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Coherent control of the causal order of entanglement distillation
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Indefinite causal order is an evolving field with potential involvement in quantum technologies. Here we
propose and study one possible scenario of practical application in quantum communication: a compound
entanglement distillation protocol that features two steps of a basic distillation protocol applied in a coherent
superposition of two causal orders. This is achieved by using one faulty entangled pair to control-swap two
others before a fourth pair is combined with the two swapped ones consecutively. As a result, the protocol distills
the four faulty entangled states into one of a higher fidelity. Our protocol has a higher fidelity of distillation and
probability of success for some input faulty pairs than conventional concatenations of the basic protocol that
follow a definite distillation order. Our proposal shows the advantage of indefinite causal order in an application
setting consistent with the requirements of quantum communication.
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I. INTRODUCTION

Causality is a fundamental concept in nature and deeply
embedded in the traditional model of computation. A com-
puting algorithm, classical or quantum, usually envisions a
target system undergoing a series of gates in a fixed causal
order. Recent studies [1] revealed that under the assumption
that quantum mechanics is valid locally, events can happen
in an indefinite causal order. This concept was then extended
to a quantum computation model with an indefinite causal
structure, which features quantum operations occurring in an
indefinite causal order [2,3].

Significant effort has been made to look for specific com-
munication and computational tasks where indefinite causal
structures provide advantage. On the computation side, there
are specific classes of problems such as Fourier [4,5] and
Hadamard promise problems [6,7] that have been shown to
enjoy a reduction in query complexity when quantum gates
were queried through an indefinite causal order. The advan-
tage of such a setup in the task of solving the generalized
Deutsch’s problem has also been explored [8]. On the commu-
nication side, some probabilistic communication tasks were
found to result in a boost in success probability [9] and reduc-
tion in communication complexity [10] when passage orders
of information through communication parties were put into
a superposition. It was also discovered that putting two noisy
channels through a superposition of passage orders reduces
the noise of communication and for some specific channels
results in complete noise removal [11–15]. The above exam-
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ples of indefinite causal order all arise under the setup that
two events, each described by a completely positive trace
nonincreasing (CPNTI) map, are passed through by the target
system in an order coherently controlled by another qubit.
Mathematically, the advantage of putting CPNTI maps in
an indefinite causal order arises from the nonzero commu-
tation of Kraus operators that make up each quantum map
[12,16,17].

A natural question to ask is whether indefinite causal struc-
tures are useful in any current existing or near-term quantum
information processing tasks. Studies that reduce communica-
tion noise by superposing the passage orders of noisy channels
[11–15] have assumed the message making a noiseless return
to the front of the other channels after passing through and
exiting from the end of the other one, which is inconsistent
with realistic situations of quantum communication. On the
computation side, information-theoretic tasks that were stud-
ied in previous works [4–7,9,10] cannot be easily generalized
to solving more common computational problems, leaving
significant research effort still required to bridge the gap.
A recent work [8] experimentally demonstrated solving the
generalized Deutsch’s problem with an indefinite causal order
setup, but such a proposal is only likely to be useful in the long
term with fault-tolerant quantum computers that can solve
this problem on a large scale with large inputs. Fault-tolerant
quantum computers are of immense experimental challenge
to build, which prevents such proposals to be used in the
short term. Some other examples [18–20] considered applying
two quantum teleportation steps in an indefinite causal order
by coherently swapping the two involved entangled states to
reduce noise on the teleported state caused by imperfection
of the entangled states upon their generation. However, as
we show in the Appendix of the paper, their proposal does
not achieve noise reduction. We also argue that in the more
general case where noise occurs during the process of dis-
tribution of entanglement, swapping of the entangled states
must be carried out remotely. This requires extra entanglement
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which brings difficulties to their proposal. It therefore remains
largely unknown how useful indefinite causal structures are in
near-term computation and communication tasks.

In this paper, we study the entanglement distillation of
four entangled pairs and show that distillation of entan-
glement, which is a basic and necessary task in quantum
communication, benefits from indefinite causal structure.
More specifically, it allows the production of higher-fidelity
entangled pairs than merely carrying out distillation steps in
a definite causal order. We consider the well-known entangle-
ment distillation protocol proposed by Deutsch et.al. [21] (to
be referred to as the DEJMPS protocol) which turns two faulty
entangled pairs into one of a higher fidelity. When three faulty
pairs, χi where i ∈ 1, 2, 3, are subject to such a protocol, χ1

can be combined with χ2 before the distillation product is
combined with pair χ3, or that χ1 can be merged with χ3 then
χ2. This defines an “order” of entanglement distillation. We
describe a protocol where the two orders are put into a coher-
ent superposition and show that like other previously studied
cases of indefinite causal order, the advantage in fidelity also
comes from nontrivial commutation of Kraus operators of the
CP map that describes the entanglement distillation. We then
show the practical advantage of our protocol by presenting
that for some input faulty entangled states, characterized by
amount of mixture of the four Bell states, our protocol results
in a higher fidelity and/or success probability than merely
putting two distillation steps in a definite causal order. Given
the known connection between entanglement distillation pro-
tocols and quantum error correction codes [22], we hope this
work will stimulate effort into looking for the advantage of
indefinite causal structures in quantum error correction.

This paper is organized as follows. In Sec. II, we review
the basic principles of recent applications of indefinite causal
order in the form of a quantum switch. In Sec. III, we first re-
view two-way entanglement distillation protocols constructed
from small error-detecting codes. This includes the DEJMPS
protocol and a protocol using three entangled pairs, the latter
of which is constructed from three-bit quantum error detecting
code. We then present in Sec. IV a naively modified protocol
which performs two DEJMPS distillation steps in an super-
posed causal order. As the circuit of the proposed protocol
is quite complicated, we then describe in Sec. V a simplified
protocol which we show still simulates two DEJMPS distil-
lation steps in superposed causal orders. In Sec. VI we argue
for our protocol by presenting the parameter regions of the
input faulty states where our scheme shows an advantage over
concatenations of the DEJMPS protocol and the three-pair
protocol that follow a definite causal order. Some conclusions
are then provided in Sec. VII.

II. QUANTUM SWITCH AND KRAUS OPERATORS OF
COMPLETELY POSITIVE MAPS

A common framework to realize indefinite causal order
between two quantum operations on a target state is to
use an additional qubit to control the orders of occurrences
of operations, such that the different orders are correlated
with different basis states of the control qubit. Such a setup
is named a “quantum switch” in the literature. Here, we
give a short review of the basic principles of proposed

applications of the quantum switch. Quantum operations are
mathematically described as completely positive (CP) trace-
nonincreasing maps. When two quantum operations M =∑

i MiρM†
i and N = ∑

j NjρN†
j , where Mi and Nj are Kraus

operators (a special case is when M = MρM and N = NρN
are unitary operators), are put into a quantum switch con-
trolled by a qubit ρc, the overall map on the control and target
states reads

D(ρc, ρ) =
∑

i j

Wi j (ρc ⊗ ρ)W †
i j, (1)

where the overall set of Kraus operators reads Wi j = |0〉〈0| ⊗
MjNi + |1〉〈1| ⊗ NiMj .

Previous works that studied using a quantum switch [23]
to boost the communication capacity of noisy channels
[11–14,24] often initialize the control state as ρc = |+〉〈+|, an
even superposition of passage orders through the two quantum
maps giving a resulting state

D(ρc, ρ) = |+〉〈+|
2

⊗
∑

i j

(2MjNiρNiMj

+ 2NiMjρMjNi + [Mj, Ni]ρ[Mj, Ni])

+ |−〉〈−|
2

⊗
∑

i j

(−[Mj, Ni]ρ[Mj, Ni]). (2)

ρc is then measured in the Fourier ({|+〉, |−〉}) basis and the
state correlated with the |+〉 measurement outcome is post-
selected. The benefit of having a quantum switch is due to
nontrivial commutations of the set of Kraus operators {Mj}
and {Ni} ([Mj, Ni] �= 0 for some i, j). To see why this is the
case, suppose the opposite is true, i.e. [Mj, Ni] = 0 for all
i, j, then (2) is equal to |+〉〈+| ⊗ ∑

i j MjNiρN†
i M†

j , which is
simply the case of ρ passing through two channels in a definite
causal order.

