as in Eqs. (30). However,
the application of U = CZ to | + +〉 results in an entangled
state that may be challenging to measure. Consequently, we
analyze our protocol for |φ0〉 = | + 1〉, which is stabilized by
+X1 and +Z2, and is an eigenvector of CZ . These stabilizers,
which after application of the CZ gate become +X1Z2 and
+Z2, represent a state that at step 5 can be detected with local
measurements only.

While the chosen |φ0〉 = | + 1〉 yields, after the application
of U = CZ , a state that can be measured with local operations,
it has a downside. In fact,

〈φ0|U †KiU |φ0〉 = p0δi,0 + √
p0 p1δi,2 (B2)

gives nonzero contributions not only for i = 0 (correspond-
ing to K0 = p01), but also for i = 2 (representing K2 =√

p0 p1Z2). This means that U |φ0〉 is not maximally sensitive
to the noise (in that case we would only get the desired
no-noise contribution corresponding to i = 0). Instead, it is
insensitive to the Kraus operator K2, meaning that our proba-
bilistic protocol will not be capable of completely correcting
the associated decoherence. This will become clearer follow-
ing the detailed analysis below.

By substituting Eq. (B2) into (25), which in turn is plugged
into Eqs. (24), we find the postselected outcome ρout to be

ρout = pd+1
0 U |ψin〉〈ψin|aU † + pd−1

0

(
p1 + p0

d

)
K2U |ψin〉〈ψin|aU †K†

2 + pd−1
0

d
(K1U |ψin〉〈ψin|aU †K†

1 + K3U |ψin〉〈ψin|aU †K†
3 )

+ pd−1
0

√
p0 p1

d − 1

d
(K2U |ψin〉〈ψin|aU † + U |ψin〉〈ψin|aU †K†

2 ), (B3)

where we used that Ad = pd−1
0 and (p0 + p1)2 = p0 + p1 = 1. By comparing this last equation to the one in Eq. (27), we

identify an important difference. The noise insensitivity of the chosen auxiliary state determines the survival of undesired terms.
These terms are exactly the ones corresponding to the Kraus operator K2, of which U |φ0〉 is an eigenstate (and thus insensitive to
the associated decoherence). All terms associated with K1 and K3, on the other hand, are suppressed. As in the previous example,
this follows from U |φ0〉 being completely sensitive to them. This is better seen in the limit d � 1, in which we can approximate
ρout in Eq. (B3) as

ρout = pd+1
0 U |ψin〉〈ψin|aU † + pd−1

0 p1K2U |ψin〉〈ψin|aU †K†
2 + pd−1

0
√

p0 p1(K2U |ψin〉〈ψin|aU † + U |ψin〉〈ψin|aU †K†
2 ). (B4)

Both K1 and K3 are absent from this last equation, implying
that their associated noise contributions are asymptotically
eliminated for large d . However, compared to the previous
example where ρout ∝ U |ψin〉〈ψin|U † and F ≈ 1 for d � 1,
here undesired contributions survive, such that the resulting
fidelity is upper bounded to a value lower than one (see
below).

The results in Eqs. (B3) and (B4) are valid no matter the
input state. The associated fidelity F , however, does depend
on the choice of |ψin〉. As mentioned above, for |ψin〉 = |++〉
we obtain a lower bound on the incoherent fidelity F 0 =
p2

0 = 1 − p1(p0 + 1). Since the surviving noise contribution
described by K2 is such that K2U |++〉 and U |++〉 are or-
thogonal, we conclude that F determined with respect to

|ψin〉 = |++〉 is also a lower bound that, from Eq. (B3), we
calculate to be

P = pd+1
0 + pd

0 p1

(
p1 + p0

d

)
+ pd−1

0 p1

d
, (B5a)

F = d p2
0

p1 + p0
[
p0 p1 + d

(
p0 + p2

1

)] . (B5b)

For completeness, in the last equation we included the posts-
election probability P . It is interesting to take again the limit
d � 1 for these quantities, which can be found directly from
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Eq. (B4), to obtain

P −→
d�1

pd
0

(
p0 + p2

1

)
, (B6a)

F −→
d�1

1 − p2
1

p0 + p2
1

. (B6b)

In contrast to the previous example, where the auxiliary
state was chosen such that U |φ0〉 was maximally sensitive
to all Kraus operators, here F is upper bounded to a value
that is less than one, no matter the number of branches d one
employs. However, this does not mean that our protocol is not
advantageous. By comparing Eq. (B6b) with the incoherent fi-
delity F 0 = p2

0, it is possible to conclude that F � F 0 always,
and in the experimentally relevant scenario 1 � p0 � p1 the
advantage infidelity ratio becomes (1 − F )/(1 − F 0) ≈ 2/p1.
This improvement, which is substantial within the considered
approximation, comes from the elimination of the noise asso-
ciated with K1 and K3.

An interesting question is whether it is possible, for generic
(unknown) noise and the constraints on |φ0〉 described in the
first part of this Appendix, to modify our scheme to always
reach unit fidelity asymptotically for d � 1. This is what we
investigate in Sec. IV D 1 with the nested protocol, where we
eliminate the noise contributions from all Kraus operators in
consecutive, nested application of our protocol.

APPENDIX C: PROOF OF EQ. (32)

We prove here the derivation that leads to F > F 0 from
Eq. (32), which shows that our protocol always leads to a
probabilistic advantage for any kind of noise, under assump-
tions that guarantee (ω1, ω2) = (1, 1) in Eq. (26).

