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Higher-order methods for Hamiltonian engineering pulse sequence design
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We introduce a framework for designing Hamiltonian engineering pulse sequences that systematically ac-
counts for the effects of higher-order contributions to the Floquet-Magnus expansion. Our techniques result
in simple, intuitive decoupling rules, despite the higher-order contributions naively involving complicated,
nonlocal-in-time commutators. We illustrate how these rules can be used to efficiently design improved Hamil-
tonian engineering pulse sequences for a wide variety of tasks such as dynamical decoupling, quantum sensing,
and quantum simulation.
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I. INTRODUCTION AND MOTIVATION

The effective control of many-body quantum dynamics
is an important challenge in the emerging field of quantum
science and technology, with wide-ranging applications in
quantum computation [1,2], quantum sensing [3], and quan-
tum simulation [4,5]. One of the key tools for controlling such
many-body quantum dynamics is Hamiltonian engineering
[6–20], in which a train of pulses transform the original sys-
tem Hamiltonian into a desired target Hamiltonian for various
applications. Indeed, from the inception of such techniques in
early NMR work to the present day, Hamiltonian engineering
has enabled high-resolution spectroscopy [6,8,21–23], high
sensitivity metrology [24], as well as the realization of exotic
Floquet phases of matter [25–27].

One of the key tools for performing Hamiltonian en-
gineering is average Hamiltonian theory [28]. Here, the
engineered Hamiltonian is approximated by the time-average
of interaction-picture Hamiltonians with respect to the control
pulses. This allows the effective engineering of many-body
Hamiltonians, even in the case where only global ma-
nipulation of spins is accessible, as is the case in many
large-scale quantum systems [5,29]. Moreover, design rules
that systematically take into account robustness against vari-
ous imperfections can be derived [7,9], enabling robust pulse
sequence design as well.

Despite the success of techniques based on average Hamil-
tonian theory, large variations in performance still exist among
the different sequences obtained, suggesting that higher-order
contributions in the full Magnus expansion may play an
important role. Existing works treating higher-order contri-
butions often rely purely on symmetrization, or treat the
higher-order terms on a case-by-case basis [7,9,30]. However,
finding general conditions for the cancellation of higher-order
Magnus terms can be nontrivial, as the expressions involve
commutators that are nonlocal in time.
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In this paper, we systematically analyze higher-order
Magnus contributions to effective Hamiltonians, providing a
general tool set for pulse sequence design in interacting spin
systems in the form of concise decoupling rules. Despite the
nonlocal nature of the commutators involved in higher-order
contributions, we are still able to generalize many results
from average Hamiltonian theory. First, we find that the frame
representation employed in Refs. [7,9,31] still provides a con-
venient way to describe the pulse sequence and contributions,
resulting in analytical decoupling rules for higher-order terms.
As an example, in Fig. 1(c) we illustrate how first-order Mag-
nus terms involving disorder and Heisenberg interactions have
a simple geometric interpretation in analogy with dipoles,
and in Fig. 1(d) we illustrate how first-order Magnus terms
involving Ising and Heisenberg interactions have a similar
interpretation as balancing the center of mass along a given
axis. Second, we find that although there exist additional
cross terms, the majority of finite pulse duration effects can
still be described as a simple extension of the effective free
evolution time [9], making it easy to build in robustness to
sequence design. Finally, we extend the principle of pulse
cycle decoupling [7] to more general pulse sequences and
Hamiltonians, beyond those where the zeroth-order average
Hamiltonian vanishes. We use this to show how decoupling
rules can be significantly simplified for pulse sequences that
are composed of common motifs, such as spin echoes [32]
or WAHUHA blocks [6] [Figs. 1(a) and 1(b)], resulting in
time-local decoupling conditions even for higher-order Mag-
nus contributions. Together, these techniques allow us to find
higher-order robust pulse sequences with substantially im-
proved performance for a variety of dynamical decoupling,
Hamiltonian engineering and quantum sensing applications,
as discussed here and in the accompanying paper [33]. The
pulse sequences designed here are directly applicable to a
variety of strongly disordered interacting spin systems, such
as nitrogen vacancy centers [29,34,35] and P1 centers in
diamond [36], rare-earth ions [37], and can be readily ex-
tended to a broad range of interacting spin- 1

2 systems under
global control, including trapped ions, cold molecules, neutral
atoms etc. [38–42].
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FIG. 1. Visualization of representative first-order cancellation
rules. (a) A rapid spin-echo block, which cancels disorder-disorder
and disorder-Ising terms. (b) Rapid symmetrization block, which
cancels Ising-Ising terms. (c) Cancellation of net dipoles along each
axis, which cancels disorder-Heisenberg terms. (d) Balancing the
weight in each row, which cancels Ising-Heisenberg terms.

This paper is organized as follows: in Sec. II, we review
our representation of the pulse sequence and associated in-
teraction picture Hamiltonian, as well as existing decoupling
rules for the zeroth-order effective Hamiltonian. In Sec. III,
we utilize this representation to provide general expressions
for the higher-order Magnus contributions and present sys-
tematic decoupling conditions for higher-order terms. We
then analyze the structures present in these decoupling rules
in Sec. IV, finding significant simplifications for commonly
found pulse sequence structures in both the disorder-dominant
and interaction-dominant regimes. We also tabulate the result-
ing decoupling rules and provide a pictorial depiction of them.
In Sec. V, we provide further details on the efficient numerical
screening of pulse sequences, resulting in high-performance
pulse sequences for dynamical decoupling, quantum sensing,
and quantum simulation. Finally, in Sec. VI we conclude with
a discussion of further extensions and future directions of the
formalism. A summary of the notation adopted in this paper
can be found in Appendix A.

II. GENERAL FRAMEWORK AND REVIEW
OF EXISTING RESULTS

A. General framework and frame representation

We begin by introducing our method to represent the
pulse sequence and associated average Hamiltonian, which
will greatly simplify the analysis of effective Hamiltonians
and finite-pulse effects compared with the conventional rep-
resentation of individual pulses. We adopt the toggling-frame
sequence representation (also known as the Mansfield repre-
sentation) used by Choi et al. [9,31], which focuses on how

operators are transformed under the pulses, rather than the
applied pulses themselves. In addition to being a complete and
concise representation of the pulse sequence, this representa-
tion also has the additional advantage that it leads to simple
decoupling conditions that are amenable to fast numerical
screening.

Consider a pulse sequence composed of n global spin-
rotation pulses {P1, . . . , Pn} acting on a system with native
Hamiltonian H , with a free evolution time τk preceding the
kth pulse Pk . The interaction picture Hamiltonian with respect
to the ideal control pulses can then be written as

H̃ (t ) = U †
c (t )⊗mHUc(t )⊗m, (1)

where H̃ (t ) is the interaction picture Hamiltonian at time t ,
Uc(t ) is the single spin rotation due to the control field [e.g.,
Uc(t ) = PkPk−1 · · · P1 right after the kth pulse], and m is the
number of spins in the system.

Assuming ideal, infinitely fast rotation pulses, and that the
combined rotation unitary is identity Pn · · · P1 = I , we can
write the total unitary evolution as

U (T ) = T exp

(
−
∫ T

0
iH̃ (t )dt

)
≈ exp(−iH (0)T ), (2)

where T indicates time-ordering and T is the Floquet pe-
riod. For pulse separations much shorter than the dynamical
timescale of the system, we can conveniently write the effec-
tive Hamiltonian to leading order as

H (0) = 1

T

∫ T

0
H̃ (t1)dt1. (3)

For general system Hamiltonians satisfying the secular
approximation (rotating wave approximation under a strong
quantizing field) [9], the interaction picture Hamiltonian H̃s(t )
can be uniquely determined by transformations of the Sz op-
erator (we refer to these as toggling “frames”),

S̃z(t ) = U †
c (t )SzUc(t ) =

∑
μ

Fμ(t )Sμ, (4)

where Sμ is a basis for the spin system, e.g., the Pauli spin
operators for qubits, and we have defined the coefficients

Fμ(t ) = 2Tr[SμS̃z(t )]. (5)

Assuming ideal, instantaneous pulses (the case of finite-
pulse effects and other associated imperfections are discussed
in Sec. III D), we can express the preceding information in
the form of a single 4 × N matrix, where each element Fμ,k

corresponds to the coefficient Fμ(t ) during the kth free evo-
lution time, and the last row contains the free evolution time
duration.

As a concrete example, let us consider a spin-1/2 system,
where each pulse Pk is assumed to be a π/2 pulse around
±x̂, ŷ. Note that π pulses can be viewed as two consecutive
π/2 pulses, with zero time separation in between. With Sμ

chosen to be the Pauli basis, a spin echo can be represented as

(
F
τ

)
echo

=

⎛
⎜⎜⎝

0 0
0 0

+1 −1
τ τ

⎞
⎟⎟⎠, (6)
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while the WAHUHA decoupling sequence for dipolar interac-
tions [6] can be expressed as

(
F
τ

)
WAHUHA

=

⎛
⎜⎜⎝

0 0 +1 +1 0 0
0 +1 0 0 +1 0

+1 0 0 0 0 +1
τ τ τ τ τ τ

⎞
⎟⎟⎠. (7)

Pictorially, we can represent the first three rows of the ma-
trix by the blocks in Figs. 1(a) and 1(b), in which a yellow
(green) block indicates a +1 (−1) value along the given axis
(row) at a given time (column). We illustrate more advanced
versions of spin echoes and WAHUHA blocks in Figs. 1(a)
and 1(b) in both pulse notation and the frame matrix notation
utilized here. In the preceding examples, we have neglected
finite pulse duration effects, but they can be easily treated
by specifying an additional intermediate toggling frame with
zero time duration.

This representation allows us to easily express the inter-
action picture Hamiltonian H̃ (t ). For example, for a spin-1/2
dipolar-interacting many-body spin system with on-site disor-
der, the system Hamiltonian can be written as

Hdip =
∑

i

hiS
z
i +

∑
i j

Ji j
(
Sx

i Sx
j + Sy

i Sy
j − 2Sz

i Sz
j

)

=
∑

i

hiS
z
i +

∑
i j

Ji j
(�Si · �S j − 3Sz

i Sz
j

)
, (8)

where hi is the on-site disorder strength for spin i, and Ji j

is the dipolar interaction between spins i and j. With our
representation, for sequences composed of π/2 or π pulses
around ±x̂, ŷ, the interaction picture Hamiltonian during the
kth free-evolution time can be easily expressed as

H̃dip,k =
∑

iμ

Fμ,khiS
μ
i +

∑
i j

Ji j �Si · �S j − 3
∑
i jμ

F 2
μ,kJi jS

μ
i Sμ

j ,

(9)

where we have organized the terms according to how they
transform with Fμ,k . Using these expressions, it is easy to
verify that the spin echo cancels disorder, since

∑
k Fμ,kτk =

0, while the WAHUHA pulse sequence fully symmetrizes
(decouples) dipolar interactions, since

∑
k F 2

μ,kτk is the same
for all μ.