III. ENTANGLEMENT DISTILLATION PROTOCOLS

Quantum entanglement is a useful resource that is ex-
tensively utilized in many quantum technologies, such as
quantum clock synchronization [25], device-independent
quantum key distribution [26,27], quantum metrology [28],
and distributed quantum computing [29]. In the above appli-
cation settings, constituent particles of the entanglement are
usually generated via local physical processes which result
in quantum correlations between degrees of freedom of the
constituent particles. The particles are then shared between
spatially separated parties by being sent through communi-
cation channels. In practice, the communication channels are
often noisy which degrades the quality of entanglement. In
this paper, we focus on the case where entanglement occurs
between qubits. A common noise model results in the shared
faulty pairs (which we denote as χi) being mixtures of Bell
states [30]:

χi = Ai|�+〉〈�+| + Bi|�−〉〈�−|
+ Ci|�+〉〈�+| + Di|�−〉〈�−|, (3)
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where

|�±〉 = 1√
2

(|00〉 ± |11〉), (4)

|�±〉 = 1√
2

(|01〉 ± |10〉). (5)

Alternatively, it is compactly expressed as a column vector:
χi = (Ai, Bi,Ci, Di )T where T denotes the vector transpose.
We define the fidelity of χi as

F = max
|B〉∈{|�±〉,|�±〉}

〈B|χi|B〉. (6)

When χi is given in Eq. (3), F (χi ) = max{Ai, Bi,Ci, Di}.
Entanglement distillation is a basic protocol that seeks to

improve the quality of faulty entangled pairs distributed via
noisy processes. In this paper, we focus on two-way entan-
glement protocols [22]. This type of protocols involves local
unitary operations, local measurements, two-way classical
communication of measurement results between the commu-
nication parties and postselections. It is known that there is
a correspondence between two-way entanglement distillation
protocols and stabilizer quantum error detecting codes [31].
As a result, the former are usually constructed from the latter.
A stabilizer error-detection protocol involves the sender en-
coding a logical state into a larger Hilbert space using extra
ancillas before sending all physical states to the receiver via
a noisy channel. The receiver decodes the logical state by
measuring the stabilizer of the code. The decoded logical state
is kept if the obtained error syndrome signals no error on the
decoded state, or discarded if otherwise. In the corresponding
two-way entanglement distillation protocol, multiple entan-
gled pairs are shared between the two parties. The receiver
performs the decoding circuit of the error-detecting code and
the sender performs the complex conjugate of the decod-
ing circuit. Syndrome measurements of the code are then
performed by both parties. If the pre-shared entanglements
are perfect |�+〉 = 1/

√
2(|00〉 + |11〉), then the syndrome

measurements on both parties are perfectly correlated. Er-
rors on the shared entanglement result in a finite amount of
|�−〉, |�+〉 and |�−〉 as mixture components, which cause
imperfect correlations. Nevertheless, with the presence of er-
rors there is still a finite probability of obtaining the same
syndromes on both sides, which projects the unmeasured state
into a less-erroneous subspace, or equivalently an entangled
state of higher fidelity. We now give a review of various
two-way entanglement distillation protocols constructed from
small error-detecting codes. These protocols distill a small
number of faulty entangled states into one entangled state with
a higher fidelity.

A. DEJMPS protocol

The DEJMPS protocol [21] is an early proposed entangle-
ment distillation protocol that turns two entangled pairs into
one. We denote the density matrices of the two entangled
pairs as χ0 and χ1. Their Hilbert spaces are denoted as H0 =
H0A ⊗ H0B, where Hilbert space H0A contains the state of the
particle of χ0 held by one party called Alice and H0B contains
that held by the other party called Bob. Likewise, we define

FIG. 1. The circuit for the DEJMPS entanglement distillation
protocol. χ1, χ2 denote density matrices of the two shared entangled
pairs. χi has its two particles sitting in Hilbert spaces HiA held by
Alice and HiB held by Bob.

H1 = H1A ⊗ H1B for the two particles of χ1. The protocol has
a circuit shown in Fig. 1 and is described as follows.

(1) Alice performs a rotation R̂ = exp(−i π
2 X̂ ) on the par-

ticles on her side. Bob performs the rotation R̂† = exp(+i π
2 X̂ )

on the particles on his side.
(2) Alice and Bob each performs a CNOT between the two

particles on their sides respectively. The two CNOTs are con-
trolled by (and also targetting) qubits in the same entangled
pair,

(3) Alice and Bob measure the target qubits of their
CNOTs in the computational basis. Alice then sends Bob her
measurement result. If their results agree, the entangled state
serving as control qubits in the previous CNOTs is kept. If
their results differ, the control pair is discarded and they start
over again. In either case, the target pair is also discarded.

The protocol can be described as a CP trace-decreasing
map which can be expressed as

D(χ0 ⊗ χ1) =
∑

i

Ôi(χ0 ⊗ χ1)Ôi†, (7)

where Kraus operators

Ôi = 〈i|1A,1BCNOT1A
0ACNOT1B

0BR̂0A,1AR̂†
0B,1B (8)

with i ∈ {00, 11}. CNOT1A
0A is a CNOT gate with a control

qubit in H0A and target qubit in H1A and R̂0A,1A = R̂0A ⊗ R̂1A

where subscripts denote the Hilbert space of the operators.
Equation (7) maps the combined input state in H0A ⊗ H0B ⊗
H1A ⊗ H1B onto the (unnormalized) output state in H0A ⊗
H0B. The summation is a mixture over the two possible mea-
surement outcomes 00 and 11 that show even parity.

Under the assumption of χ0 and χ1 both being Bell-
diagonal states, Eq. (7) can also be expressed as

D′(χ0 ⊗ χ1) = Ô(χ0 ⊗ χ1)Ô† (9)

where Ô = √
2Ô00. This simplification is justified by the fact

that the measurement projecting the state in H1A ⊗ H1B onto
|11〉 introduces an extra “−1” global phase onto the state in
the leftover Hilbert space, and that the extra phases produced
on both the “bra” and “ket” side cancel out. This makes
projecting onto |11〉 equivalent as projecting onto |00〉.

In practice, the various applications which entangled pairs
are subject to often request high-fidelity, which can be ob-
tained from repeated applications of single DEJMPS steps
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using x > 2 faulty pairs. This can alternatively be viewed as
a single faulty pair undergoing multiple steps of distillation,
where each step can be defined with respect to the entangled
pair that the original one is combined with. We may then de-
fine the causal order of distillation to be the order with which
the original pair is combined with others. As an example, for
three faulty entangled states χi (where i ∈ {1, 2, 3}), we may
distill χ3 and χ2 into a product of higher fidelity which is then
distilled with χ1. The second distillation step is clearly in the
causal future of the first step, as it requires the product of the
first step as its input. Likewise, the first step is in the causal
past of the second step.

An n-to-one distillation scheme when n > 3 has more pos-
sible arrangements of single DEJMPS steps compared with
the case when n = 3. As an example, below are all the ar-
rangements when n = 4.

(1) Select the supplied pair with the maximum fidelity and
discard other three. No distillation is done.

(2) Perform one distillation step using two of the four pairs
and discard the other two pairs.

(3) Select three pairs and discard the fourth pair. Within
the three chosen ones, select two to perform one step of
distillation, the product of which is teamed up with the third
pair for another step.

(4) Group all four pairs into teams of two, where one step
of distillation is carried out separately for each team before
the two products are teamed up for another step. This is called
a “recurrence-like structure” [32].

(5) Select two pairs to do one step of distillation, the prod-
uct of which is purified by combining it with either of the two
unchosen pairs before the product is combined with the last
unchosen pair for a third step. This is called a “pumpinglike
structure” [32,33].

For four faulty pairs χi (where i ∈ {0, 1, 2, 3}), we denote
the set which contains all the above distillation arrangements
as G.

In this paper, we are concerned with the use of entangled
states in near-term quantum communication tasks. The most
important metrics of two-way entanglement distillation proto-
cols are the fidelities of the output states and their probabilities
of success. Apart from this, we recognize another important
metric being the number of memories required to carry out
the protocol. Quantum states involved in various quantum
communication tasks will likely to be stored inside memory-
based quantum repeaters. Although it is desired that in the
long term, quantum repeaters will be based on error-correcting
codes which transmit quantum states fault-tolerantly, in the
near term they have fewer memories, high memory noise,
infidelity of quantum gates, and high photon loss which are
unable to be corrected via error-correction. Instead, they are
expected to rely on heralded entanglement generation and
two-way entanglement distillation to reduce errors [34,35].
Having an entanglement distillation protocol that uses fewer
quantum memories leaves more vacant spaces to receive in-
coming generated entangled pairs, hence boosts the rate of
entanglement distribution.

We note that the concatenated DEJMPS protocols in set
G all use four entangled pairs, but also only require max-
imally three memory units (for each communication party)
to perform. Consider the “recurrence” structure, where the

FIG. 2. A three-pair distillation protocol constructed from a
three-bit error detecting code stabilized by Ŝ1 = ÎẐẐ and Ŝ2 = X̂ X̂ X̂ ,
with an extra initial rotation R̂ = exp(−i π

4 X̂ ).

entangled pair distilled from the first DEJMPS step and two
other newly generated pairs taking part in the parallel DE-
JMPS step are stored. Although a total of four entangled
pairs are used in this arrangement, only a maximum of three
pairs need to be stored in the memories at any time. Later, in
Sec. V, we will introduce a class of protocols that simulates
two DEJMPS steps applied in an indefinite causal order. Such
protocols also make use of four entangled pairs, but only
require three entangled pairs to be stored at any time. Nev-
ertheless, there do exists other four-entangled-state protocols
that satisfy this storage requirement. We describe them as
follows.