Given Eq. (31), we first need to prove that |λmn|2 � λmmλnn

for any coefficient of the process matrix λ of Eq. (3), i.e.,

E (ρin ) =
∑
m,n

λmnσmρinσ
†
n , (C1)

where σi = {1, X, Z,Y } are the Pauli matrices. Consider a
Kraus decomposition of the noise,

E (ρin ) =
∑

i

KiρinK†
i , (C2)

where without loss of generality we can always define the
Kraus operators such that they are orthogonal to each other
[2], tr[K†

i Kj] ∝ δi j . We can always express each Kraus opera-
tor in terms of the Pauli matrices, i.e.,

Ki =
∑

j

αi, jσ j, (C3)

where
∑

i, j |αi, j |2 = 1. We can directly relate these coeffi-
cients to the process matrix coefficients λmn =∑i αimα∗

in.
From this decomposition, one can see how the inequality

|λmn|2 � λmmλnn (C4)

reduces to the Cauchy-Schwarz inequality, i.e.,

|λmn|2 =
∣∣∣∣∣
∑

i

αimα∗
in

∣∣∣∣∣
2

�
∑

i

|αim|2
∑

i

|αin|2 = λmmλnn,

(C5)

hence proving its validity. By applying this inequality into
Eq. (31), we find that N � 2λ00, and therefore λ′

00 � λ00.
Observe also that the equality in Eq. (C5) is only satisfied

when αim = qαin ∀ i with some q ∈ R. In order to have λ′
00 =

λ00, we need the previous equality to be satisfied for m = 0
and n = 0, 1, 2, 3. This is, however, not possible owing to the
orthogonality of Kraus operators, Eq. (C3), therefore proving
that in general

λ′
00 > λ00 (C6)

for any noisy channel affecting U , implying that F > F 0 after
our protocol implementation. Note the independence of the
results on the number of qubits m in the input state.

APPENDIX D: ENHANCED STANDARD CIRCUIT
GATE-BASED COMPUTATION USING AUXILIARY

QUBITS. ANALYTIC ANALYSIS BASED ON
THE ENVIRONMENTAL FORMALISM

1. Stinespring dilation theorem and operator
sum representation

The evolution of any quantum system is unavoidably sub-
jected to noise and decoherence owing to interactions with
the surroundings and imperfections of the apparatuses. Some
information in the evolution of a quantum system gets lost
from our knowledge during the process. The part of the whole
system where the information is leaked out, and which we
cannot observe or control, is called the environment, with an
associated Hilbert space He. Only the complete description of
system and environment, i.e., Hs ⊗ He, gives us full informa-
tion about the evolution of the state of the system.

In particular, the dynamics of the joint system can always
be described by a unitary evolution Use acting on Hs ⊗ He,
such that ρ = Use(ρs ⊗ ρe )U †

se. The evolution of the state of
the system corresponds to tracing out the environment, i.e.,

ξ
(
ρs

in

) = ρs
out = Tre

[
Use
(
ρs

in ⊗ |e0〉〈e0|
)
U †

se

]
=
∑

i

〈ei|
[
Use
(
ρs

in ⊗ |e0〉〈e0|
)
U †

se

]|ei〉 =
∑

i

Kiρ
s
inK†

i ,

(D1)

where |ei〉 are elements of an orthogonal basis of the environ-
ment, and where Ki = 〈ei|Use|e0〉 are the Kraus operators of
the channel.

This allows us to write any quantum noisy channel as a
unitary evolution on the larger Hilbert space Hs ⊗ He (Stine-
spring dilation theorem [2]). Consider any computation acting
on certain input qubits, given by some unitary operation U .
The unitary U applied in a nonideal way can be modeled as
the perfect gate followed by certain noise. Given an arbitrary
input state ρin = |ψin〉〈ψin|, the noisy application of U leads
to the state

ρ =
∑

s

KsUρinU †K†
s , (D2)

where {Ks} are the Kraus operators associated with the noisy
implementation of the gate U . Observe that the Kraus decom-
position of the noisy channel is not unique. In particular, the
unitary freedom of the operator sum representation [2] implies
that descriptions given by the sets of Kraus operators {Ki}
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and {K ′
i }, where K ′

i =∑ j ui, jKj with ui, j elements of some
unitary matrix, lead to the same quantum map. This feature
can be also interpreted as the insensitivity of the quantum
channel to local operations acting on the environment dur-
ing the evolution, so that two apparently different physical
processes can lead to the same evolution. This can be seen
considering the Stinespring dilation theorem [2], which allows
us to describe any quantum map as unitary evolutions acting
on certain pure states of a larger Hilbert space, i.e.,

|ψ〉|ε0〉ε0
→
∑

s

KsU |ψ〉 ⊗ |s〉ε0
, (D3)

where ε0 represents the state of the environment into which the
information of the system is leaked out during the evolution.
Note that by tracing out this environment at the end of the
evolution, one recovers the description of Eq. (D2), inde-
pendently of the aforementioned choice of the set of Kraus
operators.

In this section, we analyze an example of our SQEM pro-
tocol using this formalism. This allows us to show how the

three different implementations we analyze in this work are
fundamentally different, but at the same time lead to similar
behavior in terms of protocol advantage.

