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Minimum-time generation of a uniform superposition in a qubit
with only transverse field control
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We consider a two-level system with a fixed energy spacing (detuning) between the two levels and a single
transverse control field which can take values between zero and a maximum amplitude. Using Pontryagin’s
maximum principle, we completely solve the problem of generating in minimum time a uniform superposition
of the two quantum states when starting from one of them, for all the values of the ratio between the maximum
control amplitude and the detuning. For each value of this ratio we find the optimal pulse sequence to have
the bang-bang form and calculate the durations of the pulses composing it. The suggested framework is not
only restricted to the problem at hand, but it can be also exploited in the problem of fast charging a quantum
battery based on a two-level system, as well as for the optimization of pulse sequences used for the controlled
preparation of the excited state in a quantum emitter, which is a prerequisite for its usage as a single-photon
source.
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I. INTRODUCTION

Quantum optimal control constitutes a stepping stone to
the implementation of many modern quantum technologies
[1–4]. The successful realization of several essential tasks in
quantum computation and quantum sensing, relies heavily on
the ability to accurately manipulate the underlying quantum
systems using properly designed electromagnetic pulses [5,6].
To minimize the devastating effect of decoherence and dissi-
pation, it is generally desirable to reach the target quantum
states within short times.

Pontryagin’s Maximum Principle [7] is the premier math-
ematical tool for solving optimal control problems and has
been also exploited in the context of quantum systems [8,9].
Specifically, this methodology has been successfully used for
the time-optimal control of a single two-level system [10–15],
the simultaneous manipulation of two uncoupled two-level
systems [16–18], and even an ensemble of such systems
[19]. In all the above works, dissipation and decoherence are
ignored. The time-optimal control of a two-level system in
the presence of relaxation has been studied in several works
[20–24], along with the optimal manipulation of a pair of
coupled two-level systems [25,26], mostly in the context of
nuclear magnetic resonance. The minimum-time generation
of entanglement between coupled two-level systems was in-
vestigated in Ref. [27]. The Maximum Principle has been
also employed for the efficient population transfer in three-
level quantum systems [28–38], as well as for many-body
systems [39,40]. Other applications include the fast cooling of
atoms [41,42] and condensates [43], the fast atomic transport
without final excitations [44,45], the squeezing of coherent
states [46], the frictionless decompression of condensates
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[47], the fast generation of entanglement between coupled
harmonic [48] and nonlinear [49] oscillators, and other op-
erations in continuous variable quantum systems [50]. It has
also inspired optimal strategies for the efficient control of a
qubit in contact with a structured environment [51–53], for
quantum sensing using the electron nuclear spin [54,55], as
well as general numerical methods for searching bang-bang
optimal controls [56–59]. A recent more “exotic” application
is the fast charging of quantum batteries [60].

In the present work we consider a two-level system without
relaxation, with a fixed energy spacing (detuning) between the
two levels, corresponding to a fixed longitudinal field, and
only available control one transverse field, restricted to take
values between zero and a maximum amplitude. Using the
Maximum Principle and building upon the seminal work of
Boscain and Mason [10], we completely solve the problem of
generating in minimum time a uniform superposition of the
two qubit states, when starting from one of them, for all the
positive values of the maximum amplitude of the transverse
control field. On the Bloch sphere, the problem can be stated
as bringing the Bloch vector from initially the north pole to
the equator in minimum time, while the problem in Ref. [10]
was to transfer the Bloch vector from the north to the south
pole, using a transverse control which could also acquire
negative values. We show that when the maximum amplitude
is greater or equal to the detuning, then a single On pulse
is optimal, where the control takes its maximum value for
the whole interval. When the maximum amplitude is smaller
than the detuning, the optimal control has the bang-bang form,
with alternating On and Off (zero) pulses. For each value of
the ratio between the maximum control amplitude and the
detuning, we find the candidate optimal pulse-sequences. We
show that there are actually two types, one symmetric, where
the initial and final On pulses have the same duration, and
one complementary, where these durations add up to give
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the duration of an intermediate On pulse in the sequence.
For the second type we find analytical expressions for the
durations of the pulses, as functions of the ratio, while for
the first type the durations of the pulses are obtained after
solving numerically a transcendental equation which depends
on that ratio. The comparison between the total durations of
the candidate optimal pulse sequences reveals a simple pattern
of optimality. The space between zero and one, where the ratio
between the maximum control amplitude and the detuning
takes values, is divided into intervals, and within each interval
the complementary type is optimal for larger ratio values, but
as it decreases and after some point the symmetric type be-
comes optimal. As we move between consecutive intervals for
the decreasing ratio, the pulse sequences acquire an additional
On-Off pair of pulses.