B. Three-pair distillation protocols

The DEJMPS protocol described as above is constructed
from the two-bit repetition code (up to an initial single-qubit
rotation R̂), whose codeword is stabilized by ẐẐ , where Ẑ is
the Pauli Z matrix. As a result, the decoding circuit of the
code (also up to the rotation R̂) is performed on both sides
of the entangled pairs to detect errors that do not commute
with the stabilizer. When >2 pairs are shared, larger entan-
glement distillation schemes can be constructed from larger
error-detecting codes. We consider a three-qubit code which
is stabilized by Ŝ1 = ÎẐẐ and Ŝ2 = X̂ X̂ X̂ . Such a code has the
following decoding circuit

where the top measurement obtains the syndrome Ŝ2 and the
bottom measurement obtains the syndrome Ŝ1. This leads
to the following three-pair entanglement distillation circuit
shown in Fig. 2 for three entangled pairs χ0, χ1, and χ2.
We have added the same extra rotation R̂ = exp(−i π

4 ) to be
consistent with the DEJMPS protocol. When four pairs are
shared, there are also the following multiple possible arrange-
ments to distill them into one pair. We denote the set which
contains all the following arrangements as J :
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FIG. 3. Four faulty Bell-diagonal pairs are shared between two
repeater stations. Hx,Y where x ∈ {0, 1, 2, 3} and Y ∈ {A, B} denotes
the Hilbert space of each stored qubit.

(1) Select three pairs, arrange them in some permutation
and distill them into one pair using Fig. 2’s circuit. Discard
the fourth pair.

(2) Select three pairs and distill them into one using
Fig. 2’s circuit. A further DEJMPS step is performed on the
distilled product and the fourth pair.

(3) Select two pairs, distill them into one pair using DE-
JMPS protocol. The product and the two remaining pairs are
distilled into one using Fig. 2’s circuit.

IV. APPLYING TWO DEJMPS STEPS IN A
SUPERPOSITION OF CAUSAL ORDERS

All protocols P ∈ G and P ∈ J are examples of distil-
lation steps carried out in a definite causal order, where the
causal orders between different steps are well defined. In this
section, we introduce our modification to break this causality.

A. Circuit that coherently controls the order
of two DEJMPS steps

We consider the following process: the four Bell-diagonal
faulty pairs χi are shared between Alice and Bob as illustrated
in Fig. 3. Under some control system being in a logical state
|0〉, χ3 undergoes a DEJMPS step with χ2 first, whose dis-

tillation output then undergoes another DEJMPS step with
χ1. When the control system is in |1〉 orthonormal to |0〉,
χ3 is routed in the quantum registers to first combine with
χ1, whose distillation output is then combined with χ2. We
let the logical states |0〉 (|1〉) be encoded in the entangled
pair χ0 as |00〉 (|11〉) and refer to χ0 as the “control pair”
of the protocol. The above process then can be realized by
part of the circuit shown in Fig. 4 before the vertical dashed
line. In Fig. 4, each entangled pair χi is inside Hilbert space
HiA ⊗ HiB. We denote ρin = χ1 ⊗ χ2 ⊗ χ3. One can show
before the vertical dashed line, the overall state in Hilbert
space H0A ⊗ H0B ⊗ H1A ⊗ H1B, which consists of the control
pair and the bipartite state distilled from the two DEJMPS
steps, can be expressed as

ρs =
11∑

i, j=00

Êi j (χ0 ⊗ ρin )Ê†
i j +

11∑
i, j=00

K̂i j (χ0 ⊗ ρin )K̂†
i j, (10)

where

Êi j = |00〉〈00| ⊗ Ê (2)
j Ê (1)

i + |11〉〈11| ⊗ Ê (1)
i Ê (2)

j , (11)

K̂i j = |01〉〈01| ⊗ K̂(1)
i + |10〉〈10| ⊗ K̂(2)

j (12)

with

Ê (1)
i = SWAP2A

3ASWAP2B
3B〈i|3A,3BCNOT3A

2ACNOT3B
2B

× R̂2A,3AR̂†
2B,3B, (13)

Ê (2)
j = SWAP1A

3ASWAP1B
3B〈 j|3A,3BCNOT3A

1ACNOT3B
1B

× R̂1A,3AR̂†
1B,3B. (14)

where SWAP2A
3A is a SWAP gate between the states in Hilbert

spaces H3A and H2A. K̂(1)
i and K̂(2)

j are the operations on ρin

in the case that the control pair χ0 is in the state |01〉 or |10〉.
We do not give the explicit expression of K̂(1)

i and K̂(2)
j as

they do not contribute to the discussion. Ê (m)
i is essentially

the Kraus operator of a DEJMPS step as given in Eq. (7) but

FIG. 4. A modified entanglement distillation scheme which turns four faulty Bell-diagonal states χi (each residing in Hilbert space HiA ⊗
HiB) into one. The circuit features two DEJMPS distillation steps applied in a superposition of causal orders which is coherently controlled
by the faulty pair χ0. The red and blue dashed rectangles encircle the CNOT gates of the two DEJMPS steps applied in the χ3 → χ1 → χ2

(χ3 → χ2 → χ1) causal order. After the vertical dashed line in the figure, we postselect the distilled state upon receiving an even parity
measurement outcome from the state in H0A ⊗ H0B. This interferes the products distilled from the two causal orders with the hope of boosting
the fidelity of the final product of distillation.
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FIG. 5. A simple circuit which seeks to simulate two DEJMPS
steps in a coherent superposition of two causal orders. This is
achieved by coherent swapping of χ1 and χ2 at the beginning of the
circuit, in contrast to Fig. 4 where χ1 and χ2 are kept still and χ3 is
routed around. R̂ = exp(−i π

2 X̂ ) where X̂ is the Pauli-X operator. R̂†

is the Hermitian conjugate of R̂. Ĥ is the Hadamard gate.

with extra SWAPs that do not affect outcome of distillation.
Êi j has the form of different basis states of the control pair
correlated with opposite orders of Ê (1)

i and Ê (2)
j , the Kraus

operators of the two DEJMPS steps. This clearly shows that
the two distillation steps are put into an indefinite causal order.
The second term in Eq. (10) occurs when the control pair
χ0 has Bell components |�+〉〈�+| and/or |�−〉〈�−|. This
gives rise to another completely positive map which cannot
be easily interpreted as χ3 going through two DEJMPS steps
in any order.

After the two DEJMPS steps, a Hadamard gate is applied
onto both particles of the control pair, which is followed by
a parity measurement on the control pair (shown in Fig. 4
after the vertical dashed line). We then postselect the bipartite
state in the unmeasured Hilbert space H1A ⊗ H1B over an even
parity outcome. This allows the distillation product from the
two causal orders to interfere and the state in the unmeasured
Hilbert space is the final product of the protocol.

One sees from Fig. 4 that the circuit is quite complicated. It
also requires the control pair to coherently control every gate
within the DEJMPS protocol. This gives rise to a large number
of double-controlled gates between three qubits, which are
difficult to implement. These factors make the circuit difficult
to demonstrate as an entanglement distillation protocol. In
Sec. V, we introduce a much simpler circuit that also sim-
ulates two DEJMPS steps in an indefinite causal order. In
this new circuit, the causal orders of DEJMPS steps are not
emulated by routing χ3, but merely control-SWAPPING χ1

and χ2. We show that the output state under this simplified
protocol can be expressed as ρin undergoing two maps with
set of Kraus operators defined in Eq. (9). The new circuit uses
a smaller number of gates, especially many fewer controlled
gates among three particles. These features shall make the new
circuit easier to demonstrate in practice.

V. SIMPLIFIED COHERENT CONTROL OF ORDER OF
TWO DEJMPS STEPS

The simplified scheme of coherently controlling the order
of two DEJMPS distillation steps has a circuit shown in Fig. 5
and is described as follows.

(1) We apply a controlled-SWAP gate from the particle
in Hilbert space H0A to the two particles in Hilbert spaces
H1A and H2A. The particle in Hilbert space H0B performs a
controlled-SWAP gate on the two particles in Hilbert spaces
H1B and H2B. The controlled-SWAP gate is such that the two
target states are swapped if the control qubit is in |1〉.

(2) We apply one step of DEJMPS protocol on Hilbert
spaces H3A ⊗ H3B and H2A ⊗ H2B. If the measurement
outcomes show even parity, H2A and H2B are kept and we
proceed to step 3. Otherwise we discard all pairs and start the
scheme over with newly supplied faulty pairs.

(3) We apply another step of Deutsch’s protocol on Hilbert
spaces H2A ⊗ H2B and H1A ⊗ H1B. If the parity measurement
outcome is even, H1A and H1B are kept and we continue to
step 4. Otherwise we discard all pairs and start again from the
beginning.

(4) We measure H0A and H0B separately in the Fourier
{|+〉, |−〉} basis and compare the results. If they show even
parity, the scheme is successful. Otherwise we discard all pairs
and start again from the beginning.

Although we have described operations during the protocol
as occurring among certain Hilbert spaces, the above protocol
also works for other combinations of the Hilbert spaces. For
example, the control-SWAP in step 1 can instead be con-
trolled by particles in Hilbert spaces H1A ⊗ H1B which targets
H2A ⊗ H2B and H3A ⊗ H3B, then the two DEJMPS steps are
carried out between states in H0A ⊗ H0B & H2A ⊗ H2B and
H2A ⊗ H2B & H3A ⊗ H3B. This variation defines a whole set
of protocols (there are in fact 12 such protocols), which we
denote as S , each having a similar structure.