2. Enhanced GB-QC protocol: Simple example

As shown in Sec. IV, the gate-based quantum computation
(GB-QC) approach we propose can be treated analytically
using the density matrix formalism. It is, however, interesting,
in order to understand the differences with respect to the other
approaches, to tackle the problem from the environmental for-
malism point of view, which is based on the purified version
of the states discussed above. For simplicity, we address here
the case d = 2.

Following Protocol 1, consider an input qubit in some
state |ψin〉a. In step 1, an auxiliary qubit is prepared in some
suitable state |φ0〉b and a control qubit is initialized in the state
|+〉c. We take into account the system+environment Hilbert
space in order to analyze the process dynamics, where we
assign an environmental system to each qubit. The step-by-
step procedure reads as (see also Fig. 2):

|+〉c|ψin〉a|φ0〉b|εa〉εa |εb〉εb

(2)→ 1√
2

(|0〉c|ψin〉a|φ0〉b + |1〉c|ψin〉a|ψin〉b)|εa〉εa |εb〉εb

(3.a)→ 1√
2

(|0〉cU |ψin〉aU |φ0〉b + |1〉cU |ψin〉aU |ψin〉b)|εa〉εa |εb〉εb

(3.b)→ 1√
2

∑
i, j

(|0〉cKiU |ψin〉aKjU |φ0〉b + |1〉cKiU |ψin〉aKjU |ψin〉b)|i〉εa | j〉εb

(4)→ 1√
2

∑
i, j

(|0〉cKiU |ψin〉aKjU |φ0〉b + |1〉cKiU |φ0〉bKjU |ψin〉a)|i〉εa | j〉εb . (D4)

If one traces out the environments to analyze the final state of the output registers, one obtains

ρ = |0〉〈0|c
∑
i, j

Ki(U |ψin〉〈ψin|aU †)K†
i ⊗ Kj (U |φ0〉〈φ0|bU †)K†

j + |1〉〈1|c
∑
i, j

Ki(U |ψin〉〈ψin|aU †)K†
i ⊗ Kj (U |φ0〉〈φ0|bU †)K†

j

+ |0〉〈1|c
∑
i, j

Ki(U |ψin〉〈ψin|aU †)K†
j ⊗ Kj (U |φ0〉〈φ0|bU †)K†

i + |1〉〈0|c
∑
i, j

Kj (U |ψin〉〈ψin|aU †)K†
i ⊗ Ki(U |φ0〉〈φ0|bU †)K†

j .

(D5)

By analogy with the density matrix formalism case [see Ap-
pendix A from which it is direct to see how one recovers
Eq. (A4)], the effect of the protocol is to get the noise cor-
related in the off-diagonal terms of the final density matrix.
Measuring the auxiliary system b in a suitable basis effectively
eliminates certain elements and, together with the measure-
ment of the control register in the X basis, significantly
enhances the fidelity of the computation.

APPENDIX E: ENHANCED MB-QC: ANALYTIC ANALYSIS
BASED ON THE ENVIRONMENTAL FORMALISM

A similar environmental-based analysis can be performed
for the measurement-based (MB) implementation, introduced
in Sec. V. Although this analysis is already explored in the
main text, we detail and expand the derivations already pre-
sented there.

We explain the process with two proof-of-concept exam-
ples that can be easily generalized. First, we consider a simple
measurement-based teleportation process, and then we treat a
more general computation in a one-dimensional (1D) cluster
state.

1. Entanglement-based teleportation

Entanglement-based teleportation can be conceived as a
particular basic instance of an MB-QC process, where one
simply transports (or teleports) information by using Bell
states as resources. We show how to enhance the fidelity of a
teleported state by running the process in superposition using
more than one noisy Bell copy.

Consider a 1D resource state consisting of two qubits (i.e.,
a Bell state), where the information of an additional qubit,
in some arbitrary state |ψin〉 = α|0〉 + β|1〉, is teleported to
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FIG. 14. (a) Operational representation of steps for the entanglement-based teleportation protocol. Once these steps are completed, final
measurements on the remaining noisy Bell state a2b2 and on the control register are performed. (b) Schematic representation of the joint state
of the system after each step in (a).

the next qubit by a Bell measurement (see Fig. 14). Noise
in the resource state can be modeled in different ways. We
assume that the noise comes from an imperfect preparation of
the resource Bell state. The incoherent process reads as

|ψin〉t ⊗ ρa1b1→
∑

q

Kq|ψin〉b1
〈ψin|K†

q ⊗ |	+〉ta1〈	+|, (E1)

up to unitary corrections, and where ρa1b1 indicates a noisy
Bell pair. A Bell measurement has been applied between
qubits t and a1 and we assume the outcome |	+〉 is found
for simplicity.

Consider now the case that two independent noisy Bell
states are available. One can achieve an equally weighted
superposition between the input state being teleported using
one or the other Bell pair. This is done by using our protocol,
i.e., by simply applying a controlled-SWAP operation from a
control system initialized in the |+〉c state, acting on the first

qubits of each Bell pair (see Fig. 14), of the form

GSWAP = |0〉c〈0| ⊗ 1a1 ⊗ 1a2 + |1〉c〈1| ⊗ U SWAP
a1,a2

. (E2)