Motivated by these considerations, for any secular Hamil-
tonian, we organize the interaction picture Hamiltonian in
terms of how the operators transform as the toggling frame
changes. Let us write

H̃ (t ) =
∑

α

cα (t )Oα, (10)

where cα (t ) are time-dependent coefficients encoding the
frame transformations of a general operator basis set Oα (we
will use greek letters to denote labels of operator sets in the
remainder of the paper). For the example above in Eq. (8), we
can write out the individual terms in the summation as

O0 =
∑

i j

Ji j �Si · �S j, c0(t ) = 1, (11)

O1,μ =
∑

i

hiS
μ
i , c1,μ(t ) = Fμ,k, (12)

O2,μ = 3
∑

i j

Ji jS
μ
i Sμ

j , c2,μ(t ) = F 2
μ,k, (13)

which clearly illustrates how the various terms in the Hamil-
tonian transform differently with the toggling frames.

B. Magnus expansion

With this general representation framework in hand, we
now briefly review the Magnus expansion, which provides
a useful tool to calculate the effective dynamics of the peri-
odically driven system, and extend the analysis beyond the
average Hamiltonian described in Eq. (3).

The total unitary over a single Floquet cycle can be ex-
pressed in terms of a time-independent effective Hamiltonian
U (T ) = exp(−iHeffT ), where in the fast-driving limit, the ef-
fective Hamiltonian can be written via the Magnus expansion
up to order l as Heff ≈∑l

k=0 H (k), with

H (0) = 1

T

∫ T

0
H̃ (t1)dt1, (14)

H (1) = −i

2T

∫ T

0
dt1

∫ t1

0
dt2[H̃ (t1), H̃ (t2)], (15)

H (2) = 1

6T

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

× ([H̃ (t1), [H̃ (t2), H̃ (t3)]] + [H̃ (t3), [H̃ (t2), H̃ (t1)]]).

(16)

Higher-order terms are more complex, involving progres-
sively deeper nested commutators, but in the fast-driving limit
they will be relatively suppressed, and we can focus on the
leading-order terms above.

Plugging in Eq. (10) and separating the time-independent
operator commutation relation information from the time in-
tegrals, we have

H (0) =
∑

α

1

T
Oα

∫ T

0
dt1cα (t1), (17)

H (1) =
∑
α,β

−i

2T
[Oα,Oβ ]

∫ T

0
dt1

∫ t1

0
dt2cα (t1)cβ (t2), (18)

H (2) =
∑
α,β,γ

1

6T
[Oα, [Oβ,Oγ ]]

∫∫∫
0�t3�t2�t1�T

dt1dt2dt3

× (cα (t1)cβ (t2)cγ (t3) + cα (t3)cβ (t2)cγ (t1)). (19)

This allows us to reduce the computation of the Magnus
expansion to the evaluation of a few integrals on the c(t )
coefficients, which can in turn be readily phrased as algebraic
conditions on the set of frame transformations.

C. Review of zeroth-order rules

Using the preceding framework, we can readily write down
conditions for the cancellation or symmetrization of various
zeroth-order average Hamiltonian terms, see also Ref. [9] for
details. For example, plugging Eqs. (11)–(13) into Eq. (17)
and assuming ideal, instantaneous pulses, we can easily see
that on-site disorder is canceled when

∑
k Fμ,kτk = 0 for each
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axis μ = x̂, ŷ, ẑ, while interactions are symmetrized into a
Heisenberg Hamiltonian or canceled when

∑
k F 2

μ,kτk is equal
for all different μ.

More importantly, as shown in Ref. [9], these conditions
can be readily generalized to the case with pulse imperfec-
tions. The primary effect of finite pulse durations is to extend
the effective free evolution times in each frame, as most of the
terms generated by π/2 rotations can be written as an average
of the Hamiltonian before and after the pulse. However, there
will be additional terms arising from rotation angle errors or
interaction cross terms during rotations, which give rise to
additional chirality or parity conditions between neighboring
frames [9].

The simple, time-local nature (all rules only involve
neighboring frames) of these decoupling conditions enabled
efficient design and screening of pulse sequences. Indeed,
using these simple decoupling conditions, novel pulse se-
quences with improved decoupling performance have been
found, leading to the demonstration of the first solid-state
AC magnetometer that operates beyond the limits of spin-
spin interactions [24]. However, the further extension of such
techniques to incorporate higher-order Magnus contributions
and improve performance is at first sight challenging, given
the time-nonlocal nature of higher-order Magnus terms, which
involve commutators between all times of a Floquet cycle.
In the following, we demonstrate how this challenge can be
overcome by distilling the higher-order computation into key
terms that capture transformation properties and utilizing the
structure of commonly used pulse sequences.

III. SYSTEMATIC ANALYSIS OF HIGHER-ORDER
MAGNUS TERMS

With the basic formalism in hand, we now turn to the sys-
tematic extension of these decoupling rules from zeroth-order
to higher-order. First, we describe the pulse cycle decoupling
principle [7] and extend it to the case of more general inter-
actions, which serves as a useful tool to decompose nonlocal
higher-order terms into local blocks. We then systematically
derive expressions for first- and second-order Magnus contri-
butions in the general case, assuming ideal pulses. Finally, we
briefly describe how the treatment can be readily generalized
to the case with finite pulse durations, primarily by extend-
ing the effective duration of free evolution times, with more
details given in Appendix B.

A. Pulse-cycle decoupling

To simplify sequence analysis, it is helpful to be able to
break down larger pulse sequences into smaller blocks and
analyze them independently. In this section, we show how
common motifs used in sequence design—in the form of spin
echoes or interaction symmetrization—allow us to decom-
pose higher-order contributions into a sum of independent,
local pieces, no longer requiring nonlocal correlators between
arbitrary locations and thus significantly simplifying the de-
sign. Our results are applicable even to some cases where
the symmetrization results in a residual Heisenberg interac-
tion Hamiltonian, thus extending the existing methods [7] of

pulse-cycle decoupling to new and experimentally important
regimes.

Let us proceed by examining the first-order contribution
when sequentially applying two sequences A and B of equal
length T . We can split the first-order Magnus contribution in
Eq. (15) into integrals within the first and second sequence,
respectively, and cross terms between the two sequences, re-
sulting in

H (1) = H (1)
A +

(−i

2T

)[
T H (0)

B , T H (0)
A

]+ H (1)
B , (20)

where H (0)
A,B (H (1)

A,B) are the zeroth-order (first-order) effective
Hamiltonians during pulse sequences A and B.

The key observation of pulse-cycle decoupling is that, if the
commutator [H (0)

A , H (0)
B ] vanishes, then the first-order contri-

bution fully decouples into the sum of that in each individual
block, regardless of the details. In prior work [7], this was
achieved by making one of the average Hamiltonians van-
ish, thus causing the commutator to automatically vanish as
well. For more general Hamiltonians, however, this no longer
directly applies, since the Heisenberg interaction is invariant
under global rotations and cannot be canceled with a global
drive [18].

Despite this challenge, we find that we can still make use
of the pulse-cycle decoupling principle in many scenarios
beyond the case where the Hamiltonian vanishes. First, even
if the total Hamiltonian does not vanish, pulse cycle decou-
pling can still apply to individual terms. For example, if a
given block fully decouples disorder [the rapid echo blocks
in Fig. 1(a)], then any first-order terms involving disorder will
not have cross terms between this block and other parts of the
sequence, simplifying the design. Second, if the interaction is
transformed into the same form in two separate blocks, then
although H (0)

A and H (0)
B are both nonzero, they still commute,

and so the pulse-cycle decoupling principle still applies (see,
e.g., Fig. 2). Thus, even if the interaction has a Heisenberg
component that cannot be canceled, the cross term is still
zero because [

∑
i j Ji jSi · S j,

∑
i j Ji jSi · S j] = 0. This insight

generalizes the pulse-cycle decoupling principle to cases in
which one desires to engineer a nonzero target Hamiltonian,
significantly expanding its applicability.

While we have illustrated the pulse-cycle decoupling prin-
ciple at first order, the same methods also apply at higher
order by generalizing the arguments in Ref. [7]. For exam-
ple, the second-order Magnus contribution can be expressed
as a sum of commutators between zeroth- and first-order
terms, and thus if lower orders are fully symmetrized, then
the second-order Magnus contribution will also separate into
independent, local blocks.

B. First-order decoupling

We now return to analyze the structure of higher-order
Magnus terms directly and derive decoupling rules for various
contributions. The expressions here will be derived in full
generality, without making use of the pulse-cycle decoupling
principle, although we will use this to further simplify the
expressions in following sections.

To better understand the structure of the first-order Magnus
contributions and derive decoupling rules, let us rewrite the
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FIG. 2. Pulse-cycle decoupling. Example pulse blocks where the
pulse cycle decoupling principle can be applied, and first-order con-
tributions separate into independent, local terms. (a) A spin echo
cancels disorder, and thus H (0)

A = H (0)
B = 0, satisfying the pulse-

cycle decoupling condition. Note that, in this case, a single block
being fully decoupled is sufficient for the standard pulse cycle de-
coupling condition to hold. (b) Frame symmetrization between the
different axes symmetrizes the interaction into a Heisenberg form,
so even if the two blocks have a residual zeroth-order interaction
Hamiltonian, the zeroth-order contributions commute, and thus the
pulse cycle decoupling condition still applies. (c) Combining spin
echoes and frame symmetrization yields pulse-cycle decoupling for
the full Hamiltonian.

preceding expressions into a form that relates them to zeroth-
order Magnus contributions and makes clear how terms can
be canceled.

Denoting the zeroth-order contribution up to a given time
as c

<α
(t ) ≡ ∫ t

0 cα (t1)dt1, we can rewrite Eq. (18) as

H (1) = −i

T

∑
α>β

[Oα,Oβ]

×
∫ T

0

[
cα (t1) c

<β
(t1)dt1 − 1

2
c

<α
(T ) c

<β
(T )

]
. (21)

Focusing first on the case of instantaneous, ideal pulses
(the more general case will be treated in Sec. III D), our
toggling-frame Hamiltonian becomes piecewise-constant in
time, allowing us to replace integrals with summations. We
can then define the discrete frame equivalents of the terms
in the previous section, letting cα,k = cα (t ) for t ∈ [tk −
τk/2, tk + τk/2] and c

<α,k
≡∑l<k cα,lτl , and find

H (1) =
∑
β<α

[Oα,Oβ ]

×
(

n∑
k=1

cα,kτk

(
c

<β,k
+1

2
τkcβ,k

)
− 1

2
c

<α,n+1
c

<β,n+1

)
.

(22)

The first term in the parentheses can be interpreted as a
product between the cα coefficient during a given frame and
the integral of zeroth-order average Hamiltonians up to the
center of the frame. The last term is simply the product of
two zeroth-order contributions over the entire Floquet period,
which will vanish when zeroth-order decoupling rules are
satisfied. Geometrically, this expression can be understood as
rewriting the triangular integration area in Eq. (18) into a sum
over thin column slices.

We emphasize that these results apply to all first-order
contributions, illustrating the common structure found in the
decoupling of many different types of terms. By keeping track
of the running sum, the evaluation of this expression now
requires only linear time, as opposed to the naive quadratic
complexity. In addition, although Eq. (18) still contains prod-
ucts of coefficients that are nonlocal in time, in Sec. IV we
shall see that in many cases of interest, it can be reduced into
simple, local decoupling rules.

We also generalize these results to the case with finite
pulse durations in Sec. III D. The primary effect, similar to
the zeroth-order case [9], is to lengthen the effective duration
of each free evolution time by an amount proportional to the
pulse duration. There will be additional cross terms that we
tabulate in the Appendix, but they are generally smaller.