A. Difference between routing χ3 and swapping χ1 and χ2

One may be tempted to infer that the two circuits in Figs. 4
and 5 are equivalent: whether routing χ3 around while keeping
χ2 and χ1 still (in Fig. 4) or swapping χ2 and χ1 around
while keeping χ3 still (in Fig. 5) should not matter, as they
both simulate χ3 going through DEJMPS distillations with χ2

and χ1 in two opposite orders. This is not actually the case,
due to the parity measurements that are part of the distillation
protocol. In Fig. 4’s circuit, the two DEJMPS steps, each as-
sociated with χ2 or χ1, can have different parity measurement
results (00 or 11, under the even-parity requirement), and that
the parity measurement results associated with χ2 and χ1 are
the same for both causal orders (whether χ2 is used after or
before χ1). In Fig. 5’s circuit, however, the first DEJMPS
steps (regardless of whether it is with χ2 or χ1) performed
in both causal branches have the same parity measurement
outcome, and so do the second DEJMPS steps in both causal
branches. This means that if the CP trace-decreasing map of
each DEJMPS step is expressed as Eq. (7), which is a sum
over projections onto |00〉 and |11〉, the overall state before
the vertical dashed line in Fig. 5’s circuit cannot be written as
Eq. (10), where the effective Kraus operator Êi j has compo-
nents that are exact swapping of the Kraus operators of the two
DEJMPS steps. We therefore cannot interpret the distillation
output of Fig. 5’s circuit as χ3 going through two DEJMPS
steps in an indefinite causal order, if the completely positive
map of the DEJMPS protocol is given as Eq. (7).
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B. Completely positive trace-decreasing maps
under swapping of χ1 and χ2

In this section, we are able to show that Fig. 5’s circuit
can be interpreted as χ3 undergoing two DEJMPS steps in
an indefinite causal order, if the DEJMPS protocol is instead
described by Eq. (9). We point out that for Bell-diagonal
states as being considered in this paper, both (7) and (9) are
equally valid quantum maps describing the DEJMPS protocol
since mathematically they produce the exact distillation out-
put as defined by the DEJMPS circuit [21]. In this section,
we assume the control pair is χ0 which control-SWAPs χ1

and χ2. This makes ρ0 = χ0 ⊗ χ1 ⊗ χ2 ⊗ χ3 and ρin = χ1 ⊗
χ2 ⊗ χ3.

Following the circuit in Fig. 5, one can show that at the
dashed line before the final Hadamard gates and parity mea-
surements, the state in H0A ⊗ H0B ⊗ H1A ⊗ H1B reads

ρs = A0 + D0

2
(|00〉〈00| ⊗ N1 + |11〉〈11| ⊗ N2)

+ A0 − D0

2
(|00〉〈11| ⊗ M1 + |11〉〈00| ⊗ M2)

+ B0 + C0

2
(|01〉〈01| ⊗ T1 + |10〉〈10| ⊗ T2)

+ C0 − B0

2
(|01〉〈10| ⊗ L1 + |10〉〈01| ⊗ L2), (15)

where

N1 =
∑

i, j∈00,11

F̂ jÔiρinÔi†F̂ j†, (16)

N2 =
∑

i, j∈00,11

F̂ j P̂iρinP̂i†F̂ j†, (17)

M1 =
∑

i, j∈00,11

F̂ j P̂iρinÔi†F̂ j†, (18)

M2 =
∑

i, j∈00,11

F̂ jÔiρinP̂i†F̂ j†, (19)

and

Ôi = 〈i|3A,3BCNOT3A
2ACNOT3B

2BR̂2A,3AR̂†
2B,3B, (20)

P̂i = ÔiSWAP2A
1ASWAP2B

1B, (21)

F̂ j = 〈 j|2A,2BCNOT2A
1ACNOT2B

1BR̂1A,2AR̂†
1B,2B. (22)

The explicit expressions of T1, T2, L1, and L2 are given in
Sec. V C, which can be found by tracing the circuit in Fig. 5
in case the control pair is in state |01〉 or |10〉.

Theorem 1. N1 and N2, the (unnormalized) distillation
product states from two DEJMPS steps in opposite causal
orders can be expressed as

N1 = Q̂2Q̂1ρinQ̂1Q̂2, (23)

N2 = Q̂1Q̂2ρinQ̂2Q̂1, (24)

while M1 and M2, the (unnormalized) entangled states cor-
related with the off-diagonal terms between the two basis
states of the control pair that C-SWAPs χ1 and χ2, can be

expressed as

M1 = Q̂1Q̂2ρinQ̂1Q̂2, (25)

M2 = Q̂2Q̂1ρinQ̂2Q̂1, (26)

where Kraus operators

Q̂1 =
√

2〈00|2A,2BSWAP3A
2ASWAP3B

2B CNOT3A
2ACNOT3B

2B

× R̂2A,3AR̂†
2B,3B, (27)

Q̂2 =
√

2〈00|1A,1BSWAP3A
1ASWAP3B

1BCNOT3A
1ACNOT3B

1B

× R̂1A,3AR̂†
1B,3B (28)

are equivalent to the Kraus operator of a single DEJMPS step
that only projects the parity-measured states onto |00〉, up
to extra SWAP gates that relabel the Hilbert spaces of the
subsystems.

Proof To show that N1, N2, M1 and M2 can be expressed
as Eqs. (23) to (26), two major steps are carried out. We
first show that both outcomes of parity measurements (00
and 11) yield the same distillation output. This allows us to
express mixture over projections onto “00” and “11” as only
projecting onto “00.” Secondly, we intersperse gates inside Ôi,
P̂i, and F̂ i with additional SWAP gates to relabel some of the
involved Hilbert spaces in order to arrive at Q̂1 and Q̂2.

For convenience of description, we introduce a more com-
pact notation that denotes χi as

χi =
∑
a,b

m(i)
a,b|βa,b〉〈βa,b|, (29)

where a ∈ {0, 1} denotes the parity of the Bell
component and b ∈ {0, 1} denotes the “+,”
“−” sign of the component such that
{|β0,0〉, |β1,1〉, |β1,0〉, |β0,1〉} = {|�+〉, |�−〉, |�+〉, |�−〉}.
m(i)

a,bs are the corresponding coefficients of the components

which satisfy
∑

a,b m(i)
a,b = 1 due to normalization. The

input faulty states ρin can be expressed as a mixture over
components, each being a tensor product of three Bell states:

ρin =
∑
a,b

(∏
i

m(i)
ai,bi

)
�a,b, (30)

where �a,b = |βa1,b1〉|βa2,b2〉|βa3,b3〉 × h.c and a = (a1, a2, a3),
b = (b1, b2, b3).

It is not immediately clear that the two parity measurement
outcomes (00 and 11) are correlated with equivalent output
state and as a result, it is not clear that the sum over “00” and
“11” in Eqs. (16)–(19) can just be re-expressed as projecting
only onto “00.” To see this, we first examine the inner parts
of N1, N2 and M1: Ôi�a,bÔi†, P̂i�a,bP̂i† and P̂i�a,bÔi† (M2

is simply the Hermitian conjugate of M1). These terms consist
of initial rotations R̂ on two Bell states, CNOTs and projection
onto |00〉 or |11〉. It is known from Ref. [21] that R̂ preserves
the diagonal structure of �a,b: it merely permutes |�−〉 and
|�−〉, leaving |�+〉 and |�+〉 unchanged. The trailing CNOT
gates hence still act on a Bell-diagonal state. The CNOTs turn
|βa2,b2〉|βa3,b3〉 into |βa2,b2⊕b3〉|βa2⊕a3,b3〉 and preserve the sign
of the Bell state (b3) in H3A ⊗ H3B, where the subsequent
first parity measurement is done. The sign of the Bell state
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b3 is important. We note that projections of |�+〉 (the case
where b3 = 0) onto |00〉 and |11〉 both yield a trivial global
phase. But for the “negative sign” |�−〉 (where b3 = 1), pro-
jection onto |00〉 yields a trivial global phase, while projection
onto |11〉 yields a “−1” global phase. Here, since the terms
Ôi�a,bÔi†, P̂i�a,bP̂i† and P̂i�a,bÔi† are correlated with the
control pair being in |00〉〈00|, |11〉〈11|, and |00〉〈11|, respec-
tively [see Eqs. (15)–(19)], the global phases generated during
the parity measurement become relative phases among the
above three terms, which can affect the final distilled state
nontrivially. However, the fact that the CNOTs preserve the
sign of the target Bell state means after the CNOTs, the Bell
states on the “bra” and “ket” sides must have the same sign
(b3) regardless of the control Bell state of the CNOTs on
the two sides. The global phases induced on the two sides
cancel to give an overall “+1” phase, making the “00” and
“11” outcomes have equivalent effect onto the leftover Hilbert
space. Mathematically, the following relations are obtained:
Ô00�a,bÔ00† = Ô11�a,bÔ11†, P̂00�a,bP̂00† = P̂11�a,bP̂11†, and
P̂00�a,bÔ00† = P̂11�a,bÔ11†.