The suggested framework is not only restricted to the prob-
lem at hand, but it can be also exploited in the problem of
charging a two-level quantum battery in minimum-time [60],
as well as for the optimization of the swing-up of quantum
emitter population (SUPER) excitation scheme [61,62], where
a properly modulated square pulse-sequence is used for the
controlled preparation of the excited state in a quantum emit-
ter, a prerequisite for its usage as a single-photon source.
This article is organized as follows. In Sec. II we formulate
the optimal control problem, while in Sec. III we analyze
it and present the solution for maximum control amplitude
larger than the detuning. In Sec. IV we solve the optimal
control problem for maximum control amplitude smaller than
the detuning, in Sec. V we present specific examples, while
Sec. VI concludes this work.

II. OPTIMAL CONTROL PROBLEM

Consider a two-level system with Hamiltonian

Ĥ (t ) = h̄

2
�σz + h̄

2
�(t )σx, (1)

where σx, σz are the Pauli matrices, � > 0 is the constant
detuning, and �(t ) ∈ [0,�0] is the time-dependent Rabi fre-
quency, which is bounded and acts as the control on the
system. We would like to find the optimal �∗(t ), which drives
the qubit from the starting state |�0〉 = |1〉 (up state) to the
target uniform superposition state

|� f 〉 = 1√
2

(|0〉 + eiϕ |1〉), (2)

with arbitrary phase ϕ, in minimum time. The state of the
qubit can be generally expressed as

|�(t )〉 = c0(t )|0〉 + c1(t )|1〉, (3)

so from the Schrödinger equation we find the system

i

(
ċ1

ċ0

)
= 1

2

(
� �

� −�

)(
c1

c0

)
. (4)

The starting state is c1(0) = 1, c0(0) = 0 and the target state
at the final time t f is such that

|c1(t f )| = |c0(t f )| = 1√
2
. (5)

To have real state variables and use the optimal control
formalism, we transform the system on the Bloch sphere,
using the mapping

x = c1c∗
0 + c0c∗

1 = 2Re(c1c∗
0 ), (6a)

y = i(c1c∗
0 − c0c∗

1 ) = −2Im(c1c∗
0 ), (6b)

z = |c1|2 − |c0|2 = c1c∗
1 − c0c∗

0. (6c)

Then, Eq. (4) becomes⎛
⎝ẋ

ẏ
ż

⎞
⎠ =

⎛
⎝0 −� 0

� 0 −�

0 � 0

⎞
⎠
⎛
⎝x

y
z

⎞
⎠, (7)

which can be written in compact form as

�̇r = �B(t ) × �r, (8)

with the state of the system being expressed by the Bloch
vector �r = (x, y, z)T . This equation corresponds to rotations
of the Bloch vector around the instantaneous total field

�B(t ) = �(t )x̂ + �ẑ. (9)

The initial state �r(0) = (0, 0, 1)T coincides with the north
pole, and the objective is to find the optimal transverse field
�∗(t ) ∈ [0,�0], which brings the Bloch vector on the equator
in minimum time. The terminal boundary condition is thus

z(t f ) = 0, (10)

and the cost function to be minimized is

J =
∫ t f

0
1 dt . (11)

Note that a closely related approach to address time-
optimal quantum control problems is the quantum brachis-
tochrone method [63], which also requires the solution of
a two-point boundary value problem. As a result, practical
solutions of quantum control problems using this method
are also relatively rare and typically correspond to highly
symmetric cases where the resulting quantum brachistochrone
equations can to a large extent be simplified analytically, as
in Ref. [64]. Here we follow the optimal control approach
since it is more standard and straightforward, for example,
we require explicitly the minimization of time and not of
a functional involving the quantum state while there is no
need for constraints ensuring the preservation of the form of
the Hamiltonian. Furthermore, the corresponding algorithms
which are necessary for numerical optimal control of more
complex quantum systems are well developed.