C. Second-order decoupling

We can now apply the same formalism to the second-
order Magnus contributions. As we show in Appendix D,
by reordering the integrals, we can reexpress the second-
order contribution in terms of the zeroth- and first-order
contributions at different times. Let us define the first-order
contribution from time t1 to t2 of the operator [Oβ,Oγ ] as

c(1)
β,γ

(t1, t2) =
∫∫

t1<tb<ta<t2

(cβ (ta)cγ (tb) − cβ (tb)cγ (ta)), (23)

where we have dropped the integrand dtadtb for notational
simplicity here and below. We can rewrite the expression as
follows:

H (2) = 1

6T

∑
α<β<γ

([Oα, [Oβ,Oγ ]])

×
∫ T

0
dt1cα (t1)

(
c(1)
β,γ

(0, t1) − c(1)
β,γ

(t1, T )
)
. (24)

Thus, we see a very similar structure as at first order,
wherein the second-order term can also be expressed as a
simple integral of lower-order products, enabling formulation
of simple decoupling rules.

D. Robustness conditions

We now extend these results to the case with finite pulse
durations, and describe how to incorporate robustness to these
effects into the sequence design. We focus our attention on the
dominant contribution, which we find to be a simple extension
of the effective free evolution time by an amount proportional
to the pulse duration. A full treatment of the finite-pulse
effects, including additional subleading cross terms, can be
found in Appendix B.
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FIG. 3. Evolution of frames with finite pulse durations. (a) Il-
lustration of the coefficients of two different frames in a typical
sequence. With finite pulse durations, the coefficients have addi-
tional tails on the two sides as well as cross terms in overlapping
regions. (b) The leading-order effect of this is an extension
of the free evolution durations, while still treating each frame
independently.

As shown in Fig. 3, with a finite pulse duration, the coef-
ficient cα (t ) of each term of the Hamiltonian will consist of a
ramp up (the preceding rotation), free evolution in the frame, a
ramp down (the following rotation), as well as some additional
cross terms between the frames.

The primary effect of finite-pulse effects is illustrated in
Fig. 3(b), in which the effective duration of each frame is
lengthened by the integral of ćα,k and c̀α,k over time, which
correspond to the ramp-up and ramp-down portions. This is a
simple extension of the calculation for the zeroth-order case,
and scales as O(ττp), where τ is the free evolution time and τp

is the pulse duration. We incorporate this into the main term
(column 2) in the decoupling rule table, Table I, as described
in more detail in the next section.

In addition to this dominant term, there are contributions
that scale as O(τ 2

p ) or higher powers. First, we have to treat
the overlap of the frames, which gives rise to the additional

term: ∫∫
0<θ2<θ1<π/2

c̀α,k (θ1)ćβ,k+1(θ2) − ćα,k+1(θ2)c̀β,k (θ1). (25)

These terms correspond to the overlap of the ramp up of one
frame with the ramp down of another. We note that we get a
positive effect from the ramp down of one into the ramp up
of the other, and a negative effect from the ramp up of one
with the ramp down of the other. These are the main finite-
pulse effects to each of the correction terms and are shown in
column 4 of Table I.

The final contribution originates from first-order contribu-
tions involving interaction cross terms qρ . More specifically,
during the continuous rotation from an XX Hamiltonian to a
YY Hamiltonian, XY -type terms are generated; the qρ cross
terms come from first-order cross terms between these XY -
type terms and other terms. Note that there will be no such
cross terms for the disorder part of our Hamiltonian. Thus,
although the magnitude of this term can in principle scale
as O(τpτ ), in practice the coefficients are small for disorder-
dominated systems, and we analyze this in detail instead in
Appendix B.

IV. HIGHER-ORDER DECOUPLING RULES

A. Summary of general rules

We now utilize the results from the preceding section to
derive concrete decoupling rules for various important higher-
order contributions.

Plugging in different Hamiltonian terms into the expres-
sions derived in Secs. III B and III C, we arrive at the
decoupling rules in Table I. As higher-order terms originate
from commutators between different terms, we label the can-
cellation rules with all operators involved. The table includes
two types of contributions: first, there are the main terms that
will appear even with ideal, infinitesimally short pulses, to-
gether with corrections to their effective duration due to finite
pulse durations. Second, we include terms that come purely

TABLE I. Higher-order cancellation rules. Each row describes a different higher-order contribution, described in the second column.
The third column gives the expressions that need to vanish to cancel the largest contributions to a given term, including contributions from
free-evolution periods and frame lengthening corrections due to finite pulse durations. The fourth column gives further finite-pulse corrections.
The q cross terms are ignored, only giving an additional correction term in terms involving the Ising interaction. The last column gives the
local cancellation condition that eliminates that type of error. F ν

<k =∑l<k Fν,l (τl + 4
π
τp), Iν

<k =∑l<k |Fν,l |(τl + τp), F̄ ν =∑k Fν,k (τk + 4
π
τp),

and Īν =∑k |Fν,k |(τk + τp).

No. Decoupling effect Algebraic condition (primary term) Algebraic condition (finite-pulse correction) Local cancellation condition

1 Disorder-disorder 2
∑n

k=1 Fμ,k

(
τk + 4

π
τp

)
F v

<k − F̄μF̄ v
(

2τp
π

)2(
1 − π

4

)∑η

k=1[Fμ,kFv,k+1 − Fv,kFμ,k+1] Fast echo

2 Disorder-Ising 2
∑n

k=1 Fμ,k

(
τk + 4

π
τp

)
Iv
<k − F̄μ Īv

(
2πp
π

)2(
π
4 − 2

3

)∑n
k=1[Fμ,k |Fv,k+1| − |Fv,k |Fμ,k+1] Fast echo

3 Ising-Ising
∑n

k=1 |Fμ,k |(τk + τp)(Iv
<k − Iv

>k )
(

2τp
π

)2(
π2

32 − 1
4

)∑n
k=1[|Fμ,k ||Fv,k+1| − |Fv,k ||Fμ,k+1|] Block symmetrization

4 Disorder-Heisenberg
∑n

k=1 Fμ,k

(
τk + 4

π
τp

)(
tk − T

2

)
0 Dipole cancellation

5 Ising-Heisenberg
∑n

k=1 |Fμ,k |
(
τk + 4

π
τp

)(
tk − T

2

)
0 Row balancing

6 Heisenberg-Heisenberg 0 0 Automatically satisfied

7 2nd-order disorder 2
∑n

k=1 Fμ,k

(
τk + 1

π
τp

)
F ν,ρ

<k − FμF ν,ρ Fast echo
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from the finite pulse duration, in the form of the overlapping
pulse term derived in Eq. (25). There is one additional type of
term, as mentioned in the preceding section, that involves in-
teraction cross terms qρ during continuous rotations. We omit
them from this table, since they do not appear for disorder
terms that are dominant in our experiments, but we discuss
them in more detail in Appendix B. Note also that since
the Magnus expansion is not invariant with respect to cyclic
permutations of the pulse sequence, there are modifications
to terms relating to the first and last frames in the complete
expression. However, we neglect them from this table, both
to simplify notation, as well as due to the fact that after
many Floquet cycles we expect the contributions from these
boundary terms to be diminished.

While the decoupling rules are somewhat more compli-
cated than the zeroth-order rules derived in Ref. [9], many
of them nonetheless have simple geometric intuitions (Fig. 1)
and can be further simplified for many common scenarios.
Moreover, the decoupling rules can often be satisfied with
simple local motifs, further simplifying the pulse sequence de-
sign task. For example, in many cases, by using the pulse cycle
decoupling principle described in Sec. III A, one can apply the
same rules as zeroth-order sequence design, except requiring
the cancellation on a much faster timescale. These consider-
ations are summarized in the last column of Table I. We will
now go through a few representative examples in more detail
and explain how to interpret and simplify the rules.

B. Fast echo cancellation for disorder-related terms

Let us now focus our attention on first-order rules related
to disorder-disorder and disorder-Ising terms.

To derive the first and second conditions in Table I, which
hold with full generality and no restrictions on the frame ma-
trices as introduced in Eq. (6), let us examine the structure of
the first-order Magnus contribution shown in Eq. (22). There,
we found that a generic first-order Magnus contribution can be
rewritten as a product between the current frame contribution
of one term and the cumulative contribution of another term,
together with a factor corresponding to the total zeroth-order
contribution of both terms. Plugging the disorder and Ising
expressions in Eqs. (11)–(13) into Eq. (22) results in the rules
in the third column of Table I.

Due to this common structure, we see in Table I that the
decoupling of first-order disorder-disorder and disorder-Ising
contributions are almost identical, except replacing one term
from scaling with Fμ,k to be scaling instead as F 2

μ,k = |Fμ,k| for
Fμ,k = 0,±1. We can thus decouple the primary contribution
of both of these first-order effects with the same pulse se-
quence block, simply by arranging the frames to form fast spin
echoes. These fast spin echoes are illustrated in Fig. 1(a). To
see this, first note that the commutator prefactor implies that
there will be a nonzero contribution only when μ �= ν. With a
spin echo block, the contribution from Fμ,k flips and cancels,
while the sum F ν

<k or Iν
<k is along a different axis and thus

remains unchanged during this time. Moreover, the average
zeroth-order disorder Hamiltonian over the entire pulse se-
quence will also vanish due to the spin-echo blocks. Thus, the
main term rules in conditions 1 and 2 are satisfied in Table I.

In column 4 of Table I, we derived additional corrections to
the expressions, originating from the pulse-induced overlaps

in Eq. (25). Interestingly, we find again that the different terms
share some common structures, where they can be related to
each other simply by replacing Fν,k by |Fν,k|. Moreover, we
find that the finite pulse duration corrections for first-order
disorder-disorder terms are proportional to that of rotation an-
gle errors at zeroth-order [9], making it automatically satisfied
if the latter has been incorporated into sequence design.

We also include an example of a second-order rule involv-
ing disorder only in Table I. As one can see, the structure bears
many similarities with the first-order contributions. In the case
where the pulse sequence is composed of fast echoes, we can
further simplify the expressions.

C. Block symmetrization for Ising-Ising terms

Moving on to the first-order Ising-Ising terms (row 3 of
Table I), we see that the structure of the expression again has
many similarities as above. However, here we have grouped
the terms slightly differently, since the zeroth-order sum Īν =∑

k |F ν
k |(τk + τp) will always be nonzero. Expressed in this

way, first-order Ising-Ising interactions are decoupled by en-
suring that for every pair of axes μ and ν, the cumulative
occurrences of ν frames before and after each μ frame are
equal, i.e., the appearance of the two frames is balanced.

Based on this result, we find that a simple motif is to per-
form a mirror symmetrization [31] of the frames within each
block, as illustrated in Fig. 1(b). Note that since the coefficient
of the Ising contribution is identical regardless of the sign of
the frame, only the relative frame ordering matters and not the
sign. If within each block the frames are balanced along the
x̂, ŷ, and ẑ directions, and mirror symmetrization in terms of
ordering is performed, then using the pulse cycle decoupling
principle, the first-order Ising-Ising contribution will be can-
celed. Here, contrary to global mirror symmetrization, we find
that symmetrization within local blocks can also be a useful
tool to effectively cancel certain first-order contributions.