The leftover state in (H1A ⊗ H1B) ⊗ (H2A ⊗ H2B), after
tracing out H3A ⊗ H3B, is also a tensor product of two Bell
states, and is now subject to another round of local rotations,
CNOTs and parity measurement. One can use the same ar-
gument as above to show that projecting onto |00〉 and |11〉
in the parity measurement yield the same state in the leftover
Hilbert space H1A ⊗ H1B. This means F̂ 00	̂i�a,bϒ̂

i†F̂ 00† =
F̂ 11	̂i�a,bϒ̂

i†F̂ 11† for i ∈ {00, 11}, where 	̂ and ϒ̂ are either
Ô or P̂. Since this is true for �a,b of arbitrary a, b, it is also
true for ρin, which is a mixture of �a,b of different a and b.
We can now define F̂ = √

2F̂ 00, Ô = √
2Ô00 and P̂ = √

2P̂00

and express N1, N2, M1 and M2 as ρin going through single
Kraus operators, rather than mixtures over Kraus operators
that project onto different parity-measurement outcomes 00
or 11:

N1 = F̂ ÔρinÔ†F̂ †, (31)

N2 = F̂ P̂ρinP̂†F̂ †, (32)

M1 = F̂ P̂ρinÔ†F̂ †, (33)

M2 = F̂ ÔρinP̂†F̂ †. (34)

We now want to express N1 as ρin passing through two CP
trace-decreasing maps in one order, and N2 as ρin undergoing
the same two maps in the opposite order. We have defined
a DEJMPS step, which has its distinct CP trace-decreasing
map and Kraus operator, solely with respect to the entangled
pair (χ1 or χ2) that χ3 is combined with. In Fig. 5’s circuit,
however, the faulty state subject to the second distillation step
(regardless of which entangled pair it is combined with) is in
Hilbert space H2A ⊗ H2B, which is different from the Hilbert
space of χ3 (H3A ⊗ H3B) during the first distillation step.
Since operations on distinct Hilbert spaces are described by
different operators, this prevents the same Kraus operator that
describes the 1st distillation step in one causal order from also
describing the 2nd distillation step in the other causal order.
To resolve this, we add extra SWAP operations to F̂ , Ô, and
P̂ such that the state produced from each DEJMPS step is

always in Hilbert space H3A ⊗ H3B, regardless of whether the
DEJMPS step is done as the first or second in the queue. Con-
sider the term N1. We add two SWAP gates SWAP3A

2ASWAP3B
2B

between the CNOTs and parity measurement of operator Ô
[in Eq. (20)]. In order for the circuit’s output to remain un-
changed, this must also change the projected Hilbert spaces
of parity measurement of Ô from H3A ⊗ H3B to H2A ⊗ H2B,
and as a result the unmeasured state is now in H3A ⊗ H3B. The
modified Ô is shown to equal Q̂1. The Hilbert spaces on which
gates in the subsequent Kraus operator F̂ act are also swapped
between H3A ⊗ H3B and H2A ⊗ H2B. We then add two other
SWAP gates SWAP3A

1ASWAP3B
1B between the CNOTs and par-

ity measurement of F̂ , which changes the parity-measured
Hilbert space to H1A ⊗ H1B. This turns F̂ into Q̂2. We em-
phasize that the additional SWAP gates are introduced merely
for algebraic reasons and are not implemented physically.

As for the term N2 in Eq. (32), one can see from the con-
struction of Ôi and P̂i (hence Ô and P̂) in Eqs. (20) and (21)
that N2 is essentially N1 with a swapping of labels of Hilbert
spaces H2A ⊗ H2B and H1A ⊗ H1B. One can then conclude
that if the same procedure of addition of SWAP gates are
carried out on N2, the result will be that on N1 [in Eq. (23)]
also followed by a relabelling of Hilbert spaces H2A ⊗ H2B

and H1A ⊗ H1B, which is exactly equal to an exchange of Q̂1

and Q̂2, leading to Eq. (24). The manipulations on M1 and
M2 follow a similar description that leads to Eqs. (25) and
(26). One can see from Eqs. (27) and (28) that Q̂1 and Q̂2

are essentially the Kraus operator Ô given in Eq. (9) but with
extra SWAP gates that relabel the Hilbert spaces of some of
the states which do not affect the distillation output.

According to Eqs. (23) and (24), one can regard N2 as the
input state ρin undergoing trace decreasing maps Q̂1 and Q̂2 in
the opposite order as that in N1. Overall, the circuit in Fig. 5
before the final Hadamard and parity measurement can be
expressed as

ρs = Ŵ (χ0 ⊗ ρin )Ŵ † + V̂ (χ0 ⊗ ρin )V̂ †, (35)

where

Ŵ = |00〉〈00| ⊗ Q̂2Q̂1 + |11〉〈11| ⊗ Q̂1Q̂2, (36)

V̂ = |01〉〈01| ⊗ Ĵ + |10〉〈10| ⊗ Ŝ. (37)

with Ĵ and Ŝ being the operators that act on ρin in case the
control pair is in state |01〉 and |10〉. Equation (36) features
opposite orders of Q̂1 and Q̂2 correlated with different states
of the control pair. We have hence shown the circuit in Fig. 5
simulates two DEJMPS steps applied in a causal order con-
trolled by χ0.

C. Explicit expression of output state from the protocol

After the final two Hadamard gates in Fig. 5, the state in
Hilbert space H0A ⊗ H0B ⊗ H1A ⊗ H1B is expressed as

ρs = |00〉〈00| + |11〉〈11|
4

⊗ ρ+

+ |01〉〈01| + |10〉〈10|
4

⊗ ρ− + ρsr, (38)
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where

ρ± = A0 + D0

2
N1 + A0 + D0

2
N2

± A0 − D0

2
2M + B0 + C0

2
2T ± C0 − B0

2
2L (39)

and ρsr consists of off-diagonal elements of the state in
H0A ⊗ H0A. Upon parity-measuring χ0, ρsr vanishes. The un-
measured state is postselected upon an even-parity outcome,
making ρ+ the final product of the protocol.

We give explicit expressions of all terms in Eq. (39) as
follows:

N1 =

⎛
⎜⎜⎜⎝

A1(A2A3 + B2B3) + B1(D2C3 + C2D3)

D1(C2C3 + D2D3) + C1(B2A3 + A2B3)

C1(C2C3 + D2D3) + D1(B2A3 + A2B3)

B1(A2A3 + B2B3) + A1(D2C3 + C2D3)

⎞
⎟⎟⎟⎠, (40)

N2 =

⎛
⎜⎜⎜⎝

A2(A1A3 + B1B3) + B2(D1C3 + C1D3)

D2(C1C3 + D1D3) + C2(B1A3 + A1B3)

C2(C1C3 + D1D3) + D2(B1A3 + A1B3)

B2(A1A3 + B1B3) + A2(D1C3 + C1D3)

⎞
⎟⎟⎟⎠, (41)

M = M1 = M2 =

⎛
⎜⎜⎜⎝

A3A2A1

B3B2B1

C3C2C1

D3D2D1

⎞
⎟⎟⎟⎠. (42)

T and L are expressed as

T = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∑
a,b,c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c,b⊕d

1∑
a,b,c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c⊕1,b⊕d⊕1

1∑
a,b,c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c⊕1,b⊕d

1∑
a,b,c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c,b⊕d⊕1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

L = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∑
a,b,

c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c,b⊕d (−1)a(1⊕d )⊕c(1⊕b)

1∑
a,b,

c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c⊕1,b⊕d⊕1(−1)(a⊕1)d⊕(c⊕1)b

1∑
a,b,

c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c⊕1,b⊕d (−1)a(1⊕d )⊕c(1⊕b)⊕b⊕d

1∑
a,b,

c,d=0

m(1)
a,bm(2)

c,d m(3)
a⊕c,b⊕d⊕1(−1)ad⊕cb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(44)

In Eqs. (43) and (44), the definition of m(i)
j,k was given in

Eq. (29). ⊕ is binary addition acting on a, b ∈ {0, 1} such that
a ⊕ b = mod(a + b, 2).

VI. ADVANTAGE IN FIDELITY
AND PROBABILITY OF SUCCESS

We now compare, for four given input faulty states, the
output fidelity from our set of protocols S against the concate-
nated DEJMPS protocols (denoted as set G) and the three-pair
distillation protocols (denoted as set J ). We point out that pre-
vious works studying indefinite causal structures in quantum
information processing tasks have argued their advantage by
comparing them against definite causal structures that consist
of the same number of elementary CP maps. This can be
justified by treating the control state in the quantum switch
as free resource, which is reasonable in some experimental
setups that are used to implement these tasks (e.g., interferom-
eters, where the control state is simply the propagation paths
of photons). Here in our set of protocols S , the control of
causal order is carried out by an entangled pair. This extra
pair should not be seen as free, but as costly as the other
entangled pairs involved in the protocol since they all practi-
cally take similar physical resources to generate. Therefore the
comparison of protocols S should not be made against only
the concatenated two DEJMPS steps, but against the set of
definite-causal-order protocols that also turn four faulty entan-
gled pairs into one. These protocols are exactly those that form
the set of protocols G and J . We note that we do not compare
our protocols against those entanglement distillation protocols
that utilize four entangled pairs together (such protocols can
usually be constructed from four-bit quantum error-detecting
codes) as they require four memory units to carry out, which
is a higher requirement than the above-mentioned protocols.