After a Bell measurement on both the t and the a1 qubits,
and recombination (a second CSWAP operation) on the b1

and b2 qubits, the process is completed (see Fig. 14). Note
that noise acting on individual qubits can always be described
with Kraus operators acting on the joint system, i.e., Ki =
K (1)

i ⊗ K (2)
i , with i ∈ {0, . . . , mn}, where m is the number of

Kraus operators and n the number of cluster qubits, in this
example n = 2. As before, we make use of the Stinespring
dilation theorem, which allows us to describe any quantum
map as a unitary evolution acting on a certain pure state
in a larger Hilbert space. The additional dimensions of the
larger Hilbert space can be interpreted as the environment
into which the information of the system is leaked out dur-
ing the evolution. The whole protocol in detail reads as
(see Protocol 2)

|+〉c|ψin〉t

∑
q

Kq|	+〉a1b1 |q〉ε1

∑
j

Kj |	+〉a2b2 | j〉ε2

(2)→ 1√
2
|0〉c|ψin〉t

∑
q

Kq|	+〉a1b1 |q〉ε1

∑
j

Kj |	+〉a2b2 | j〉ε2 + 1√
2
|1〉c|ψin〉t

∑
q

Kq|	+〉a2b1 |q〉ε1

∑
j

Kj |	+〉a1b2 | j〉ε2

(3)→ 1√
2
|	+〉ta1

⎛
⎝|0〉c

∑
q

Kq|ψin〉b1 |q〉ε1

∑
j

Kj |	+〉a2b2 | j〉ε2 + |1〉c

∑
q

Kq|	+〉a2b1 |q〉ε1

∑
j

Kj |ψin〉b2 | j〉ε2

⎞
⎠

(4)→ 1√
2
|	+〉ta1

⎛
⎝|0〉c

∑
q

Kq|ψin〉b1 |q〉ε1

∑
j

Kj |	+〉a2b2 | j〉ε2 + |1〉c

∑
q

Kq|	+〉a2b2 |q〉ε1

∑
j

Kj |ψin〉b1 | j〉ε2

⎞
⎠, (E3)

where steps 2, 3, and 4 correspond to the first CSWAP, the Bell measurement, and the final CSWAP, respectively. Observe that
any by-product can be corrected by a controlled unitary before the final CSWAP recombination. The illustrative effect of each
step is depicted in Fig. 14. If we trace out the environments, we can analyze the reduced physical state of the qubits, i.e.,

ρb1 = |0〉c〈0|
∑

q

Kq|ψin〉b1
〈ψin|K†

q

∑
j

Kj |	+〉a2b2〈	+|K†
j + |1〉c〈1|

∑
q

Kq|ψin〉b1
〈ψin|K†

q ⊗
∑

j

Kj |	+〉a2b2〈	+|K†
j

+ |0〉c〈1|
∑

q j

Kq|ψin〉b1
〈ψin|K†

j ⊗ Kj |	+〉a2b2〈	+|K†
q + |1〉c〈0|

∑
q j

Kq|ψin〉b1
〈ψin|K†

j ⊗ Kj |	+〉a2b2〈	+|K†
q . (E4)
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Observe the equivalence of this result with the one obtained
in Appendix D for the GB case, Eq. (D5).

Recall that the Kraus decomposition of any single channel
is not unique but invariant up to some unitary matrix. Unlike
in the interferometric-based scenario (see Sec. VI A and Ap-
pendix G), this invariance remains in place in the MB-QC (and
in the GB-QC) setting.

The protocol generates correlations of the environment
states, initially associated with individual noisy Bell states,
with each other, as well as with the remaining Bell pair a2, b2

and with the state at b1 [see Eq. (E4) and Fig. 3]. Subse-
quent measurement of the Bell state a2, b2, performed in an
appropriate basis, allows one to interfere in the computational
output, ending up with a state with enhanced fidelity. As an ex-
ample, assume a measurement in the Bell basis is performed,
where the output |	+〉 is obtained. The final state of qubit b1

is then

ρb1 = |0〉c〈0|
∑

q

Kq|ψin〉b1
〈ψin|K†

q + |1〉c〈1|
∑

q

Kq|ψin〉b1

× 〈ψin|K†
q + |0〉c〈1|K0|ψin〉b1

〈ψin|K†
0 + |1〉c

× 〈0|K0|ψin〉b1
〈ψin|K†

0 , (E5)

obtaining the maximum protocol performance corresponding
to (ω1, ω2) = (1, 1) in Eq. (26).

Measuring the remaining resource qubits in a local way is
also possible. However, since only two of the four Bell states
can be discriminated with local measurements, the enhance-
ment obtained can be reduced (particularly with rank-3 noise),
although the output fidelity is still significantly increased with
respect to the incoherent case.

This proof-of-concept example shows how the perfor-
mance of entanglement-based teleportation, which can also

be used as a tool for encoding quantum information into a
cluster state for further processing, can be enhanced (in terms
of fidelity) by our SQEM protocols.

2. Enhanced MB-QC: Arbitrary 1D computation

We consider now an arbitrary unitary operation. For
simplicity, we take a 1D cluster state with some input
state already encoded in the first qubit. With the assis-
tance of another cluster state (or another part of the same
one), a superposition of two identical operations acting on
the input can be achieved, leading to enhanced fidelity of
the output state. It is enough to restrict to a five-qubit
1D cluster state for performing an arbitrary rotation [25].
Here we further focus on the simpler but completely anal-
ogous case of a three-qubit cluster state, on which the
unitary Uμ = exp( −i

2 μσx ) can be realized. We adopt the
shorthands |G0〉1,2 = 1√

2
(|0+〉 + |1−〉), |G0〉1,2,3 = 1√

2
(| +

0+〉 + | − 1−〉), and |Gψin〉1,2,3 = 1√
2
[(α|+〉 + β|−〉)|0+〉 +

(α|−〉 + β|+〉)|1−〉], the latter two denoting the initial cluster
states with the |+〉 or the |ψin〉 = α|+〉 + β|−〉 state encoded
in the first qubit. Observe that we just take as auxiliary another
cluster state, i.e., |φ0〉b = |+〉.