III. ANALYSIS OF THE OPTIMAL CONTROL
PROBLEM AND SOLUTION FOR �0 � �

For the previously stated optimal control problem, the con-
trol Hamiltonian is [65]

Hc = 1 + λxẋ + λyẏ + λzż

= 1 + λx(−�y) + λy(�x − �z) + λz�y

= 1 + (λyx − λxy)� + (λzy − λyz)�, (12)
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where the first terms comes from the integrand of the running
cost (11) while the costates λx, λy, λz satisfy the adjoint equa-
tions

λ̇x = −∂Hc

∂x
= −�λy, (13a)

λ̇y = −∂Hc

∂y
= �λx − �λz, (13b)

λ̇z = −∂Hc

∂z
= �λy. (13c)

These can be written in compact form as

�̇λ = �B(t ) × �λ, (14)

where �λ = (λx, λy, λz )T , and are the same with the state
equations (8) for the Bloch vector. The terminal boundary
conditions for the costates can be found from the general
expression [65]

λT (t f ) = ∂	

∂r(t f )
+ v

∂φ

∂r(t f )
, (15)

where 	 = 	[r(t f ), t f ] is the terminal cost and φ =
φ[r(t f ), t f ] is the terminal boundary condition, with 	 = 0
and φ = z(t f ) in this particular case, while v is a Langrange
multiplier to be determined. Consequently,

λx(t f ) = v
∂z(t f )

∂x(t f )
= 0, (16a)

λy(t f ) = v
∂z(t f )

∂y(t f )
= 0, (16b)

λz(t f ) = v
∂z(t f )

∂z(t f )
= v. (16c)

Using the above relations we can show that the inner prod-
uct of state and costate vectors is constant and equal to zero

�λ · �r = 0. (17)

Indeed,

d

dt
(�λ · �r) = �̇λ · �r + �λ · �̇r

= ( �B × �λ) · �r + �λ · ( �B × �r)

= �λ · (�r × �B) + �λ · ( �B × �r)

= 0, (18)

and

�λ(t f ) · �r(t f ) = λx(t f )x(t f ) + λy(t f )y(t f ) + λz(t f )z(t f ) = 0.

(19)

From this we can find using the initial conditions at t = 0 that
λz(0) = 0.

We next move to find the optimal pulse sequence. The
control Hamiltonian can be expressed as

Hc = 1 + φx� + φz�, (20)

where

φx = yλz − zλy, (21a)

φy = −xλz + zλx, (21b)

φz = xλy − yλx. (21c)

According to Pontryagin’s Maximum Principle [65], the
optimal control �∗(t ) is selected to minimize the control
Hamiltonian for almost all times (except probably a measure
zero set), while the control Hamiltonian for the optimal �∗(t )
is constant, equal to zero for minimum time problems like
the one studied here, Hc = 0. Since the control Hamiltonian
is linear in the bounded variable � ∈ [0,�0], the optimal
pulse sequence is determined by the switching function φx

multiplying the control �(t ). Specifically, �∗(t ) = 0 while
φx > 0 and �∗(t ) = �0 while φx < 0. The Maximum Prin-
ciple provides no information about the optimal control for
finite time intervals where the switching function is zero. In
such cases the control is called singular and is determined
from the requirements φx = φ̇x = φ̈x = · · · = 0. It becomes
obvious that, to find the optimal �∗(t ), it is necessary to track
the time evolution of φx. Using the state and costate equations,
it is not hard to verify that the components of the vector

�φ = (φx, φy, φz )T = �r × �λ (22)

satisfy the equation

φ̇x = −�φy, (23a)

φ̇y = �φx − �φz, (23b)

φ̇z = �φy, (23c)

thus also

�̇φ = �B(t ) × �φ. (24)

Now we examine the possibility for singular controls. If we
assume that φx = 0 in a finite time interval then, for � �= 0,
we also get φy = 0 from Eq. (23a) and φ̇z = 0 from Eq. (23c).
The constant value of φz is found as φz(t ) = −1/�, from
Eq. (20) and the requirement of the Maximum Principle that
Hc = 0 at all times for a minimum time problem. From the
above analysis and Eq. (23b), on the singular arc we also have

φ̇y = 0 ⇒ �φz = 0 ⇒ � = 0. (25)

Thus, on the singular arc the control field is zero. Using
Eq. (22) we can show that the inner product �φ · �r is constant,
with value

�φ · �r = �φ(0) · �r(0)

= φx(0)x(0) + φy(0)y(0) + φz(0)z(0)

= 0, (26)

where we used that x(0) = y(0) = 0 and φz(0) = 0 from
Eq. (21c). On the singular arc, where φx = φy = 0 and φz =
−1/� �= 0, the above relation gives that z = 0. Consequently,
singular arcs are contained in the equator and are thus not
encountered in the optimal solution of the present problem,
where the target is to reach the equator in minimum time.