The finite pulse duration correction terms for the first-order
Ising-Ising contribution are shown in the fourth column of the
Table I. They resemble the other correction terms, but with
additional absolute value signs, and can be easily incorporated
as decoupling rules in a similar fashion.

D. Dipole cancellation and row balancing
for Heisenberg-related terms

Let us now examine terms related to the Heisenberg inter-
action �Si · �S j . As noted in Eq. (11), the Heisenberg interaction
is invariant under frame transformations. Thus, the first-order
expression resulting from the Heisenberg term and a different
term will be the commutator between a constant term (Heisen-
berg), and a term that depends on the frame transformations
(other). The inclusion of the time integrals then result in the
expressions in rows 4–6 of Table I, where there are no first-
order contributions between two Heisenberg Hamiltonians
because they are identical and thus commute. In this case,
because the Heisenberg Hamiltonian is invariant, the frame
length extension becomes exact, and we do not need to include
any additional finite-pulse corrections in the table.

To explore in more detail what the resulting rules mean, let
us first recall the expressions for canceling disorder at zeroth
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order. Here, we found that, in order for disorder to be canceled
at zeroth order, we require the average disorder along each
axis to vanish, i.e.,

n∑
k=1

Fμ,k

(
τk + 4

π
τp

)
= 0. (26)

A useful physical analogy to interpret this expression is to
associate a positive (negative) charge with Fμ,a = +1 (−1).
The zeroth-order decoupling condition then dictates that the
average charge is zero.

Generalizing the analogy to first-order terms, the first-order
term of a given Hamiltonian contribution with the invariant
Heisenberg Hamiltonian will be proportional to the given
Hamiltonian, weighted by its location in time in the sequence.
This is because of the integration limits in Eq. (18), where the
relative ordering of the time variable values of the two Hamil-
tonians determines the sign of the expression. Furthering the
electromagnetic analogy, this results in a distance weighting
factor from the center of the pulse sequence timing. Thus, the
first-order expression resembles the expression of a dipole,
with charge given by Fμ,k at each time point and distance
being the distance in time to the center of the sequence. Can-
celling this contribution requires the net dipole along each axis
to vanish, as illustrated in Fig. 1(c). Note that while we have
illustrated the dipole rule for dipoles formed in neighboring
frames, the rule works more generally in the same way as elec-
tromagnetic charges and dipoles do. We note that this intuition
was key to improving decoupling pulse sequence performance
in Sec. V, and led to insights regarding the dichotomy between
AC field sensing and decoupling for existing pulse sequences
described in Ref. [33].

Similarly, we can also analyze the expression for cross
terms between Ising interactions and Heisenberg interactions,
simply by replacing the general charge by a non-negative
charge value (|Fμ,k|). With only positive charges, the condition
can also be alternatively viewed geometrically as balancing
frame weights in each row; as illustrated in Fig. 1(d), one can
imagine a fulcrum placed at the middle of a sequence, and for
a given axis, placing a weight whenever the frame is along this
axis (regardless of it being a positive or negative frame); the
rule then becomes that the row would balance.

V. DETAILED SEQUENCE DESIGN PROCEDURE

We now utilize the preceding insights to design higher-
order pulse sequences for various applications, focusing on
the case of interacting spin ensembles dominated by on-site
disorder [24,29]. The result is a pulse sequence that decouples
all zeroth-order and first-order contributions in the Magnus
expansion and is robust against disorder to second order,
which we name Disorder RObust Interaction Decoupling–
Robust To Disorder 2nd order (DROID-R2D2), and a pulse
sequence that achieves similar results but also has interest-
ing AC field-sensing capabilities [33]. These pulse sequences
were crucial for a variety of our recent experiments in dynam-
ical decoupling, quantum metrology [33], and Hamiltonian
engineering [43]. We illustrate the complete design procedure
in detail and mention a few practical tricks to improve the

efficiency of sequence screening and to examine larger design
spaces of pulse sequences.

1. Choose target decoupling rules

The first step is to determine the set of decoupling rules
that should be satisfied by the desired sequence. The choice of
this set is usually informed by several factors: First, the target
application may influence which terms need to be decoupled.
For example, if we wish to study many-body dynamics in
a disordered system, we may wish to preserve the disorder
term while engineering interactions. Alternatively, if we are
interested in quantum sensing, then there may be additional
design rules that are imposed to maximize sensitivity.

Second, the experimental system characteristics may in-
form which contributions are most important to decouple.
As an example, dense electronic spin ensembles, such as
nitrogen-vacancy (NV) centers and nitrogen (P1) defects in
diamond, or rare-earth ions, typically have much larger dis-
order than interactions [24,36,37]. Thus, it is much more
important to address disorder-related effects to higher-order
than interaction-related effects. This can be achieved by using
a spin echo as the basic building block, which can also be
understood in terms of the conventional pulse-cycle decou-
pling principle [7]. For these experiments, designing the pulse
sequence to handle finite-pulse imperfections can also be very
important, as they often limit the performance at small pulse
separations. The relative importance of different contributions
can be made more quantitative by using our expressions for
various terms to estimate the typical total magnitude of each
of the Hamiltonian terms.

Finally, for a given pulse sequence, we can also diagnose
the dominant residual term by examining a cluster of a few
spins, typically two or three, and computing the exact unitary
for a set of disorder and interaction values. Taking the matrix
log of the unitary yields the exact effective Hamiltonian, and
performing polynomial fits of the dominant terms with respect
to the disorder and interaction strengths informs us which
type of contribution is the largest, as well as the order at
which it contributes in the Magnus expansion. For example,
in Fig. 4(a), we find that the dominant error terms for the
existing DROID sequence from Ref. [24] are the XZ and ZX
components of the Hamiltonians, when decomposed in the
Pauli basis. In Figs. 5(a) and 5(b), we find that the dominant
scaling of this term is linear in both the disorder strength
and interaction strength, suggesting that it originates from
a first-order cross term between them. This motivated us to
systematically include decoupling rules that target this effect.

In practice, we search for sequences by randomly enu-
merating those of a fixed length that satisfy a chosen set of
rules (see below for a description of how to efficiently enforce
rules). We iterate the preceding error diagnosis step several
times by identifying the dominant contributions for typical
pulse sequences, and adding in new rules to fully decouple
them. Each addition of a new dominant rule eliminates the
most poorly performing sequences, and increases the proba-
bility of enumerating a sequence with high coherence time;
see Fig. 2 of the accompanying paper [33].

Following this procedure leads us to include the follow-
ing decoupling rules for our disorder-dominated NV center
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FIG. 4. Comparison between decoupling sequence performance.
We compare the effective error Hamiltonian extracted from the ma-
trix log of a two-spin unitary for disorder strengths 2π × (4, 0) MHz
and interactions 2π × 35 kHz, for the pulse sequences (a) DROID
and (b) DROID-R2D2. The ideal Heisenberg portion of the Hamil-
tonian has been subtracted out. Bars represent coefficients of the
effective Hamiltonian decomposed in the Pauli basis. We find that
the error is much smaller for our new sequence DROID-R2D2.

ensemble: decoupling of all zeroth-order conditions, as de-
scribed in Ref. [9]; decoupling of all first-order conditions
involving at least one factor of disorder, including disorder-
disorder cross terms, disorder-Ising and disorder-Heisenberg
cross terms, for both free evolution times and pulses; second-
order disorder-disorder-disorder cross terms, for both free
evolution times and pulses.

2. Efficiently construct candidate frame sets

With the set of target decoupling rules in hand, we now
discuss how to efficiently enumerate pulse sequences sat-
isfying a set of imposed decoupling rules. The number of
possible frame sets without any additional constraints is
combinatorially large. For example, even a sequence con-
sisting of 12 free evolution times connected by π/2 pulses,
including intermediate frames for the finite pulse durations
(e.g., the frame halfway through π pulses or composite π/2
pulses), admits approximately 423 ≈ 1014 distinct pulse se-
quences (each frame is connected to four other frames by π/2
pulses, and the first frame is fixed to be +ẑ). However, the
vast majority of these sequences will not satisfy our rules.
Therefore it is essential to enumerate only sequences that
satisfy them.

For the disorder-dominated interacting NV ensembles we
work with, we choose to impose the following structures

FIG. 5. Error scaling for various pulse sequences. Magnitude of
XZ error term in the effective Hamiltonian as a function of (a) dis-
order and (b) interactions for the DROID sequence (blue circles) and
the DROID-R2D2 sequence (red squares, much smaller errors). The
dominant scaling is linear for DROID. Magnitude of (c) XZ and
(d) Y I error terms in the effective Hamiltonian for different XXZ
Hamiltonians, where DROID again shows a systematically larger
error and stronger Hamiltonian dependence.

to efficiently prescreen pulse sequences: we require that all
frames, including both free evolution and pulse frames, come
in spin-echo pairs, in order to echo out disorder on the fastest
possible timescale. In addition, we require an equal number
of elements along each row, so as to symmetrize interactions.
Finally, we impose the “dipole” rules for first-order disorder-
Heisenberg cross terms, by requiring there to be an equal
number of +− and −+ spin echoes.

To directly restrict the search space to candidate frame se-
quences that satisfy the above rules, we separately enumerate
the locations of X , Y , and Z spin-echo pairs, and enumerate
the echo ordering signs (i.e., whether the echo frames have
the ordering +− or −+) of both free evolution frames and
finite-pulse frames. We then combine these pieces of infor-
mation to generate candidate frame sequences, imposing the
additional constraint that each frame must be distinct from the
two neighboring frames, to ensure that a π/2 pulse is applied
and the pulse error calculation is accurate.

3. Screen frame sets using decoupling rules

Having generated candidate frame sets that already have
a number of rules enforced by construction, we now proceed
to screen through them by applying the remaining decoupling
rules. To speed up the screening process, the key insight is
to transform the original rules into a vectorized form, such
that fast matrix computation can be performed, significantly
reducing the runtime. This is achieved by labeling the frames
as one to six for +x, +y, +z, −x, −y, −z, and noting that
the rules become simple cumulative sums of index matching
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FIG. 6. Details of higher-order pulse sequences. Pulse representation (top) and frame representation (bottom) of various pulse sequences
found using the higher-order design rules developed in this paper. (a) DROID [24], the previous best pulse sequence for dynamical decoupling
and quantum metrology in disorder-dominated interacting spin ensembles. (b) DROID-R2D2, a proposed pulse sequence designed for
dynamical decoupling and Hamiltonian engineering, in which all first-order contributions are fully canceled and disorder is canceled to
second order. See Ref. [43] for an application of this pulse sequence to many-body XXZ dynamics. (c) DIRAC2, a new pulse sequence
that has similar characteristics, but is designed for improved quantum sensing, see Ref. [33] for details and experimental demonstration of the
improved sensitivity compared with the best-known sequences.

results when expressed in this fashion. We then further sim-
plify them based on known decoupling structures (e.g., the
rapid spin echoes built into the sequence). Moreover, when
evaluating some of the higher-order expressions in full gen-
erality, we can keep track of the cumulative integral of
lower-order terms [44], which reduces the time complexity of
computing many such terms to linear in the sequence length,
rather than a higher polynomial scaling.