We consider again a noise model where independent but
identical noise affects each qubit after the resource states are
generated (i.e., after the entangling gates). The noise can be
described as a function of some global Kraus operators of the
form Ki = K (1)

i ⊗ K (2)
i ⊗ K (3)

i , with i ∈ {0, . . . , mn} where m
is the number of Kraus operators and n the number of cluster
qubits, in this example n = 3. The operation then consists of
a single-qubit rotation via a X measurement on the first qubit
(to transport the information) and a measurement in a rotated
basis in the second. The process reads as

|+〉c|ψin〉a|+〉a2

∑
q

Kq|G0〉b1c1|q〉ε1

∑
j

Kj |G0〉b2c2| j〉ε2

(a)→
(

1√
2
|0〉c|ψin〉a|+〉a2 + 1√

2
|1〉c|+〉a1 |ψin〉a2

)∑
q

Kq|G0〉b1c1|q〉ε1

∑
j

Kj |G0〉b2c2| j〉ε2

(b)→ 1√
2
|0〉c

∑
q

Kq

∣∣Gψin

〉
a1b1c1

|q〉ε1

∑
j

Kj |G0〉a2b2c2| j〉ε2
+ 1√

2
|1〉c

∑
q

Kq|G0〉a1b1c1|q〉ε1

∑
j

Kj

∣∣Gψin

〉
a2b2c2

| j〉ε2

(c)→ 1√
2

asar |sxrx〉a1a2

⎛
⎝|0〉c〈sx|

m3∑
q, j

Kq

∣∣Gψin

〉
a1b1c1

|q〉ε1
〈rx|Kj |G0〉a2b2c2| j〉ε2

+ |1〉c〈sx|
m3∑
q, j

Kq|G0〉a1b1c1|q〉ε1
〈rx|Kj

∣∣Gψin

〉
a2b2c2

| j〉ε2

⎞
⎠

≡ 1√
2

asar |sxrx〉a1a2

⎛
⎝|0〉c

m2∑
q

K̃q

∣∣Gψin

〉
b1c1

|q〉ε1

m2∑
j

K̃ j |G0〉b2c2| j〉ε2
+ |1〉c

m2∑
q

K̃q|G0〉b1c1|q〉ε1

m2∑
j

K̃ j

∣∣Gψin

〉
b2c2

| j〉ε2

⎞
⎠

(d )→ A|sxrxtμuμ〉a1a2b1b2

⎛
⎝|0〉cU�1

m∑
q

K ′
qUμ|ψin〉c1|q〉ε1

U�2

m∑
j

K ′
jUμ|+〉c2| j〉ε2
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+ |1〉cU�1

m∑
q

K ′
qUμ|+〉c1|q〉ε1

U�2

m∑
j

K ′
jUμ|ψin〉c2| j〉ε2

⎞
⎠

(e)→ A|sxrxtμuμ〉a1a2b1b2

⎛
⎝|0〉cU�1

m∑
q

K ′
qUμ|ψin〉c1|q〉ε1

U�2

m∑
j

K ′
jUμ|+〉c2| j〉ε2

+ |1〉cU�1

m∑
q

K ′
qUμ|+〉c2|q〉ε1

U�2

m∑
j

K ′
jUμ|ψin〉c1| j〉ε2

⎞
⎠. (E6)

Here |in〉 j represents the outcome i of the measurement of
qubit j in the basis n, and U� are the correction operations that
depend on the measurement outcomes. Step (a) consists of a
CSWAP operation between the first two main and auxiliary
input qubits a1 and a2, followed by an entangling operation
that encodes the qubits to the clusters [step (b)]. Note that a
CSWAP between the first two qubits of each cluster followed
by a Bell measurement with the input leads to the same state.
Alternatively, one can assume that the input states are already
encoded in the first qubit of each cluster, and similar results
are found. Step (c) shows the effect of the measurement on
the X basis of the first qubit of each cluster. This measurement
leads to a different effective Kraus description of the noise
affecting the computational level, i.e., the remaining cluster.
Step (d ) represents the measurement of the second qubit of
each cluster in a rotated X basis that leads to the application
of the unitary operation Uμ. The constant A encompasses all
the normalization factors, and the new sets of Kraus operators
{K̃i} and {K ′

i } include the noise coming from the measure-
ments and (in the case of {K ′

i }) commutation factors with Uμ.
Finally, step (e) shows the effect of the recombination after the
final CSWAP between the remaining qubits of each cluster.
Note how the SWAP gate induces again an exchange between
the coupling of the qubits with the environments. Observe
also how by-products can be simply corrected by a controlled
operation at this point.