The optimal control switches between the boundary values
0 and �0, having the so-called bang-bang form. Because
φz(0) = 0, the optimal pulse sequence should start with
�(t ) = �0, to avoid Hc(0) = 1. Also, it should end with
�(t ) = �0 since �(t ) = 0 corresponds just to a rotation
around the z axis. We next show that an Off bang, �(t ) = 0,
cannot occur in between for the case where �0 > �. Let ts be
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a switching time from �(t ) = �0 to �(t ) = 0, thus

φx(ts) = 0 and φ̇x(ts) = A > 0. (27)

From Eqs. (23) we find that, during the off bang, the switching
function obeys the equation

φ̈x = −�φ̇y = −�2φx. (28)

For the initial conditions (27) at t = ts, the solution is

φx(t ) = A sin [�(t − ts)]. (29)

The duration of the Off bang is the time it takes for φx to
become zero again, thus

toff = π

�
. (30)

A pulse sequence containing such a bang should last longer
than the Off duration, t f > toff.

We next show that when �0 > � a single On pulse �(t ) =
�0 can reach the target in shorter time than Eq. (30). For easi-
ness we will perform the calculations using the corresponding
constant quantum mechanical Hamiltonian

Ĥ = h̄

2
(�σz + �0σx )

=
h̄
√

�2 + �2
0

2
(nxσx + nzσz ), (31)

where

nx = �0√
�2 + �2

0

,

nz = �√
�2 + �2

0

, (32)

with n2
x + n2

z = 1. The corresponding propagator is

U (t f ) = e− i
h̄ Ĥt f = e− i

2 γ n̂·σ̂ , (33)

with γ = t f

√
�2 + �2

0 and n̂ = (nx, 0, nz )T . Using the fol-
lowing well-known identity involving Pauli matrices

e− i
2 γ n̂·σ̂ = cos

(γ

2

)
Î − i sin

(γ

2

)
(n̂ · σ̂ ), (34)

we get

U (t f ) =
[

cos γ

2 − inz sin γ

2 −inx sin γ

2

−inx sin γ

2 cos γ

2 + inz sin γ

2

]
. (35)

From the relation

|�(t f )〉 = U (t f )|�0〉 (36)

and since the initial state is |�0〉 = (1, 0)T , we find the fol-
lowing probability amplitudes for the final state

c1(t f ) = cos
γ

2
− inz sin

γ

2
, (37a)

c0(t f ) = −inx sin
γ

2
. (37b)

FIG. 1. Duration of the optimal single On pulse versus r =
�0/�, for r � 1.

The terminal condition that the final point lies on the equator,
z(t f ) = |c1(t f )|2 − |c0(t f )|2 = 0, gives

cos2 γ

2
+ n2

z sin2 γ

2
= n2

x sin2 γ

2
, (38)

and using that n2
z = 1 − n2

x we find

sin
γ

2
= 1√

2nx

=
√√√√1

2

[
1 +

(
�

�0

)2
]
. (39)

For �0 > � the right-hand side of the above equation is
smaller than 1, thus there is a solution γ /2 < π/2 ⇒ γ < π .

But γ = t f

√
�2 + �2

0, so we end up with the relation

t f <
π√

�2 + �2
0

<
π

�
. (40)

From this inequality we conclude that for �0 > � the single
On pulse reaching the target is shorter than any pulse sequence
containing Off pulses, thus it is the optimal solution.

The duration of the pulse is determined by �0 and �,
which also determines the terminal position on the equator
and the relative phase φ of the superposition. If we define
parameter r as the ratio

r = �0

�
, (41)

then from Eq. (39) we get

t f � = 2√
r2 + 1

sin−1

√
1

2

(
1 + 1

r2

)
. (42)

In Fig. 1 we plot the duration of the optimal pulse versus r.

IV. OPTIMAL SOLUTION WHEN �0 < �

When �0 < �, the right-hand side of Eq. (39) is larger
than 1, so there is no real γ to satisfy it and a single On
pulse cannot bring the Bloch vector on the equator. In this
case, the optimal solution consists of a sequence of On and
Off pulses since no singular control is encountered as it was
shown in the previous section. Additionally, because an Off
pulse corresponds to a rotation around the z axis, the optimal
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pulse sequence for the problem under investigation cannot end
with such a pulse, but has the form On-Off-On-. . .-Off-On.
The number and duration of these pulses depend on the ratio
r = �0/�. In this section we will determine the correspond-
ing optimal pulse sequences.