For protocols in S , We note that the output of the
protocol ρ+ from Eq. (39) is a mixture of five terms:
N1, N2, M, T , and L (where we can express M as
M = 1

2 (N1 + N2 + [Q̂2, Q̂1]ρin[Q̂2, Q̂1])). In order for ρ+ to
have a fidelity advantage over the distillation products of all
protocols in G, at least one term among M, T , and L must
have a fidelity larger than both N1 and N2, since N1 and N2

themselves are the product of distillation from two definite-
ordered DEJMPS steps, which are member protocols of the
set G. In this section, aside from comparing the fidelities and
probabilities of success of protocol set S and G, we present
that the advantage in fidelity solely comes from M (rather
than from T and L), owing to the nontrivial commutation (i.e.
[Q̂2, Q̂1] �= 0) between the Kraus operators of the two maps
that describe the two DEJMPS steps. This is the same origin as
that of the advantage of a quantum switch as reviewed earlier
in Sec. II. This confirms that the advantage in fidelity of our
scheme is indeed due to applying entanglement distillation
maps in a coherent superposition of two causal orders.

We first present an discrete example of input state χi where
protocol set S returns a higher fidelity and success probability
than protocols in G and J , showing clear overall advantage of
protocols S . It is discovered that the advantage occur on faulty
states with noise biases close to that of Werner states. We
then present the parameter region of input fidelities where S ′s
advantage holds assuming the input states are Werner states,
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and also comment on S ′s distillation performance when input
states have biased noise.

A. Discrete advantageous input examples

1. Werner states as input

There is a continuous region of input state parame-
tesr where the advantage holds. We first consider the case
when the faulty pairs all experience depolarising noise
from |�+〉 which turns them into Werner states, which
have the form χi = Fi|�+〉〈�+| + (1 − Fi )/3(|�−〉〈�−| +
|�+〉〈�+| + |�−〉〈�−|). We search over the parameter space
� = {F = [F0, F1, F2, F3] | 0.25 < Fi < 1 ∀i}. For each set of
parameters F, we find, over all protocols in S , the one that
gives the maximum fidelity (denoted as FS ) and also find
its probability of success (denoted as pS ). The same pro-
cedure is carried out for the protocol sets G and J , where
the maximum fidelities in G and J are denoted as FG and
FJ with corresponding success probabilities pG and pJ .
Two searches using the basinhopping algorithm [36] which
minimize FG − FS and FJ − FS respectively are carried out
within the parameter space �. The input fidelities where
our protocols show advantage are where FG − FS < 0 and
FJ − FS < 0. Mathematically, each inequality corresponds
to a region in � and the intersection of the two regions are
recorded.

As an example, a point in the intersected region reads
F = [0.5390, 0.6332, 0.6332, 0.5888]. When the four input
states have those fidelities, the protocol set S produces a state
(0.6853, 0.0802, 0.0802, 0.1543)T with fidelity FS = 0.6853
and probability pS = 0.2121. To obtain thus a state, the
entangled state χ0, which has fidelity 0.539, is used to control-
SWAP χ1 and χ2, which have fidelity 0.6332. Among all
protocols in G. the one with a “recurrence” structure first com-
bining χ0 with χ1 and χ2 with χ3 before combining their puri-
fied products yield a state (0.6842, 0.0553, 0.1314, 0.1291)T

with FG = 0.6842 and pG = 0.2069. Among all protocols in
J , the arrangement which first puts χ0 and χ1 together for
a DEJMPS step followed by a three-pair distillation circuit
among its product and χ2 and χ3 yields a maximum fidelity
FJ = 0.6842 and success probability pJ = 0.2069 from a
state (0.6842, 0.1314, 0.1291, 0.0553)T. Our set of protocols
S have clear overall advantage over the causally-ordered dis-
tillation protocols by producing a state with a higher fidelity
and higher success probability than the latter.

As presented in Eq. (39), ρ+ is a weighted mixture of
N1, N2, M, T , and L, each of which being an unnormalized
mixture of the four Bell states. We calculate the fideli-
ties of all the mixture components of ρ+ and they are:
f (N1) = f (N2) = 0.6840, f (M ) = 0.9746, f (T ) = 0.3384,
f (L) = 0.6302. M is the only component with a fidelity
higher than N1 and N2, which are the fidelities of the entan-
gled state produced from doing two definite-ordered DEJMPS
steps. This means the fidelity advantage of protocols S is
solely due to the presence of the component M. As discussed
in Sec. V, the presence of M is due to the nontrivial commuta-
tions of the Kraus operators that correspond to the maps of the
two distillation steps. This shows that the fidelity advantage
of protocols S indeed comes from two DEJMPS steps being
applied in an indefinite causal order.

2. Input states with noise bias

We study the effect of noise bias of the faulty pairs on
the distillation fidelities. Noise on the entangled pairs comes
from interaction of the particles with environment, during
which the target entangled state becomes entangled with the
environment. Tracing out the latter leaves the former in a
probabilistic mixture of various states. The Pauli-diagonal
channel, which results in the mixture components being the
target state undergoing Pauli X, Y , and Z flips, is a fairly
complete description of all possible noise models. In practice,
the probabilities of undergoing the three flips are different. We
define the X-biased channel with a degree rX as the following
CPTP map:

εX (ρ) = p · IρI + rX (1 − p) · XρX

+ 1 − rX

2
(1 − p) · Y ρY + 1 − rX

2
(1 − p) · ZρZ.

(45)

r = 1 indicates a noise channel with complete X -bias, r = 0
indicates the noise biased away from X and r = 1/3 indicates
a depolarising channel with equal noise probability, which
gives rise to the previously discussed Werner states. A Y-
biased noise channel with degree rY and a Z-biased channel
with degree rZ can be defined in the same manner. Suppose the
fidelities of the four faulty pairs are the ones given in the pre-
vious discussion (F = [0.5390, 0.6332, 0.6332, 0.5888]) but
each faulty pair now has unequal erroneous Bell state com-
ponents as caused by the noise bias. Figure 6 shows the
distillation fidelities FG, FS and FJ of the three groups of
protocols under the three directions of noise bias: (a) for
Y -biased noise, (b) for X -biased, and (c) for Z-biased noise.
Protocol S ′s fidelity is larger than G ′s and J for relatively
unbiased noise model (when rX , rY and rZ ≈ 1/3). The fidelity
advantage of S is lost when noise is biased towards or away
any of the three directions. We notice in (a) that when noise is
biased heavily towards Y , using protocols G results in limited
fidelity improvement compared to to S and J . Similarly in
(b), when noise is biased heavily towards Y or X , using J
results in small fidelity enhancement. Comparatively, our set
of protocols S result in some amount of fidelity increase under
any noise-bias direction. This indicates protocols S can be
advantageous when only fidelities of the input faulty pairs are
known but one has little information on the shape of the noise.

B. Advantageous region of parameters

We have seen that the fidelity advantage of S exists when
input faulty pairs are close to Werner states. In this sec-
tion, we restrict them to be Werner states and examine the
parameter region inside � where fidelity advantage holds
[i.e., max(FG − FS , FJ − FS ) < 0]. In general, the region is
a four-dimensional subspace in �. To visualize the region, in
Fig. 7, we fix F3 to be equal to (a) 0.5390 and (b) 0.5690 and
show the three-dimensional subspace of [F0, F1, F2] bounded
by the closed surface. One can see from Fig. 7 that the three-
dimensional advantageous region is larger when F3 = 0.5390
than F3 = 0.5690. We have also found (not shown in Fig. 7)
that the advantageous region only exists when F3 > 0.5. When
F3 is close to 0.5, the region is small. The size of the region
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FIG. 6. Distillation fidelities FS (solid blue curve), FG(dotted red curve), and FJ (dashed green curve) for the three groups of protocols S,G
and J when the four input faulty states have respective fidelities F = [0.5390, 0.6332, 0.6332, 0.5888] with the same noise bias towards: (a)
Y (bit and phase) flip, (b) X (bit) flip, and (c) Z(phase) flip.

increases to F3 ≈ 0.5390 after which it decreases to zero when
F3 ≈ 0.75.

In Fig. 7, the advantageous regions (given by the three-
dimensional surfaces) show a discrete three-fold rotational
symmetry around the axis F1 = F2 = F3. This is expected, as
our search algorithm iterates through all protocols within each
class of protocols, which include all permutations of the given
faulty pairs. As a result, any permutation of given fidelities
that are in the advantageous region is also in the advantageous
region. One can see from the figures that the regions only exist
at some distance away from the axis of symmetry, and that
there seem to be two “parts” of the surface: one part lying
at lower fidelities and surrounds the symmetry axis, the other
part are longer and extends into higher fidelities.