Finally, a measurement on the output auxiliary qubit is
performed in a suitable basis, such that certain terms can be ef-
fectively selected on the off-diagonal elements of the reduced
density operator, leading to an enhanced fidelity. For instance,
with rank-2 noise, one can always find a measurement basis,
such that the output state after tracing out the environment
reads as

ρ = |0〉c〈0|
∑

q

K ′
qUμ|ψin〉b1

〈ψin|U †
μK ′†

q

+ |1〉c〈1|
∑

q

K ′
qUμ|ψin〉b1

〈ψin|U †
μK ′†

q

+ |0〉c〈1|K ′
0(1)Uμ|ψin〉b1

〈ψin|UμK ′†
0(1)

+ |1〉c〈0|K ′
0(1)Uμ|ψin〉b1

〈ψin|U †
μK ′†

0(1), (E7)

depending on the output (0 or 1) of the auxiliary qubit mea-
surement. This result is similar to the ones in Appendix D;
generalization to more inputs or more general computations
can be done following the same steps. In particular, in order
to achieve arbitrary 1D computations, a cluster state of five

qubits and two additional rotations are required, where analo-
gous results and derivations apply.

a. Behavior for arbitrary computations

We briefly analyze here how the previous formalism can be
extended to more general computations with multiqubit input
states. Comparable advantage to the single-input examples, as
seen in the numerical analysis of Sec. V B, can be found with
a constant overhead of resources. In case more resources are
available, further improvement can be achieved.

Consider m input qubits a1, . . . , am in some state |ψin〉a.
Assume also two independent m-sized parts of the entangled
resource state are available. We can generate a superposition
between the computation being carried in the first resource, or
in the second, where the input state is operated on in one or
the other. A single control register in the |+〉c state is therefore
required for generating such a superposition. With m auxiliary
qubits b1, . . . , bm prepared in |+〉, and controlled-SWAP op-
erations applied from the control register to each pair ai, bi,
one can obtain

|+〉c|ψin〉a

⎛
⎝ m⊗

j=1

|+〉b j

⎞
⎠∑

q

Kq|G0〉a|q〉εa

∑
t

Kt |G0〉b|t〉εb

(a)→
⎡
⎣ 1√

2
|0〉c|ψin〉a

⎛
⎝ m⊗

j=1

|+〉b j

⎞
⎠

+ 1√
2
|1〉c

⎛
⎝ m⊗

j=1

|+〉a j

⎞
⎠|ψin〉b

⎤
⎦∑

q

Kq|G0〉a|q〉εa

×
∑

t

Kt |G0〉b|t〉εb, (E8)

where |G0〉i indicates a 2D cluster state of some depth. Next,
the qubits are entangled to the resource states, i.e.,

1√
2
|0〉c

∑
q

Kq|Gψin〉a|q〉εa

∑
t

Kt |G0〉b|t〉εb

+ 1√
2
|1〉c

∑
q

Kq|G0〉a|q〉εa

∑
t

Kt |Gψin〉b|t〉εb . (E9)
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FIG. 15. Graph states and measurement patterns used for the numerical simulations of the CSWAP gate in the measurement-based setting.
Black qubits indicate measurements in the Pauli X basis, while green qubits indicate adaptive measurements (see text).

An arbitrary computation is performed in each cluster state,
leading to a final state of the form

1√
2
|0〉c

∑
q

K ′
qU |ψin〉a|q〉εa

∑
t

K ′
t U

⎛
⎝ m⊗

j=1

|+〉b j

⎞
⎠|t〉εb

+ 1√
2
|1〉c

∑
q

K ′
qU

⎛
⎝ m⊗

j=1

|+〉a j

⎞
⎠|q〉εa

∑
t

K ′
t U |ψin〉b|t〉εb,

(E10)

up to by-products, where U is an arbitrary computation acting
on the input qubits. The final CSWAP is now applied for
recombining, i.e.,

1√
2
|0〉c

∑
q

K ′
qU |ψin〉a|q〉εa

∑
t

K ′
t U

⎛
⎝ m⊗

j=1

|+〉b j

⎞
⎠|t〉εb

+ 1√
2
|1〉c

∑
q

K ′
qU

⎛
⎝ m⊗

j=1

|+〉b j

⎞
⎠|q〉εa

∑
t

K ′
t U |ψin〉a|t〉εb .

(E11)

Finally, a measurement of the remaining auxiliary qubits (b)
is applied. Once the environmental states are traced out and
the control register is measured in the X basis, one recovers
similar results to those in the examples previously analyzed.

Note that the measurement is not unique, and different bases
and outcomes can lead to different results, all of them, in
general, with enhanced fidelity, as already analyzed in the
main text.

APPENDIX F: MB-QC IMPLEMENTATION OF
THE CONTROLLED-SWAP OPERATION

We detail here our CSWAP implementation for the numer-
ical simulations in the MB-QC case. We show the graph states
in Fig. 15, provide the corresponding measurement patterns,
and specify the bases of the adaptive measurements.

Our CSWAP pattern is based on the GB Clifford+T im-
plementation in Ref. [79], which requires 7 T gates. The
most direct way to obtain such a graph state is concatenating
the MB patterns in Ref. [40], and classically simulating as
many nonadaptive measurements as possible following the
stabilizer approach in Refs. [39,80]. Each of the 7 T gates
contributes one adaptive measurement; in addition, the non-
adaptive measurements on the input qubits and on the qubits
directly entangled with the input qubits cannot be simulated
classically. In the resulting graph state shown in Fig. 15(a),
the input qubits (to be measured in the X basis) are 1,2,3, the
output qubits are 4,5,6, while qubits 7,8 are measured in the X
basis and qubits 9–15 in certain adaptive bases given below.
The by-product operator in this case reads as

Zs1+s9+s11+s12+s13
1 X s7

1 Zs2+s11+s13+s14+s15
2 X s7+s8+s10+s12+s13+s14

2 Zs3+s11+s13+s14+s15
3 X s10+s12+s13+s14

3 , (F1)

and the adaptive rotation angles are

α9 = −(−1)s7
π

4
; α10 = −(−1)s2+s3

π

4
; α11 = (−1)s8

π

4
; α12 = (−1)s2+s3+s7

π

4
;