4. Verify performance and further optimization

To optimize the performance of the pulse sequences, we
further symmetrize the pulse sequence to reduce higher-order
error contributions. Here, for dynamical decoupling, we em-
ploy the symmetrization used in Ref. [9], where the frames
are repeated twice, but the frame ordering is reversed and sign
of all frames flipped in the second repetition. For the quantum
metrology pulse sequences designed here and in Ref. [33], this
symmetrization will affect the magnetic-field sensitivity, and
consequently we employ a mirror-symmetrization instead,
where the frame ordering is reversed but the sign is not flipped
in the second repetition.

Finally, we numerically simulate the performance of these
pulse sequences to identify those with the longest decoupling
timescales. We extract the average coherence time for spins
initialized along the x̂, ŷ, and ẑ direction, and histogram the
results for different sets of decoupling rules to identify typical
performance of the decoupling pulse sequences as well as
particularly well-performing ones, see Fig. 2 of the accom-
panying paper [33].

Effective Hamiltonian extraction using the matrix log of
the unitary can identify dominant error terms for the pulse
sequences employed, and the whole design procedure can be
repeated with an improved rule set. For the above final set

of decoupling rules, we no longer find a single contribution
that dominates over the others, instead seeing a competition
between several different contributions.

Resulting pulse sequences

Using the decoupling rules described above, we designed
pulse sequences for dynamical interaction decoupling, many-
body physics, and quantum metrology.

For dynamical decoupling and Hamiltonian engineering,
one of the best pulse sequences we identified, DROID-R2D2,
is shown in Fig. 6(b). We find that, compared with the previ-
ous best pulse sequence DROID [24], as shown in Fig. 6(a),
that had significant residual first-order cross terms [Fig. 4(a)],
primarily cross terms between disorder and first-order Heisen-
berg interactions, the residual errors when examining the
effective Hamiltonian are much reduced [Fig. 4(b)].

Moreover, we can adapt this pulse sequence to perform
Hamiltonian engineering by adjusting the frame durations
along the x̂, ŷ, and ẑ axes [43], resulting in a tunable
interaction Hamiltonian

HXXZ =
∑

i j

Ji j

[
1 + λ

3

(
Sx

i Sx
j + Sy

i Sy
j

)+ 1 − 2λ

3
Sz

i Sz
j

]
, (27)

where λ is a coefficient that tunes the XXZ Hamiltonian. We
find that our techniques also significantly reduce the error in
engineering a wide range of generic XXZ Hamiltonians. In
Figs. 5(c) and 5(d), we see that both two-body and single-body
imperfection terms are much smaller across a wide range of
different Hamiltonians, which can help improve the fidelity
of Hamiltonian engineering and reduce systematic artifacts.
These techniques can be readily generalized to engineer XY Z
Hamiltonians, with different coefficients in front of each term,
or even more complex many-body Hamiltonians.
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The same techniques can also be used to design pulse
sequences for improved quantum sensing, as we explain in
more detail in Ref. [33]. The key insight is that current pulse
sequences for quantum sensing [24], which periodically flip
the spin along each axis with the same frequency as the target
signal, will always result in a violation of the “net dipole can-
cellation” rule in Fig. 1(c) for first-order disorder-Heisenberg
terms. This imposes a fundamental trade-off between sensitiv-
ity and decoupling quality for current pulse sequences. With
this insight from higher-order decoupling rules, we are able
to design the proposed pulse sequence DIsorder Robust AC
sensing with period Two (DIRAC2), as shown in Fig. 6(c),
which circumvents this issue by targeting a sensing signal
half the frequency of frame flipping, thereby fully canceling
all first-order Magnus contributions while also increasing the
rate of spin-echo decoupling, leading to better performance.
See Ref. [33] for a more detailed description.

VI. DISCUSSION AND CONCLUSION

We have developed a general framework for dynamical
Hamiltonian engineering that includes higher-order consider-
ations. Contrary to the naive expectation, we found that many
higher-order decoupling conditions can still have simple, in-
tuitive interpretations, particularly when the pulse sequence
is designed to have certain structures in it. We analytically
derived a number of decoupling rules for higher-order con-
tributions, and used them to design robust pulse sequences
in disorder-dominated systems for dynamical decoupling,
Hamiltonian engineering, and quantum sensing, significantly
improving upon state-of-the-art pulse sequences.

While we have focused on the application of our techniques
to the case of electronic spin ensembles, where disorder is
much larger than spin-spin interactions, we believe that our
techniques can be applied to disparate systems such as NMR
[8,45] simply by changing which rules are emphasized and
included at higher order. It may also be interesting to fur-
ther extend the techniques to even higher order than those
that we have considered here [46], or to examine alterna-
tive expansions beyond the Magnus expansion [47,48]. In
our formalism, the contributions from higher-order terms are
decomposed into an operator commutation portion, and a
portion that relates to the frame matrix and prefactors. This
also makes the extension to higher-spin systems relatively
straightforward and can be combined with recent methods
for robust Hamiltonian engineering with higher-spin systems
[49]. With these further improvements, we believe that our
framework presents a key tool for advanced Hamiltonian
engineering pulse sequence design, with broad applications
in dynamical decoupling, quantum many-body physics, and
quantum metrology.

ACKNOWLEDGMENTS

We thank J. Choi, A. Douglas, H. Gao, N. Maskara, P.
Peng, M. Yu for helpful discussions. This work was supported
in part by Center for Ultracold Atoms at Harvard and MIT,
HQI, NSSEFF, ARO MURI, DARPA DRINQS, Moore Foun-
dation GBMF-4306, NSF PHY-1506284.

APPENDIX A: CONVENTIONS

See Table II for a summary of the conventions employed in
this paper.

APPENDIX B: DERIVATION
OF FIRST-ORDER MAGNUS FORMALISM

To develop the full expression at first order, we extend the
formalism developed in Ref. [9]. To keep the expressions fully
general, we do not restrict to a specific qubit Hamiltonian
here, and specialize to the dipolar Hamiltonian only in the
following sections.

Following Ref. [9], we can separate the evolution into free
evolution periods and evolution during pulses. We write the
coefficient of a given operator Oα during the kth free evolution
period as cα (t ) = cα,k , and during the π/2 pulse after the kth
free evolution period as

cα (t ) = c̀α,k

(
t

r

)
+ qα,k,k+1

(
t

r

)
+ ćα,k+1

(
t

r

)
. (B1)

Here, r is the rate of angular precession under the applied
pulses, and the rotation angles during the π/2 pulse are given
by θ = t/r. The first term c̀α,k (θ ) describes the finite pulse du-
ration contribution from the kth frame that precedes the pulse,
while ćα,k+1(θ ) describes the contribution from the (k + 1)st
frame that follows the pulse. qα,k,k+1(θ ) is an additional cross
term between the two frames that arises for certain types of
interaction terms. Note that, similar to Ref. [9], in our pulse
sequence composed of π/2 pulses and π pulses, we treat each
π pulse as a combination of two π/2 pulses with zero free
evolution time in between.

As a concrete example to illustrate these terms, let us
consider a rotation that transformed the Sz operator into Sx,
i.e., S̃z(θ ) = cos θSz + sin θSx. For an Ising interaction HI =
JSz

i Sz
j , the time-dependent operator would be

H̃I (t ) = J
[
cos2θSz

i Sz
j + sin θ cos θ

(
Sx

i Sz
j + Sz

i Sx
j

)
+ sin2 θSx

i Sx
j

]
. (B2)

The three terms in the parentheses correspond to the c̀α,k (θ ),
qα,k,k+1(θ ), and ćα,k+1(θ ) terms, respectively.

With this representation in hand, we proceed by rewriting
the integral in Eq. (21) as a summation over the distinct
blocks. Let us examine the first term, which integrates all cβ

terms occurring temporally before cα:

A =
∫ T

0
dt1cα (t1)

∫ t1

0
dt2cβ (t2). (B3)

To compute this, we first define the integral of the coef-
ficient of a given frame, including its finite pulse duration
effects:

Cα,k = r
∫ π/2

0
ćα,k (θ )dθ +

∫ τk

0
cα,kdt + r

∫ π/2

0
c̀α,k (θ )dθ.

(B4)

This can be viewed as a simple extension of the effective free
evolution time.

We can then decompose the inner integral in Eq. (B3) into
three parts (ignoring additional contributions from qα,k,k+1
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TABLE II. Summary of conventions employed in this paper.

T Floquet period
tk Midpoint time of a the kth free evolution period
τk Duration of the kth free evolution period
τp Duration of π/2 pulses

Hdip Dipole Hamiltonian
H̃ (t ) Interaction picture Hamiltonian
H̃k Interaction picture Hamiltonian during the kth free evolution period
Heff Time-independent effective Hamiltonian
H (k) kth order Magnus term for the effective Hamiltonian
hi On-site disorder strength for spin i
Ji, j Interaction strength between spins i and j
Pk kth global spin rotation pulse

Uc(t ) Single spin rotation unitary due to the control field
U (T ) Unitary operator for the evolution over one full Floquet cycle
S̃z(t ) Interaction picture Sz vector at time t under an ideal sequence
Sμ Spin basis (e.g. Pauli spin operators)

Fμ(t ) The Sμ coefficient of S̃z at time t
Fμ,k The Sμ coefficient of S̃z during free evolution frame k
Fμ

<k Accumulated disorder through pulse k,
∑

j<k Fμ, j (τ j + 4
π
τp)

Fμ

>k Accumulated disorder after pulse k,
∑

j>k Fμ, j (τ j + 4
π
τp)

Iμ

<k Accumulated Ising interaction through pulse k,
∑

j<k |Fμ, j |(τ j + τp)
Iμ

>k Accumulated Ising interaction after pulse k,
∑

j>k |Fμ, j |(τ j + τp)
F ν,ρ

<k Accumulated first-order disorder-disorder effect through pulse k,
∑k

l=1 Fν,l (τl + 4
π
τp)(F ρ

<l − F ρ

>l )
F

μ
Total zeroth-order disorder effect,

∑n
k=1 Fμ,k (τk + 4

π
τp)

I
μ

Total zeroth-order Ising interaction,
∑n

k=1 |Fμ,k |(τk + τp)
F

ν,ρ
Total first-order disorder-disorder effect

∑n
k=1 Fν,k (τk + 4

π
τp)F ρ

<k

Oα Operator basis for interaction-picture Hamiltonian
cα (t ) Time-dependent coefficients of Oα in the Hamiltonian
c

<α
(t ) Accumulation of cα (t1) over t1 ∈ [0, t]

cμ,k Discrete version of cμ(t ) in the kth free evolution frame
ćμ,k (θ ) cμ(t ) during the pulse preceding the kth free evolution time, as a function of the rotation angle θ ∈ [0, π/2]
c̀μ,k (θ ) cμ(t ) during the pulse following the kth free evolution time, as a function of the rotation angle θ ∈ [0, π/2]

r Angular rotation rate during a pulse
Cμ,k Total accumulation of cμ(t ) over t ∈ [tk − τk/2 − τp, tk + τk/2 + τp]
c<μ,k Accumulated coefficient,

∑
l<k Cμ,l

qα,k,k+1(θ ) Cross terms during pulses that involve both preceding and following frames k and k + 1
Afree First-order contribution from free evolution frames

C (1)
α,β,k Frame k′s first-order effect with itself

Pk,k+1,α,β Finite pulse correction for kth pulse

terms for now): a contribution from previous, nonoverlapping
free evolution times, together with their surrounding pulses
(Afree); a contribution from integrating both time variables
within the same free evolution period corresponding to first-
order contributions within the same frame (C(1)

α,β,k); and a
further correction arising from the pulse overlaps of neigh-
boring free evolution times (Pk,k+1,α,β ). This is illustrated in
Fig. 7.