The switching function φx determines the duration of the
individual On and Off pulses, as explained in the previous
section. We can obtain an equation for φx working as follows.
We take the time derivative in Eq. (23a) and substitute φ̇y from
Eq. (23b) to find

φ̈x = −�φ̇y = −�2φx + ��φz. (43)

For a minimum-time optimal control problem, as we have
here, the control Hamiltonian is zero throughout Hc = 0
according to optimal control theory [65]. This condition,
through Eq. (20), is translated to the relation

φz = −1 + φx�

�
. (44)

Substituting the above expression for φz in Eq. (43) we get

φ̈x + (�2 + �2)φx + � = 0, (45)

where we note that, during each individual pulse the control
�(t ) is held constant, equal to �0 for On pulses and 0 for Off
pulses.

Solving this second-order differential equation during the
On and Off pulses will provide insight regarding their dura-
tion. Observe that it is easier to solve Eq. (45) in each time
interval where �(t ) is held constant. We will use the following
notation to distinguish the solution in each domain

φx =

⎧⎪⎨
⎪⎩

φ(I)
x (t ) if t ∈ first On,

φ(II)
x (t ) if t ∈ Off,

φ(III)
x (t ) if t ∈ subsequent On.

(46)

Note that we treat separately the cases of the initial and subse-
quent On pulses since the corresponding boundary conditions
for φx are different, as we will explain below. For simplifica-
tion of the results we are also defining a modified time as

t̃ = t
√

�2 + �2. (47)

Let s denote the duration of the first On pulse. The bound-
ary conditions for this time interval are φ(I)

x (0) = −1/�0,
which rises from the fact that Hc = 0 and φz(0) = 0, as we
discussed in the previous section, and φ(I)

x (s) = 0 because the
On pulse terminates when the switching function becomes
zero for the first time. Using these boundary conditions we
find

φ(I)
x (t ) =

sin t̃
sin s̃ (cos s̃ + r2) − cos t̃ − r2

�r(r2 + 1)
. (48)

As displayed in Fig. 2, during the first On pulse the vector �φ
travels the dashed green trajectory from point A on the φz = 0
plane to point B on the φx = 0 plane.

We next move to the first Off pulse. Since we are interested
in the duration of the pulse, we will set the zero of time at the
beginning of the pulse and solve Eq. (45) with this convention.
The boundary conditions now are that the switching function
should vanish at the beginning and end. But instead of using
the terminal condition, we can exploit that φ̇x = −�φy is a

FIG. 2. Trajectory of �φ in the cases where the first and the last
On pulses are (a) equal and (b) complementary.

continuous function, because φy is continuous, and use the
initial value of φ̇x instead. Thus, the initial conditions for the
first Off pulse are φ(II)

x (0) = φ(I)
x (s) = 0 and

φ̇(II)
x (0) = φ̇(I)

x (s) = r2 cot s̃ + csc s̃

r
√

r2 + 1
. (49)

Solving Eq. (45) with the above conditions we get that

φ(II)
x (t ) = r2 cot s̃ + csc s̃

�r
√

r2 + 1
sin(�t ), (50)

which of course has the form (29). From the above relation it
is obvious that the duration of the Off pulse is toff = π/�, as
given in Eq. (30), because φ(II)

x (toff ) = 0 for the first time after
the onset of this pulse. During the Off pulse, vector �φ travels
the solid blue trajectory counterclockwise between points B
and C of the φx = 0 plane.

Working similarly as before and using the duration of the
Off pulse, we can find the initial conditions for the next On
pulse. We have φ(III)

x (0) = φ(II)
x (toff ) = 0 and

φ̇(III)
x (0) = φ̇(II)

x (toff ) = − r2 cos s̃ + 1

r
√

r2 + 1 sin s̃
. (51)
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Solving Eq. (45) for the On pulse with those initial conditions
we get

φ(III)
x (t ) = r2[cos t̃ − cot s̃ sin t̃ − 1] − csc s̃ sin t̃

�r(r2 + 1)

= − r

�(r2 + 1)

[
1 + sin (t̃ − θ )

sin θ

]
, (52)

where angle θ is

θ = tan−1

(
r2 sin s̃

1 + r2 cos s̃

)
. (53)

If the On pulse is not the last in the sequence, then its duration
ton is such that condition φ(III)

x (ton) = 0 is satisfied for the first
time from the onset of the pulse. From Eq. (52) we easily get

t̃on = π + 2θ = π + 2 tan−1

(
r2 sin s̃

1 + r2 cos s̃

)
, (54)

where ton is expressed as a function of the duration s of the first
On pulse, while we note that the longer solution t̃on = 2π , cor-
responding to an entire period, is rejected. Vector �φ travels the
inclined trajectory shown in Fig. 2, counterclockwise between
points C and B.