α13 = −(−1)s2+s3+s8
π

4
; α14 = (−1)s2+s3+s7+s8

π

4
; α15 = −(−1)s7+s8

π

4
. (F2)

While the graph state Fig. 15(a) employs a relatively small number of qubits, the larger connectivity results in more qubits in
intermediate states, causing difficulty in numerical simulations. An alternative approach we use in our simulations is shown in
Fig. 15(b). In this case, at the cost of eliminating fewer nonadaptively measured qubits, we reduce the required qubit number in
intermediate states. We again label the input qubits as 1,2,3, and the output qubits as 4,5,6. On the other hand, qubits 7–18 are
measured in the X basis, and qubits 19–25 in adaptive bases. The by-product operator reads as

Zs1+s19+s20+s21+s25
1 X s7+s8

1 Zs2+s20+s21+s22+s23
2 X s7+s8+s9+s10+s11+s12+s13+s15+s16+s17+s18+s21+s22+s24+s25

2

× Zs3+s14+s16+s17+s20+s21+s22+s23
3 X s15+s18+s21+s22+s24+s25

3 , (F3)
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while the adaptive rotation angles are

α19 = −(−1)s7
π

4
; α20 = (−1)s9

π

4
; α21 = −(−1)s2+s3+s9+s10+s14

π

4
;

α22 = (−1)s2+s3+s7+s8+s9+s10+s11+s14
π

4
; α23 = −(−1)s7+s8+s9+s10+s11+s12+s16+s17

π

4
;

α24 = −(−1)s2+s3
π

4
; α25 = (−1)s2+s3+s7+s8+s14+s16

π

4
. (F4)

APPENDIX G: ENHANCED INTERFEROMETRICLIKE
CIRCUIT GATE-BASED COMPUTATION: ANALYTIC

ANALYSIS BASED ON THE ENVIRONMENTAL
FORMALISM

We provide in this Appendix an extended derivation of
the interferometriclike circuit approach introduced in Sec. VI,
making use again of the environmental formalism. The im-
provement arising from either the standard gate-based model
or the measurement-based model assisted by ancillas does not
depend on the underlying physics behind the noise. The fun-
damental mechanisms in the interferometric-based scenario
involve very different physical processes, although similar
qualitative enhancement can be achieved. The strategies we
analyze here are closely related to works that analyze the
superposition of trajectories in quantum communication sce-
narios [20,21,24,45], where the invariance of the operator
sum representation is broken. We adapt these techniques to
a computational scenario, trying to understand the underlying
physics behind them. Importantly, in our approach, we do not
need to deal with one of the main drawbacks of the aforemen-
tioned communication strategies, namely, the assumption of
noiseless control registers. Further details will be investigated
in Ref. [46].

Consider an input state that undergoes a superposition of
two identical noisy gates U . An additional system, initialized
in |+〉c, acts as a control to decide which unitary (although
identical) is applied, therefore generating the superposition.
Note that the control can be directly encoded in some de-
gree of freedom of the input qubit, such that this control is
only needed at the beginning and the end of the process,
independently of the size of the computation. In this case,
an analysis based on the density matrix formalism does not
provide complete information on the process because of the
nontrivial role of the vacuum, and therefore we make use
of the purified description of the states. A complete descrip-
tion can be, however, recovered by including global phases
on the Kraus operators as stressed in Sec. VI. Observe the
differences with respect to the GB and MB standard models
(Appendixes D and E), where the role of the environments is
irrelevant. The initial state then reads as

|+〉c ⊗ |ψin〉 ⊗ |ε0〉ε0
|ε1〉ε1

, (G1)

with some initial environmental states |ε0〉ε0 and |ε1〉ε1 , asso-
ciated with environmental systems of each branch, where the
information during the noise processes leaks out.

Superposition is generated in an interferometric way,
where the system follows one or the other branch depending
on the state of the control. An identical unitary computa-
tion is applied in both branches, with some noise associated

described by Kraus operators Ki. In the noiseless case, this op-
eration deterministically leads to the pure state |+〉c ⊗ U |ψin〉.
However, if the operation U is not perfect, the effect of the
noise can be analyzed by attending to the Stinespring dilation
description of the process (see Appendix D 2), i.e.,

|ψ〉 = 1√
2
|0〉c ⊗

∑
s

KsU |ψin〉 ⊗ |s〉ε0
|ε1〉ε1

+ 1√
2
|1〉c ⊗

∑
s

KsU |ψin〉 ⊗ |ε0〉ε0
|s〉ε1

. (G2)

The remaining state of the system can be obtained by tracing
out the environments, i.e.,

ρ = 1

2
|0〉c〈0|

∑
i

Kiρ f K†
i + 1

2
|1〉c〈1|

∑
j

Kjρ f K†
j

+ 1

2
|0〉c〈1|

(∑
i

〈ε0|i〉Ki

)
ρ f

⎛
⎝∑

j

〈 j|ε1〉K†
j

⎞
⎠

+ 1

2
|1〉c〈0|

⎛
⎝∑

j

〈ε1| j〉Kj

⎞
⎠ρ f

(∑
i

〈i|ε0〉K†
i

)
, (G3)

with ρ f = UρinU †. One can see that measuring the control
register in the X basis leads, in general, to some state different
than the one obtained in the incoherent case (D2). The fidelity
of this output state is generally enhanced, both in a probabilis-
tic and (on average) in a deterministic way. The enhancement
depends on the particular initial states of the environments that
define the elements