More concretely, the first term describes contributions
where t1 lies within the kth frame, and t2 originates from an
earlier frame. As most of these contributions will be tempo-
rally nonoverlapping, we can factorize these contributions as

Afree =
n∑

k=1

Cα,k

k−1∑
j=1

Cβ, j . (B5)

The next term describes contributions where both t1 and t2
come from the kth frame, with t2 < t1 ∈ [tk−1 + τk−1

2 , tk+1 −

τk+1

2 ], i.e., the first-order Magnus contribution of a frame with
itself. We can explicitly write this as

C(1)
α,β,k =

∫ tk+1− τk+1
2

tk−1+ τk−1
2

cα (t1)dt1

∫ t1

tk−1+ τk−1
2

cβ (t2)dt2. (B6)

Note that this term is usually zero in our case, as the com-
mutator [Oα,Oβ ] vanishes when α = β, and otherwise cα , cβ

are both nonzero within the same free evolution period only
when they originate from different types of noncommuting
Hamiltonians, e.g., one coming from local Sz disorder, and
the other coming from Heisenberg interactions.

Finally, we have additional corrections Pk,k+1,α,β that arise
from the overlap in terms due to the pulses: for the kth
frame, we over-counted the overlap contribution with the pre-
vious (k − 1)st frame by assuming that the kth frame came
completely after the (k − 1)st frame, but under-counted the
overlap contribution with the next (k + 1)st frame. Explicit
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FIG. 7. Visualization of first-order cancellation rule derivation,
in the absence of q terms. The illustration shows the different com-
ponents of the first-order expression. The lower triangle of the grid
is the first-order integral. In reality, the rising and falling edges of
neighboring frames will overlap, i.e., c̀α,1 is not completely before
ćα,2, which leads to the additional term Pk,k+1,α,β .

calculation shows that this results in a first-order pulse cor-
rection that is related to both the preceding and subsequent
frame:

Pk,k+1,α,β =
∫ π/2

0
c̀α,k (θ1)rdθ1

∫ θ1

0
ćβ,k+1(θ2)rdθ2

−
∫ π/2

0
ćα,k+1(θ1)rdθ1

∫ π/2

θ1

c̀β,k (θ2)rdθ2.

(B7)

Thus, neglecting all terms that directly dependent on mul-
tiple pulses (see q terms below), we can express the integral
in a clean manner as

A = Afree +
n−1∑
k=1

Pk,k+1,α,β +
n∑

k=1

C(1)
α,β,k . (B8)

For certain interaction terms such as the Ising Hamiltonian,
there is an additional contribution we need to keep track of,
the qα,k,k+1(θ ) terms described in Eq. (B2). These terms come
from the fact that the Ising interaction transforms as the square
of the frame coefficients, introducing additional cross terms
when expanding the square. These terms are ignored in the
main text, as they are negligible for our disorder-dominated
system, but we will analyze them in more detail here.

We can perform a similar decomposition of the terms as
above, now adding in the contributions from the q terms. We
can treat the q terms as a special type of free evolution frame
and decompose the sum into the three types again, this time
keeping track also of whether the other term is a q term or a
regular free evolution period.

Similar to Eq. (B5), we can evaluate the first-order contri-
butions involving a single q term and a single free-evolution

frame as

QAfree =
n∑

k=1

Cα,k

k−1∑
j=1

Qβ, j, j+1 +
n∑

k=1

Qα,k,k+1

k∑
j=1

Cβ, j,

(B9)

where

Qα,k,k+1 =
∫ π/2

0
qα,k,k+1(θ )dθ (B10)

is the integral of the q term during a given pulse.
In analogy with the corrections Pk,k+1,α,β found above, we

also have similar corrections here:

QPk,k+1,α,β =
∫ π/2

0
qα,k,k+1(θ1)rdθ1

∫ θ1

0
ćβ,k+1(θ2)rdθ2

−
∫ π/2

0
qα,k,k+1(θ1)rdθ1

∫ π/2

θ1

c̀β,k (θ2)rdθ2

+
∫ π/2

0
c̀α,k (θ1)rdθ1

∫ θ1

0
qβ,k,k+1(θ2)rdθ2

−
∫ π/2

0
ćα,k (θ1)rdθ1

∫ π/2

θ1

qβ,k−1,k (θ2)rdθ2.

(B11)

Finally, we also have corrections coming from the first-
order contributions between q terms at different times and in
the same pulse:

Qself =
n∑

k=1

Qα,k,k+1

k−1∑
l=1

Qβ,l,l+1 +
n∑

k=1

∫ π/2

0
qα,k,k+1(θ1)rdθ1

×
∫ π/2

θ1

qβ,k,k+1(θ2)rdθ2. (B12)

Putting all of this together, the final, complete expression
for first-order terms is

A = Afree +
n−1∑
k=1

Pk,k+1,α,β +
n∑

k=1

C(1)
α,β,k + QAfree + Qself

+
n∑

k=1

QPk,k+1,α,β . (B13)

APPENDIX C: DERIVATION OF FIRST-ORDER
CANCELLATION RULES

We now apply the preceding general calculations to spe-
cific first-order terms, in order to derive first-order decoupling
rules. As we shall see, in many cases of interest, a lot of
the terms in Eq. (B13) will drop out, resulting in simple
expressions.

1. Disorder-disorder rules

Let us start with first-order disorder-disorder contributions,
involving commutators between disorder at different times.
Since this Hamiltonian involves only single-qubit terms, there
will be no q terms. Furthermore, there are no C(1)

α,β,k terms, as
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the operator in each frame commutes with itself. We thus have

Adis−dis = Afree +
n−1∑
k=1

Pk,k+1,α,β . (C1)

Examining the transformation of the operators for different
frames, we have

cα,k → Fμ,k, (C2)

ćα,k (θ ) → Fμ,k sin (θ ), (C3)

c̀α,k (θ ) → Fμ,k cos (θ ), (C4)

Cα,k = Fμ,k

(
τk + 4τp

π

)
. (C5)

Plugging this into the preceding definitions of the individ-
ual terms, we find

Afree =
n∑

k=1

Fμ,k

(
τk + 4τp

π

) k−1∑
l=1

Fν,l

(
τl + 4τp

π

)
, (C6)

Pk,k+1,dis,dis = (Fμ,kFν,k+1 − Fμ,k+1Fν,k
)(

1 − π

4

)(2τp

π

)2

.

(C7)

Further plugging this into the full expression Eq. (21) for
the first-order disorder-disorder term, we arrive at the full
expression for the main term

n∑
k=1

Fμ,k

(
τk + 4

π
τp

)
F ν

<k − 1

2
F̄μF̄ ν, (C8)

and the finite-pulse correction

(
1 − π

4

)(2τp

π

) n∑
k=1

Fμ,kFν,k+1 − Fν,kFμ,k+1, (C9)

as described in Table I.
Based on these expressions, we can formulate relatively

simple rules for their cancellation in sequence design. The
expression Pk,k+1,α,β involves a term that can be rewritten as
�Fk × �Fk+1, and thus has the same conditions for cancellation
as zeroth-order rotation angle errors [9].

Due to the rapid spin-echo structure found in many de-
coupling sequences for disorder-dominated systems, e.g.,
DROID-60 in Ref. [24], the majority of terms in Afree are
also canceled in the inner sum, and the only contribution
remaining is from the commutator between a spin-echo pair
and the intermediate pulse frame that the π pulse uses. To give
a concrete example of this remaining contribution, consider a
sequence of two π pulses around X , which implements the
following frame transformations +Z → +Y → −Z → −Y ,
with +Z and −Z being longer free evolution frames, and +Y
and −Y being shorter frames with zero free evolution time and
only pulse effects. The first-order contribution from this will
then be proportional to the commutator between Z and Y and
changes sign both when we flip the sign of one of the operators
(e.g., +Z → −Y → −Z → +Y ), as well as when we switch
the order of the operators (e.g., +Y → +Z → −Y → −Z).
Thus, this term has the same transformation properties as

a rotation angle error that acts only within such spin-echo
blocks.

2. Disorder-Heisenberg rules

The next term we consider is the first-order disorder-
Heisenberg contribution, which was the dominant imperfec-
tion in the previous DROID-60 sequence [24] and key to the
design of improved sensing sequences such as DIRAC2 [33].

As shown in Eq. (21), we can choose an index ordering
where disorder is after Heisenberg interactions, such that α is
a disorder index and β is a Heisenberg interaction index. The
case where both are Heisenberg indices gives zero contribu-
tion, as the operator terms are equal to the fixed Heisenberg
Hamiltonian and hence commute. As the Heisenberg interac-
tion is invariant under frame transformations, the coefficients
can be chosen to take a particularly simple form:

cβ,k → 1, (C10)

ćβ,k (θ ) → 1, (C11)

c̀β,k (θ ) → 0, (C12)

Cβ,k = τk + τp. (C13)

Plugging these into the preceding expressions, we find

Afree =
n∑

k=1

Fμ,k

(
τk + 4τp

π

) k−1∑
j=1

(τ j + τp), (C14)

Pk,k+1,α,β = Fμ,k

(π

2
− 1
)(2τp

π

)2

, (C15)

C(1)
α,β,k = Fμ,k

[∫ π/2

0
sin (θ1)rdθ1

∫ θ1

0
rdθ2

+
∫ τk

0
dt1

(
τp +

∫ t1

0
dt2

)

+
∫ π/2

0
cos (θ )rdθ (τp + τk )

]

= Fμ,k

[(
2τp

π

)2

+ τkτp + τ 2
k

2
+ (τp + τk )

(
2τp

π

)]
.

(C16)

We can simplify the sum of the last two contributions

Pk,k+1,α,β + C(1)
α,β,k = Fμ,k

[
τkτp + 1

2
τ 2

k + (2τp + τk )

(
2τp

π

)]

= Fμ,k

(
τp + 1

2
τk

)(
τk + 4τp

π

)
. (C17)

Adding the corrections together, we get

A =
n∑

k=1

Fμ,k

(
τk + 4τp

π

) k−1∑
j=1

(
τ j + τp + τp + 1

2
τk

)

=
n∑

k=1

Fμ,ktk

(
τk + 4τp

π

)
, (C18)
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where tk is the midpoint of the kth free-evolution frame. The
remaining term in Eq. (21) can be evaluated to be

1

2
c

<α
(T ) c

<β
(T ) = F̄μ T

2
, (C19)

which combined give us the full algebraic condition for first-
order disorder-Heisenberg decoupling,

n∑
k=1

Fμ,k

(
τk + 4

π
τp

)(
tk − T

2

)
. (C20)

As described in the main text and in Ref. [33], there is a
relatively simple intuition for these contributions, which we
visualize using dipole balancing. If we associate a charge
to each frame, with +1(−1) values of Fμ,k being a posi-
tive(negative) charge, then the above expression corresponds
to the product of charges (Fμ,k) with their center-of-mass
location (tk − T/2), which is precisely the definition of a
dipole. Thus, geometrically, we can visualize the cancellation
of first-order disorder-Heisenberg contributions as requiring
that the net dipole corresponding to a frame configuration to
be zero.