We now present the concrete entanglement distillation pro-
tocol within each protocol set that leads to the advantageous
region. We choose F3 = 0.5390, F2 = 0.5888. Figures 8(a),
8(b) and 8(c) show the protocols within G, S , and J that
leads to the maximum distillation fidelities FG , FS , and FJ
for various F0, F1. The black contours in each plot are the

advantageous regions of S , which is essentially a “horizontal
slice” of Fig. 8 at F2 = 0.5888. We suggest the reader consult
the figure’s caption for more information. Here, we point out
several features of the graph. In Fig. 8(b), The entirety of each
black contour lies within a single region which represents a
specific permutation of faulty pairs. As an example, the previ-
ously presented F = [0.6332, 0.6332, 0.5888, 0.5390] which
has (F0, F1) = (0.6332, 0.6332) and belongs to the contour in
the top-right corner has a permutation “(0,1,2,3)”, which uses
entangled pair 3 (with a fidelity F3 = 0.5390) to C-SWAP the
zeroth and first entangled pairs (with fidelities 0.6332). Inter-
estingly, we find in Fig. 8(b) that it is always the entangled
pair with the lowest fidelity being used to C-SWAP the two
highest-fidelity pairs that lead to the highest distilled fidelity
in S . Second, one can also see from Figs. 8(a) and 8(c) that
the contours of advantage all lie at the boundaries and points
of intersections of different regions of G and S ′s protocols.
The reason for this is not known to us. Third, in (a) and
(c), the contour in the top-right corner overlaps with region
P, which only uses the zeroth (with fidelity 0.6332), first

FIG. 7. Regions of [F0, F1, F2] with (a) F3 = 0.5390 and (b) 0.5690 where protocols S have higher fidelity than G and J [i.e., max(FG −
FS , FJ − FS ) < 0]. The dashed line is specified by F0 = F1 = F2.

062601-11



ZAI ZUO, MICHAEL HANKS, AND M. S. KIM PHYSICAL REVIEW A 108, 062601 (2023)

FIG. 8. Concrete distillation protocols within each set of proto-
cols (a)G, (b)S, (c)J that lead to maximum fidelities for four Werner
states with various F0 and F1 when F3 = 0.5390 and F2 = 0.5888.
Within the black contours are where protocol S has fidelity advan-
tage over G and J . Meaning of notations in the legends that denote
the protocols are given as below. (a) A single number i in a pair of
parentheses means the ith entangled pair (with fidelity Fi) is simply
taken as the output and all other pairs are discarded. Two numbers
i and j in a pair of parentheses means the ith and jth entangled
pairs are DEJMPS-distilled. If there is an outer pair of parentheses
present, the distillation product of the inner pair of parentheses is
used as the input to the DEJMPS step described by the outer pair.
(b) “(i, j, k, l )” denotes the C-SWAP protocol where lth entangled
pair C-SWAPs the ith and jth entangled pairs. (c) Two numbers in
a pair of parentheses mean those two entangled pairs are DEJMPS
distilled. Three numbers in a pair of parentheses mean those pairs
are distilled using the three-pair distillation circuit as given in Fig. 2
with the order of appearance before the circuit the same as the order
with which the corresponding number appears in the parentheses.
If an outer pair of parentheses encompass an inner pair, the distil-
lation product of the inner parentheses is used as the input to the
distillation step described by the outer parentheses. A letter with a
prime represents a distillation protocol denoted with “0” and “1”
swapped compared with the letter without prime. For example, F′ in
(a) represents a protocol denoted by ((1,3),(0,2)) whereas F denotes
the protocol ((0,3),(1,2)).

(with fidelity 0.6332) and second faulty pairs (with fidelity
0.5888) and discards the third pair (with the lowest fidelity
0.5390). In contrast, our protocols S do not discard the
lowest-fidelity pair but use it to further enhance the fidelity
of distillation. This suggests our protocols may use the entan-
gled pairs more efficiently, which is beneficial when rate of
entanglement distribution is low.

VII. DISCUSSIONS

We have presented and studied the practical benefit of
applying indefinite causal order in the task of entanglement
distillation, which is an important and necessary protocol
in practical quantum communication. When four faulty en-
tangled pairs subject to Pauli noise are shared, we have
constructed a protocol where one faulty pair is used to control-
SWAP two other faulty pairs before two steps of the basic
DEJMPS entanglement distillation protocol are applied onto a
fourth faulty pair and the two SWAP-ed pairs. We have shown
that the constructed protocol can be seen as applying two
DEJMPS steps in a superposition of two causal orders. This
is done by showing that the overall trace-decreasing map of
the protocol can be expressed in the same form as a quantum
switch which indicates the presence of indefinite orders of two
trace-decreasing maps of the constituent DEJMPS steps. It is
also shown that for some input faulty states, the protocol re-
turns an output entangled state with higher fidelity and success
probability than a wide range of protocols constructed from
concatenation of smaller entanglement distillation protocols
that follow a definite causal order. This includes concatena-
tion of multiple DEJMPS steps, and concatenation between
a DEJMPS step and a typical three-pair distillation protocol
constructed from three-bit stabilizer quantum error-detecting
code. The circuit of our protocol has relatively low com-
plexity, making itself viable to implement and demonstrate
experimentally.

We believe effort should be made into understanding
whether, at least for the examples we presented in this paper,
the advantage of fidelity/probability of success is really due to
indefinite causal order per se, or can it be replicated/exceeded
with definite causal order protocols. This is to complement
the recent debate on indefinite-causal-order advantage in other
application settings. For example, the effect of noise reduction
from putting two noisy Pauli channels in an indefinite causal
order as presented in Ref. [11] was later found to be matched
in Ref. [37] with a setup (Fig. 6 of the paper) which consists
of the two noisy channels arranged in a definite causal order,
but there is an extra noiseless side channel generated from
the control state via an entangling gate between the control
and target states. The authors of Ref. [37] argue such a setup
shows that Ref. [11]’s noise advantage is not due to indefinite
causal order per se because it can be realized with other kinds
of causally-ordered resources. Here in our practical setup,
the meaning of “resource” and what count as “free resource”
is different and more specific. In the task of entanglement
distillation, local unitary gates and classical communication
are seen as free resource, and faulty entanglements are not
free (as they are hard to generate). The quantum switch in our
circuit should be seen as free resource as it is realized purely
with local unitary gates. In comparison, other “free resources”
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that feature “definite causal order” in our setting are other
types of entanglement distillation protocols outside of the sets
G and J . These protocols can be built from scratch using
local unitary gates. Another piece of work that questioned
the sole-advantage of quantum switch in noise reduction is
[38]. The authors proposed a setup which simply puts each
of the two channels on two separate paths and let the photon
propagate through a superposition of the two paths. For the
task of entanglement distillation, such a spirit can be realized
as the following protocol: using a faulty Bell pair (which
corresponds to the control qubit in Ref. [38]) to C-SWAP
two other faulty pairs before a distillation step is carried out
between a fourth faulty pair and one of the SWAPed pairs,
followed by a measurement on the control pair. This sim-
ulates a process in which the fourth pair is distilled with a
superposition of either one of the two swapped pairs followed
by a postselection via measuring the control pair. Compared
with protocol S ′s circuit in Fig. 5, one can see that this is
simply a sub-routine of that circuit which does not have the
second DEJMPS step at the end. This indicates it is unlikely
to surpass the performance of the our protocols S .

On the other hand, there are numerous possible extensions
of our work. A natural and immediate one is to compare
the advantage of fidelity and success probability of apply-
ing > 2 DEJMPS steps in an indefinite causal order over
definite-causal-order protocols that distill the same number of
faulty pairs. This will require multiple Bell states, or a smaller
number of higher-dimensional entangled states to act as the
control state of the quantum switch. Alternatively, one may
also consider still using one faulty Bell state as the control
state by keeping the number of constituent CP maps in the
superposition at two where each constituent CP map will be an
entanglement distillation protocol that uses more faulty pairs.
Extensions to superposing the causal orders of multipartite
entanglement distillation protocols and one-way entangle-
ment distillation protocols can also be carried out. Given the
known connection [22,31] of one-way entanglement distilla-
tion protocols with stabilizer quantum error correction codes,
we hope the possible existence of advantage can stimulate
effort into incorporating indefinite causal structures into the
encoding/decoding of quantum error-correcting codes, which
is a vital part of practical quantum information processing.
Additionally, modifications similar to our proposal can be
envisioned for many other distillation-like and breeding-like
protocols that feature repeated applications of some subrou-
tine, each featuring a subsystem interacting with ancillary
states. Some examples include: distillation of magic states for
universal quantum computation [39,40], and repeated breed-
ing of oscillator states [41] for distillation of bosonic quantum
error-correcting codewords.
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FIG. 9. Circuit for two concatenated steps of noisy teleportation.
Hi, where i ∈ {0, 1, 2, 3, 4} denotes the Hilbert spaces of the corre-
sponding qubits.

APPENDIX: TWO QUANTUM TELEPORTATION STEPS
APPLIED UNDER INDEFINITE CAUSAL ORDER

One noticeable proposal for application of indefinite causal
order in quantum communication is putting two teleporta-
tion steps in a superposition of causal orders. The standard
quantum teleportation protocol [42] has a |�+〉 state shared
between Alice and Bob. For Alice to teleport her qubit |ψ〉,
she performs a Bell measurement between |ψ〉 and her qubit
of |�+〉. The measurement result is sent to Bob via a classi-
cal channel. Bob maps the measurement result onto a Pauli
operator which he performs on the teleported state to recover
|ψ〉. It is known from [43] that when the shared entangled
state is noisy, the above protocol is essentially |ψ〉 undergoing
a generalized depolarising channel. Two noisy teleportation
steps applied in series naturally degrades |ψ〉 more than one
step. It was claimed, however, in Refs. [18–20] that applying
two teleportation steps in an indefinite causal order reduces
the noise of the final target state as compared to the two steps
applied back-to-back. In Ref. [19], a photonic implementation
of this scheme is proposed where entangled photon pairs pass
through beam splitters and subsequent Bell measurements
such that a distinct causal order is featured on each output path
of the beam splitters. On one of the two paths, SWAP gates
are performed on the photon pairs to simulate the swapping
of teleportation channels. The author in Ref. [19] considered
the case when the entangled pair is pure but not maximally
entangled. In this section, we examine their proposals [18–20]
more carefully and show that no noise reduction of the target
state actually occurs.