∑
i〈ε0|i〉Ki in the off-diagonal terms of

Eq. (G3).
Equivalently, Eq. (G3) can be also derived by consider-

ing relative phases in the Kraus operators, i.e., Kj → eiφ j Kj ,
which in the incoherent case are irrelevant. By including the
vacuum in the description of the process, one can easily see
how the phases of the Kraus operators analogously reproduce
the
∑

i〈ε0|i〉Ki terms in Eq. (G3). These can be interpreted as
relative phases between the system and the vacuum, such that
the Kraus operators can be described as

K̃j =
(

Kj

eiφ j

)
, (G4)

where K̃ j are the Kraus operators associated with the
system+vacuum, i.e., Hs ⊗ Hv .

Also in this case, the improvement in the fidelity can be
further enhanced by increasing the number of branches in the
superposition. In particular, with rank-2 noise and one single
gate, the improvement in the infidelity scales linearly with the
number of superposition branches (see also Sec. VI B).
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An extended analysis of the fundamentals behind these
processes can be found in Ref. [46].

Multiqubit operations. Generalization to multiqubit oper-
ations is direct. Consider an arbitrary m-qubit quantum gate
Um, whose imperfect implementation is modeled by certain
uncorrelated noise acting on each qubit after the ideal applica-
tion of the gate, given by the Kraus operators {K (i)

si
}, with i =

1, . . . , m the corresponding qubit. We associate an environ-
ment with each qubit, initially in some state |ε0〉 = ⊗i|εi〉εi .
The action of k identical gates Um applied in superposition is

|ψ〉 = 1√
k

k−1∑
i=0

|i〉c

∑
j

K ( j)Um|ψin〉| j〉i ⊗r �=i |ε0〉r, (G5)

where |ψin〉 is the initial state of m qubits and K ( j) = ⊗iK (i)
si

is a global Kraus operator comprising the composition of the
individual ones. As before, by tracing out the environments
and measuring the control register in the generalized X basis,
an outcome with enhanced fidelity is found.

Concatenation of gates. Consider standard circuit com-
putations consisting of sequential applications of quantum
operations, each one with certain noise associated. We can
write the dynamics of this process as

∑
i1···im

K (m)
im

Um . . . K (0)
i1

U1|ψin〉|i1〉ε1
⊗ · · · ⊗ |im〉εm

. (G6)

If we trace out the environments we recover the expected
action on the reduced state corresponding to the output qubit,
i.e.,

ρ = ©m
s=1[ξ̂s ◦ Ûs](ρin ), (G7)

where Â(σ ) = AσA† and ξ̂s defines the noisy channel associ-
ated with the gate s with Kraus operators Kis .

Consider now the case that two identical sequences of
a concatenation of several single-qubit gates are applied in
superposition. Equation (G2) generalizes to

1√
2
|0〉c

∑
i1...im

K (m)
im

Um . . . K (0)
i1

U1|ψin〉|i1〉ε (0)
1

⊗ · · · ⊗ |im〉
ε

(0)
m

⊗ ∣∣ε(1)
1

〉
ε

(1)
1

⊗ · · · ⊗ ∣∣ε(1)
m

〉
ε

(1)
m

+ 1√
2
|1〉c

∑
j1... jm

K (m)
jm

Um . . . K (0)
j1

U1|ψin〉| j1〉ε (1)
2

⊗ · · · ⊗ | jm〉
ε

(1)
m

⊗ ∣∣ε(0)
1

〉
ε

(0)
1

⊗ · · · ⊗ ∣∣ε(0)
m

〉
ε

(0)
m

.

The output state then reads as

ρ = 1

2
|0〉c〈0| ⊗ ©m

s=1

[
ξ̂ (0)

s ◦ Ûs
]
(ρin ) + 1

2
|1〉c〈1| ⊗ ©m

s=1

[
ξ̂ (0)

s ◦ Ûs
]
(ρin )

+ 1

2
|0〉c〈1|

(∑
i

〈
ε(0)

m

∣∣i〉K (m)
i Um

)
. . .

(∑
i

〈
ε

(0)
1

∣∣i〉K (0)
i U1

)
ρin

(
U †

1

∑
i

〈
i
∣∣ε(1)

1

〉
B†

i

)
. . .

(
U †

m

∑
i

〈
ε(1)

m

∣∣i〉K (m)
i

)

+ 1

2
|1〉c〈0|

(∑
i

〈
ε(1)

m

∣∣i〉K (m)
i Um

)
. . .

(∑
i

〈
ε

(1)
1

∣∣i〉K (0)
i U1

)
ρin

(
U †

1

∑
i

〈
i
∣∣ε(0)

1

〉
A†

i

)
. . .

(
U †

m

∑
i

〈
ε(0)

m

∣∣i〉K (m)
i

)
.

By measuring the control state in the X basis one obtains again an output state with generally enhanced fidelity with respect
to the average over the possible outcomes of the measurement. The improvement depends again on the initial environmental
states. In a continuum set of choices, a varying degree of advantage is found, where the maximum and the minimum advantages
correspond to some discrete choices for the initial environmental states. In the worst situation, one recovers the incoherent result
of Eq. (G7). We refer to Ref. [46] for further details.
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