3. Disorder-Ising rules

Next we move on to the Ising contributions, starting with
first-order disorder-Ising terms. For this, we use cα,k from the
disorder term, and we use the following for the cβ,k terms:

cβ,k → |Fν,k|, (C21)

ćβ,k (θ ) → |Fν,k| sin2 (θ ), (C22)

c̀β,k (θ ) → |Fν,k| cos2 (θ ), (C23)

qβ,k,k+1(θ ) → Fν,kFρ,k+1 sin (θ ) cos (θ ), (C24)

Cβ,k = |Fν,k|
(
τk + τp

)
, (C25)

Qβ,k,k+1 = Fν,kFρ,k+1
τp

π
. (C26)

Plugging these into the definitions for the individual terms,
we find

Afree =
n∑

k=1

Fμ,k

(
τk + 4τp

π

) k−1∑
l=1

|Fν,l |(τl + τp), (C27)

Pk,k+1,dis,isi = (Fμ,k|Fν,k+1| − Fμ,k+1|Fν,k|
)(π

4
− 2

3

)(
2τp

π

)2

.

(C28)

The term C(1)
α,β,k will not contribute because the disorder

and Ising Hamiltonian within the same free-evolution time
commute with each other, [Sμ ⊗ I, Sμ ⊗ Sμ] = 0.

The algebraic conditions in the Table I are based on the
preceding expressions, and ignore the q terms. Combining
Afree with the rest of the terms gives the main term:

n∑
k=1

Fμ,k

(
τk + 4

π
τp

)
Iν
<k − 1

2
F̄μ Īν . (C29)

Summing over pulses in the pulse term gives the finite-pulse
correction

n∑
k=1

(
2τp

π

)2(
π

4
− 2

3

)
(Fμ,k|Fν,k+1| − |Fν,k|Fμ,k+1). (C30)

The main term will vanish with the same fast spin-echo blocks
as that found in the first-order disorder-disorder term, and the
finite-pulse correction can be viewed as a simple generaliza-
tion of, e.g., the chirality condition in Ref. [9].

We now further evaluate the q terms. As any two adjacent
frames will have different operators due to the frame change,
we will have no contribution when ν = ρ. Explicitly plugging
into the above expressions gives

QAfree =
n∑

k=1

Fα,k

(
τk + 4

π
τp

) k−1∑
j=1

Fν, jFρ, j+1
τp

π
, (C31)

QPk,k+1,dis,isi = 1

6
(Fμ,kFν,kFρ,k+1 − Fμ,kFν,k−1Fρ,k )

(
2τp

π

)2

,

(C32)

Qself = 0. (C33)

4. Ising-Ising rules

We now compute the first-order Ising-Ising term. Using the
definitions of the individual terms as in the previous calcula-
tion (taking both α and β to be Ising indices), we find

Afree =
n∑

k=1

|Fμ,k|(τk + τp)
k−1∑
l=1

|Fν,l |(τl + τp)

=
n∑

k=1

|Fμ,k|(τk + τp)Iν
<a, (C34)

Pk,k+1,isi,isi = (|Fμ,k||Fν,k+1| − |Fμ,k+1||Fν,k|)

×
(

π2

32
− 1

4

)(
2τp

π

)2

. (C35)

Similar to the disorder-disorder case and the disorder-Ising
case, we have no contribution from the C(1)

α,β,k terms. Next, we
calculate the contribution from the q terms. Directly plugging
things in

QAfree =
n∑

k=1

|Fμ,k|(τk + τp)
k−1∑
j=1

Fν,kFρ,k+1
τp

π

+
n∑

k=1

Fμ,kFρ,k+1
τp

π

k∑
l=1

|Fν,l |(τl + τp), (C36)

QPk,k+1,isi,isi = τ 2
p

8π
(Fμ,kFλ,k+1|Fν,k+1| − Fμ,kFλ,k+1|Fν,k|

+ |Fμ,k|Fν,kFρ,k+1 − |Fμ,k|Fν,k−1Fρ,k ),
(C37)

Qself =
n∑

k=1

Fμ,kFλ,k+1
τp

π

k−1∑
l=1

Fν,l Fρ,l+1
τp

π

+
n∑

k=1

τ 2
p

2π2
Fμ,kFλ,k+1Fν,kFρ,k+1. (C38)

062602-15



TYLER, ZHOU, MARTIN, LEITAO, AND LUKIN PHYSICAL REVIEW A 108, 062602 (2023)

5. Ising-Heisenberg rules

Finally, we calculate the first-order Ising-Heisenberg
terms. Taking α to be the Ising terms, we can repeat the
derivation from disorder-Heisenberg rules to find that the main
terms can be written as

n∑
k=1

|Fμ,k|(τk + τp)

(
tk − T

2

)
, (C39)

which simply replaces the Fμ,k in the original disorder-
Heisenberg rule by |Fμ,k|.

Although this term is no longer canceled by imposing a
zero net dipole, we can still formulate a simple condition for
it to be canceled: if we have “balanced” rows, in which the
center of mass of each row is in the middle, then this term will
be canceled. For example, a simple mirror symmetrization
will cancel this first-order term.

For the q terms, using the expressions found above, we can
easily calculate

QAfree =
n∑

k=1

Fμ,kFλ,k+1
τp

π

k∑
l=1

(τl + τp), (C40)

QPk,k+1,isi,heis = π

8

(
2τp

π

)2

Fμ,kFλ,k+1, (C41)

Qfree = 0. (C42)

We note that, after summing the pulse term over k, we can add
the two expressions together to obtain

Qtot =
n∑

k=1

Fμ,kFλ,k+1
τp

π

(
k∑

l=1

(τl + τp) + τp

2

)
. (C43)

We note that the second sum is exactly the time at the middle
of the pulse, similarly to the other Heisenberg rules. This tells
us that we can cancel this the same way, by balancing the
center of mass for terms of the form Fμ,kFλ,k+1.

6. Summary of two-qubit commutators

We lastly summarize the general commutators of the form
[Oα,Oβ ] over a basis of two-qubit operators, {Oα}α , to be
defined shortly. To this end, it is convenient to write a generic
two-qubit Hamiltonian in the form of a 4 × 4 matrix A,

H (A) =
3∑

μν=0

Aμν σμ ⊗ σν, (C44)

where we have defined σμ = (1, �σ ) as a four-vector of Pauli
operators, including the 2 × 2 identity matrix 1. It follows that
a native symmetric secular Hamiltonian can be specified by
the matrix

A =

⎛
⎜⎜⎝

0 0 0 h2

0 g0 0 0
0 0 g0 0
h1 0 0 g0 + g1

⎞
⎟⎟⎠, (C45)

parametrized by disorder fields h1, h2 and Heisenberg-Ising
interactions g0, g1. Note that we have introduced horizontal
and vertical bars to visually distinguish between interactions
and disorder. As explained in the main-text, under global

driving mapping Sz → FμSμ the secular Hamiltonian will de-
pend only on this column vector F. This representation of the
two-qubit interaction will thus transform as

A 
→ A′(F ) =

⎛
⎜⎜⎝

h2FT

h1F g01 + g1 FFT

⎞
⎟⎟⎠, (C46)

=
∑

α

cα Aα (F ), (C47)

where {Aα (F )}α are judicious choices of operator basis. A
particular choice of operators that is convenient to summarize
the commutators is the following

{Aα (F )}α =

⎧⎪⎪⎨
⎪⎪⎩A±(F ) =

⎛
⎜⎜⎝

±FT

F 0

⎞
⎟⎟⎠,

AH =

⎛
⎜⎜⎝ 1

⎞
⎟⎟⎠,

AI (F ) =

⎛
⎜⎜⎝ FFT

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭. (C48)

The matrix commutator between the interaction picture
Hamiltonians in different frames lifts to a bracket on the ba-
sis C matrices, yielding surprisingly simple “selection rules”
for understanding the structure behind the first-order Magnus
calculation.

Before presenting the result, we define two more interac-
tions:

ÃI (F, G) =

⎛
⎜⎜⎝ (

FGT + GFT
)
/2

⎞
⎟⎟⎠, (C49)

AA(F ) =

⎛
⎜⎜⎝ εi jkFk

⎞
⎟⎟⎠, (C50)

where the first one contains the Ising interaction AI (F ) =
ÃI (F, F ) as a special case, and the second one is an antisym-
metric exchange AA(F ).

[Disorder, Disorder] → Disorder
i. [Aσ (F),Aσ ′ (G)] = 2iAσσ ′ (F × G), σ, σ ′ ∈ ±.
[Disorder, Interaction] → Interaction
i. [A+(F),AH ] = 0,
ii. [A+(F),AI (G)] = 4i ÃI (G, F × G),
iii. [A−(F),AH ] = −4iAA(F),
iv. [A−(F),AI (G)] = 2i[(F · G)AA(G) − AA(F)].
[Interaction, Interaction] → Disorder
i. [AH ,AH ] = 0,
ii. [AH ,AI (G)] = 0,
iii. [AI (F),AI (G)] = 2i (F · G)A+(F × G) = 0

for pulse sequences built from π/2, π pulses.
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APPENDIX D: DERIVATION OF SECOND-ORDER
DECOUPLING RULES

From Eq. (19), we have that the cancellation condition for
the second-order term is given by two integrals:∫∫∫

0<t3<t2<t1<T
cα (t1)cβ (t2)cγ (t3)

+
∫∫∫

0<t1<t2<t3<T
cα (t1)cβ (t2)cγ (t3).

To see the similarities to the previous order, we write the
above integrals as follows:∫ T

0
dt1cα (t1)

(∫∫
0<t3<t2<t1

cβ (t2)cγ (t3)

+
∫∫

t1<t2<t3<T
cβ (t2)cγ (t3)

)
.

Noting that the coefficient here is [Oα, [Oβ,Oγ ]], we can
again sum the terms which have β and γ switched, as we did
with first order, and derive the following expression:

H (2) = 1

6T
([Oα, [Oβ,Oγ ]])

∫ T

0
dt1cα (t1) (D1)

×
(∫∫

0<t3<t2<t1

cβ (t2)cγ (t3) −
∫∫

0<t2<t3<t1

cβ (t2)cγ (t3)

(D2)

+
∫∫

t1<t2<t3<T
cβ (t2)cγ (t3) −

∫∫
t1<t3<t2<T

cβ (t2)cγ (t3)

)
.

(D3)

The inner integrals in the above expression are the first-order
contribution of the β, γ first-order term for all times before t1,
minus the first-order contribution of the β, γ first-order term
for all times after t1. Letting

c(1)
β,γ

(t1, t2) =
∫∫

t1<ta<tb<t2

cβ (ta)cγ (tb) −
∫∫

t1<tb<ta<t2

cβ (ta)cγ (tb),

(D4)

which is exactly the first-order contribution between times t1
and t2 of the operator [Oβ,Oγ ], we can rewrite the expression
as follows

H (2) = 1

6T
([Oα, [Oβ,Oγ ]])

∫ T

0
dt1cα (t1)

(
c(1)
β,γ (0, t1)

− c(1)
β,γ (t1, T )

)
. (D5)

We then write∫ T

0
dt1cα (t1)

(
c(1)
β,γ (0, t1) − c(1)

β,γ (t1, T )
)

=
∫ T

0
dt1cα (t1)c(1)

β,γ (0, t1) −
∫ T

0
dt1cα (t1)

(
c(1)
β,γ (0, T )

− c(1)
β,γ (0, t1)

)
= 2

∫ T

0
dt1cα (t1)c(1)

β,γ (0, t1) − c(1)
β,γ (0, T )

∫ T

0
dt1cα (t1).