We first consider two concatenated standard teleportation
steps with the input target state |ψ〉〈ψ | in Hilbert space H0,
whose circuit in shown in Fig. 9. A pure but not maximally
entangled state χ is in Hilbert space H1 ⊗ H2:

χ =
∑
mn

σ (2)
m |�+〉〈�+|σ (2)

n qmn (A1)

where σm and σn are Pauli operators, the superscript “2”
means the Pauli noise occurs on the qubit of χ in Hilbert space
H2 as denoted in Fig. 9. qmn denotes the entries of the density
matrix under the Bell basis. A second pure yet not maximally
entangled pair ξ lies in Hilbert space H3 ⊗ H4:

ξ =
∑
m′n′

σ
(4)
m′ |�+〉〈�+|σ (4)

n′ sm′n′ . (A2)
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The superscripts “4” again denotes the Hilbert space on which
we assume Pauli noise occurs. The first teleportation step
carried out with χ and the original target state |ψ〉〈ψ | yields

ρ =
∑
nmi

σ
(2)
i G(01)

i |ψ〉〈ψ | ⊗ σ (2)
n |�+〉〈�+|σ (2)

m qmnG(01)
i σ

(2)
i

(A3)
where G(01)

i is the Bell measurement projector associated with
outcome i and σ

(2)
i is the corresponding Pauli correction ap-

plied on the output Hilbert space. We now want to express the
errors on ρ in terms of the errors σm, σn on χ . The Pauli errors
σn and σm commute with G(01)

i as they act on different Hilbert
spaces. They commute with σi if m(n) = i, or anti-commute
with σi if otherwise. This means

ρ =
∑
nmi

σ (2)
n

(
σ

(2)
i G(01)

i |ψ〉〈ψ | ⊗ |�+〉〈�+|G(01)
i σ

(2)
i

)

σ (2)
m AniAimqmn

=
∑
nmi

σ (2)
n |ψ〉〈ψ |σ (2)

m AniAimqmn,

(A4)

where A is a global phase caused by permuting σm,n with σi.
Ani = 1 when [σn, σi] = 0 and = −1 if they anti-commute.
The second line is due to the part in the large parenthesis
is simply |ψ〉〈ψ | which comes from a perfect teleportation
with noiseless |�+〉. We note that

∑
i AniAim = δnm. This

eliminates all summing components where n �= m and we
arrive at

ρ =
∑

m

σm|ψ〉〈ψ |σmqmm, (A5)

which, as expected from [43], is the original state |ψ〉 under-
gone a depolarising channel. ρ now goes through the second
teleportation channel which has an output ρ ′ expressed as

ρ ′ =
∑

mm′n′k

σ
(4)
k G(23)

k

[
σ (2)

m |ψ〉〈ψ |σ (2)
m qmn

]⊗
× σ

(4)
m′ |�+〉〈�+|σ (4)

n′ sm′n′G(23)
k σ

(4)
k , (A6)

where the superscripts denote the Hilbert spaces of the cor-
responding operations. Like before, we move σ

(4)
m′ and σ

(4)
n′

across the Pauli corrections during which global phases Am′k
and An′k arise:

ρ ′ =
∑

mm′n′k

σ
(4)
m′ σ

(4)
k G(23)

k

[
σ (2)

m |ψ〉〈ψ |σ (2)
m qmn

] ⊗ |�+〉〈�+|

× sm′n′G(23)
k σ

(4)
k σ

(4)
n′ Am′kAn′k . (A7)

We notice that ρ now can be interpreted as the inner state
σ (2)

m |ψ〉〈ψ |σ (2)
m passing through a perfect teleportation chan-

nel followed by σ
(4)
m′ on the ket side (or σ

(4)
n′ on the bra side).

Since a perfect teleportation preserves the target state, a Pauli
error σ (2)

m commutes with a perfect teleportation. Having an
error on the input target state has the same effect as having
the error on the perfectly teleported state. We can hence move
σ (2)

m across σ
(4)
k and G(23)

k , giving

ρ ′ =
∑

mm′n′k

σ
(4)
m′ σ (4)

m

[
σ

(4)
k G(23)

k |ψ〉〈ψ | ⊗ |�+〉〈�+|G(23)
k σ

(4)
k

]

× σ (4)
m σ

(4)
n′ Am′kAn′kqmnsm′n′

=
∑

mm′n′k

σ
(4)
m′ σ (4)

m |ψ〉〈ψ |σ (4)
m σ

(4)
n′ Am′kAn′kqmnsm′n′

=
∑

mm′n′k

σ
(4)
m′ σ (4)

m |ψ〉〈ψ |σ (4)
m σ

(4)
n′ δm′n′qmnsm′n′

=
∑
mn

σnσm|ψ〉〈ψ |σmσnqmmsnn. (A8)

We now calculate the state produced from the scheme
proposed in [19] which uses a control qubit |c〉 = |+〉 =
1/

√
2(|0〉 + |1〉) to swap χ and ξ , then does the two tele-

portation steps before measuring |c〉 in the Fourier basis and
postselecting the “+” outcome. Before measuring |c〉, the
overall state R̂ which consists of |c〉 and teleportation target
state |ψ〉 reads

R = |0〉〈0|
2

⊗
∑
mn

σnσm|ψ〉〈ψ |σmσnqmmsnn + |1〉〈1|
2

⊗
∑
mn

σmσn|ψ〉〈ψ |σnσmqmmsnn

+ |0〉〈1|
2

⊗
∑

mnm′n′ik

σ
(4)
k G(23)

k

[
σ

(2)
i G(01)

i |ψ〉〈ψ | ⊗ σ (2)
m |�+〉〈�+|σ (2)

n′ qmnG(01)
i σ

(2)
i

] ⊗ σ
(4)
m′ |�+〉〈�+|σ (2)

n

× sm′n′G(23)
k σ

(4)
k + |1〉〈0|

2
⊗

∑
mnm′n′ik

σ
(4)
k G(23)

k

[
σ

(2)
i G(01)

i |ψ〉〈ψ |⊗

× σ
(2)
m′ |�+〉〈�+|σ (2)

n qmnG(01)
i σ

(2)
i

] ⊗ σ (4)
m |�+〉〈�+|σ (2)

n′ sm′n′G(23)
k σ

(4)
k . (A9)

For the last two terms in the summation, we follow a similar strategy by moving the Pauli errors on the entangled pairs pass the
Pauli corrections where global phases arise from commutation (or anticommutation). This gives

R = |0〉〈0|
2

⊗
∑
mn

σnσm|ψ〉〈ψ |σmσnqmmsnn + |1〉〈1|
2

⊗
∑
mn

σmσn|ψ〉〈ψ |σnσmqmmsnn + |0〉〈1|
2

⊗
∑
mn

σnσm|ψ〉〈ψ |σmσnqmnsnm

+ |1〉〈0|
2

⊗
∑
mn

σmσn|ψ〉〈ψ |σnσmqmnsnm. (A10)
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The fact that χ and ξ are pure states means that smn and
qmn are factorizable: they can be written as smn = umu∗

n and
qmn = vmv∗

n where u = {um} and v = {vm} are normalized
probability amplitudes of each Bell component such that
|u| = |v| = 1. We consider a common situation (which is
also the case considered in Ref. [19]) where the two faulty
pairs, χ and ξ , are identical. This is motivated from the
speculation that they may come from the same single photon
generator. This means u = veiφ with some constant phase
factor φ. We then have qmnsnm = vmv∗

nunu∗
m = vm(u∗

neiφ )un

(v∗
me−iφ ) = vmv∗

munu∗
n = qmmsnn. Substituting this

into Eq. (A10) and notice that σnσm|ψ〉〈ψ |σmσn =
σmσn|ψ〉〈ψ |σnσm for any n, m since σn and σm either
commute or anticommute, one can express R̂ as

R = |+〉〈+| ⊗ ρ ′, (A11)

which yields an output state ρ ′, the same as that from two
definite-order teleportation steps, regardless of the basis and

outcome of measurement on the control qubit. no noise re-
duction has occurred.

We leave as future work to examine the more general case
when χ and ξ are mixed states. We expect, however, more
practical challenges to implement the scheme in Ref. [19] in
this case. This is because the mixed Pauli noise is likely to
occur during storage or transmission of the entangled states.
It is not hard to see that in order for noise interference to oc-
cur due to indefinite causal order, controlled-swapping of the
two entangled pairs must happen after, not before the mixed
Pauli noises. This means if, for example, the major source of
noise comes from the physical communication channel during
transmissions of the entangled pairs, the controlled-swap will
have to be carried out between remote parties. Suppose the
two faulty entangled pairs are shared between Alice & Bob
and Bob & Charlie, respectively, then extra perfect Bell pairs
will have to be pre-shared between Alice & Charlie for the
remote-swap. The required extra resources bring additional
challenges to the practical implementation.
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