(D6)

We note that this form is identical to the first-order case,
with cβ (t ) replaced by c(1)

β,γ (0, t ). We now perform the same
substitution that we did for first order to convert the integral
expression into a summation expression. For simplicity, we re-
strict our discussion to Hamiltonians involving disorder only.
In this case, c(1)

β,γ does not change over a free evolution period,

i.e., looking at c(1)
β,γ (0, ta) and c(1)

β,γ (0, tb), for ta, tb in the same
free evolution period, the contribution to the overall term is
zero, as the commutator [Oβ,Oγ ] will be zero during this
time. Thus we can write the same approximation for this term
as in the first-order term:

A =
∫ T

0
dt1cα (t1)c(1)

β,γ
(0, t1) (D7)

= Afree +
n−1∑
k=1

Pk,k+1,α,β,γ +
n∑

k=1

C(2)
α,β,γ ,k, (D8)

where

C(2)
α,β,γ ,k =

∫ tk+1− τk+1
2

tk−1+ τk−1
2

cα (t1)dt1

∫ t1

tk−1+ τk−1
2

c(1)
β,γ

(0, t2)dt2,

(D9)

Pk,k+1,α,β,γ =
∫ π/2

0
c̀α,k (θ1)rdθ1

∫ θ1

0
ć(1)
β,γ ,k+1(θ2)rdθ2

−
∫ π/2

0
ćα,k+1(θ1)rdθ1

∫ π/2

θ1

c̀(1)
β,γ ,k (θ2)rdθ2,

(D10)

Afree =
n∑

k=1

Cα,k

k−1∑
j=1

Cβ,γ , j . (D11)

Here Cβ,γ , j = Cβ, j
∑ j−1

�=1 Cγ ,�, and the angle terms are defined
as follows:

ć(1)
β,γ ,k (θ ) =

∫∫
0�θ1�θ2�θ

ćβ (θ1)ćγ (θ2)

−
∫∫

0�θ2�θ1�θ

ćβ (θ1)ćγ (θ2), (D12)

c̀(1)
β,γ ,k (θ ) =

∫∫
0�θ1�θ2�θ

c̀β (θ1)c̀γ (θ2)

−
∫∫

0�θ2�θ1�θ

c̀β (θ1)c̀γ (θ2). (D13)

We note that this means if the two ramp up functions are pro-
portional, i.e., ćγ (θ ) = Fγ ,k sin(θ ), ćβ (θ ) = Fβ,k sin(θ ), these
terms will always be zero. There are also no q terms as we
are restricting to a disorder Hamiltonian. Thus, the only term
left is the free evolution term with the frame-lengthening
correction.

We can now plug in expressions for the explicit terms in
the qubit Hamiltonian to calculate the leading second-order
effects. The free evolution period is much like the lower orders

Afree =
n∑

k=1

Fμ,k

(
τk + 4

π
τp

)
F ν,ρ

<k , (D14)

where F ν,ρ

<k =∑k
l=1 Fν,l (τl + 4

π
τp)(Fρ

<l − Fρ

>l ) is the first-
order contribution given by ν, ρ through time k. By combining
Afree with the rest of the terms, we obtain the expression in
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Table I

2
n∑

k=1

Fμ,k

(
τk + 4

π
τp

)
F ν,ρ

<k − F
μ

F
ν,ρ

, (D15)

where F
ν,ρ =∑n

k=1 Fν,k (τk + 4
π
τp)Fρ

<k is the total first-order
disorder-disorder term between axes ν and ρ.

[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Nature (London) 464, 45 (2010).

[2] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005).

[3] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

[4] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,
153 (2014).

[5] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267
(2012).

[6] J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett.
20, 180 (1968).

[7] D. P. Burum and W. K. Rhim, J. Chem. Phys. 71, 944 (1979).
[8] D. G. Cory, J. B. Miller, and A. N. Garroway, J. Magn. Reson.

90, 205 (1990).
[9] J. Choi, H. Zhou, H. S. Knowles, R. Landig, S. Choi, and M. D.

Lukin, Phys. Rev. X 10, 031002 (2020).
[10] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417

(1999).
[11] K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501

(2005).
[12] G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
[13] G. A. Álvarez, D. Suter, and R. Kaiser, Science 349, 846 (2015).
[14] K. X. Wei, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett.

120, 070501 (2018).
[15] K. X. Wei, P. Peng, O. Shtanko, I. Marvian, S. Lloyd, C.

Ramanathan, and P. Cappellaro, Phys. Rev. Lett. 123, 090605
(2019).

[16] D. Hayes, S. T. Flammia, and M. J. Biercuk, New J. Phys. 16,
083027 (2014).

[17] A. Ajoy and P. Cappellaro, Phys. Rev. Lett. 110, 220503 (2013).
[18] S. Choi, N. Y. Yao, and M. D. Lukin, Phys. Rev. Lett. 119,

183603 (2017).
[19] H. Haas, D. Puzzuoli, F. Zhang, and D. G. Cory, New J. Phys.

21, 103011 (2019).
[20] P. Peng, B. Ye, N. Y. Yao, and P. Cappellaro, Nat. Phys. 19,

1027 (2023).
[21] W. Rose, H. Haas, A. Q. Chen, N. Jeon, L. J. Lauhon, D. G.

Cory, and R. Budakian, Phys. Rev. X 8, 011030 (2018).
[22] C. P. Slichter, Principles of Magnetic Resonance (Springer

Berlin, Heidelberg, 2013), Vol. 1.
[23] M. Mehring, Principles of High Resolution NMR in Solids

(Springer Berlin, Heidelberg, 2012).
[24] H. Zhou, J. Choi, S. Choi, R. Landig, A. M. Douglas, J. Isoya,

F. Jelezko, S. Onoda, H. Sumiya, P. Cappellaro, H. S. Knowles,
H. Park, and M. D. Lukin, Phys. Rev. X 10, 031003 (2020).

[25] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Nature (London) 543,
221 (2017).

[26] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H.
Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe, Nature
(London) 551, 601 (2017).

[27] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490
(2011).

[28] U. Haeberlen and J. S. Waugh, Phys. Rev. 175, 453
(1968).

[29] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[30] D. Cory, J. Miller, R. Turner, and A. Garroway, Mol. Phys. 70,
331 (1990).

[31] P. Mansfield, J. Phys. C: Solid State Phys. 4, 1444 (1971).
[32] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[33] H. Zhou, L. S. Martin, M. Tyler, O. Makarova, N. Leitao, H.

Park, and M. D. Lukin, companion paper, Phys. Rev. Lett. 131,
220803 (2023).

[34] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
J. Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1
(2013).

[35] N. Arunkumar, K. S. Olsson, J. T. Oon, C. Hart, D. B. Bucher,
D. Glenn, M. D. Lukin, H. Park, D. Ham, and R. L. Walsworth,
arXiv:2203.12501.

[36] C. Zu, F. Machado, B. Ye, S. Choi, B. Kobrin, T. Mittiga,
S. Hsieh, P. Bhattacharyya, M. Markham, D. Twitchen, A.
Jarmola, D. Budker, C. R. Laumann, J. E. Moore, and N. Y.
Yao, Nature (London) 597, 45 (2021).

[37] B. Merkel, P. Cova Fariña, and A. Reiserer, Phys. Rev. Lett.
127, 030501 (2021).

[38] W. Morong, K. S. Collins, A. De, E. Stavropoulos, T. You, and
C. Monroe, PRX Quantum 4, 010334 (2023).

[39] P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo,
T. Lahaye, A. Browaeys, L. Henriet, A. Signoles, C. Hainaut,
T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, and M.
Weidemüller, PRX Quantum 3, 020303 (2022).

[40] S. Geier, N. Thaicharoen, C. Hainaut, T. Franz, A. Salzinger, A.
Tebben, D. Grimshandl, G. Zürn, and M. Weidemüller, Science
374, 1149 (2021).

[41] L. Christakis, J. S. Rosenberg, R. Raj, S. Chi, A. Morningstar,
D. A. Huse, Z. Z. Yan, and W. S. Bakr, Nature (London) 614,
64 (2023).

[42] J. R. Li, K. Matsuda, C. Miller, A. N. Carroll, W. G. Tobias,
J. S. Higgins, and J. Ye, Nature (London) 614, 70 (2023).

[43] L. S. Martin, H. Zhou, N. T. Leitao, N. Maskara, O. Makarova,
H. Gao, Q.-Z. Zhu, M. Park, M. Tyler, H. Park, S. Choi, and
M. D. Lukin, Phys. Rev. Lett. 130, 210403 (2023).

[44] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[45] P. Peng, X. Huang, C. Yin, L. Joseph, C. Ramanathan, and P.
Cappellaro, Phys. Rev. Appl. 18, 024033 (2022).

[46] M. Hohwy and N. C. Nielsen, J. Chem. Phys. 106, 7571 (1997).
[47] K. R. Mote, V. Agarwal, and P. Madhu, Prog. Nucl. Magn.

Reson. Spectrosc. 97, 1 (2016).
[48] E. S. Mananga, Phys. Rep. 608, 1 (2016).
[49] H. Zhou, H. Gao, N. T. Leitao, O. Makarova, I. Cong, A. M.

Douglas, L. S. Martin, M. D. Lukin, arXiv:2305.09757.

062602-18

https://doi.org/10.1038/nature08812
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevLett.20.180
https://doi.org/10.1063/1.438385
https://doi.org/10.1016/0022-2364(90)90380-R
https://doi.org/10.1103/PhysRevX.10.031002
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1126/science.1261160
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.123.090605
https://doi.org/10.1088/1367-2630/16/8/083027
https://doi.org/10.1103/PhysRevLett.110.220503
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1088/1367-2630/ab4525
https://doi.org/10.1038/s41567-023-02024-4
https://doi.org/10.1103/PhysRevX.8.011030
https://doi.org/10.1103/PhysRevX.10.031003
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nphys1926
https://doi.org/10.1103/PhysRev.175.453
https://doi.org/10.1103/PhysRevLett.121.023601
https://doi.org/10.1080/00268979000101031
https://doi.org/10.1088/0022-3719/4/11/020
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRevLett.131.220803
https://doi.org/10.1016/j.physrep.2013.02.001
http://arxiv.org/abs/arXiv:2203.12501
https://doi.org/10.1038/s41586-021-03763-1
https://doi.org/10.1103/PhysRevLett.127.030501
https://doi.org/10.1103/PRXQuantum.4.010334
https://doi.org/10.1103/PRXQuantum.3.020303
https://doi.org/10.1126/science.abd9547
https://doi.org/10.1038/s41586-022-05558-4
https://doi.org/10.1038/s41586-022-05479-2
https://doi.org/10.1103/PhysRevLett.130.210403
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevApplied.18.024033
https://doi.org/10.1063/1.473760
https://doi.org/10.1016/j.pnmrs.2016.08.001
https://doi.org/10.1016/j.physrep.2015.10.006
http://arxiv.org/abs/arXiv:2305.09757