For the subsequent Off and On pulses which may exist
in the pulse sequence, the boundary conditions are the same
as described in the corresponding cases above, so we repeat-
edly get the same solutions φ(II)

x (t ) and φ(III)
x (t ), respectively.

During the Off pulses, vector �φ traces the horizontal blue
trajectory from B to C in time toff = π/�, while during the
intermediate On pulses (between the first and the last) traces
the inclined trajectory between C and B in time ton, which
is expressed in terms of the duration s of the first On pulse
through Eq. (54).

The only thing left is to find an expression for the duration
f of the final On pulse. From the terminal conditions for the
costates (16) and the definition (21) we obtain φz( f ) = 0 at
the terminal point. This relation, in combination with Eq. (44),
leads to the final condition φ(III)

x ( f ) = −1/�0. Observe that
the terminal conditions for φx, φz are the same as the initial
conditions for the first On pulse. This symmetry leads to the
two possible situations depicted in Fig. 2. In the symmetric
case, shown in Fig. 2(a), vector �φ travels the red segment from
C to D, where point D on the φz = 0 plane is symmetric to
point A with respect the φx axis. Because of this symmetry,
the duration of the last On pulse (red segment) is equal to
that of the first On pulse (green dashed segment). In the
complementary case, shown in Fig. 2(b), vector �φ returns to
point A from point C along the red segment. Obviously, now
the sum of the durations of the first and last On pulses equals
the duration of the intermediate On pulses. We thus have the
following two cases:

f =
{

s symmetric case,
ton − s complementary case. (55)

The above geometric considerations can be easily
verified algebraically. For the symmetric case, using
the first line of Eq. (52) one can immediately see that
φ(III)

x (s) = −1/�0. Also, for the complementary case
it is sin(t̃on − s − θ ) = sin(π + θ − s) = sin(s − θ ), and

from the second line of Eq. (52) we get φ(III)
x (ton − s) =

φ(III)
x (s) = −1/�0.

We expressed the durations of all pulses as functions of
the duration of the initial On pulse s. The value of s will
be determined from the condition that the final point of the
trajectory should lie on the equator. To apply this condition,
we need to find the total propagator corresponding to the
symmetric and complementary cases. Since the optimal pulse
sequences in both cases include concatenations of Off and full
(intermediate) On pulses, it is useful to find the propagator
corresponding to a sequence of n such On-Off pairs. Using
identity (34) we find the propagators for the single full On
and Off pulses

Uoff = −iσz, (56)

Uon = cos
t̃on

2
Î − i sin t̃on

2√
r2 + 1

(rσx + σz ). (57)

The propagator corresponding to a pair of an Off pulse fol-
lowed by a full On pulse can be expressed as a single rotation
around a different axis as

UonUoff = −e− i
2 αν̂·σ̂ , (58)

where the angle α and unit vector ν̂ = (0, νy, νz )T are defined
as

α = 2 cos−1

(
sin t̃on

2√
r2 + 1

)
, (59a)

νy = r sin t̃on
2√

r2 + 1 sin α
2

, (59b)

νz = −cos t̃on
2

sin α
2

. (59c)

Note that both α and ν̂ are functions of the duration s of the
first On pulse. The propagator corresponding to a sequence of
n such On-Off pairs is thus

(UonUoff )
n = (−1)ne− i

2 nαν̂·σ̂ . (60)

This relation will become handy in the following.

A. Complementary case

The total propagator for a candidate optimal pulse se-
quence containing n Off pulses and for the case where the first
and the last On pulses are complementary, thus their durations
s, s∗ satisfy s + s∗ = ton, is

U = Us∗Uoff UonUoff · · ·UonUoff︸ ︷︷ ︸
n−1

Us

⇒ UsU = UsUs∗︸ ︷︷ ︸
on

Uoff UonUoff · · ·UonUoff︸ ︷︷ ︸
n−1

Us

⇒ UsU = UonUoff · · ·UonUoff︸ ︷︷ ︸
n

Us

⇒ UsU = (−1)ne− i
2 nαν̂·σ̂Us

⇒ U = (−1)nU−se
− i

2 nαν̂·σ̂Us, (61)
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where α, ν̂ are given in Eq. (59). Using identity (34) we find
that

U = (−1)ne− i
2 βcμ̂c·σ̂ , (62)

where

βc = nα (63)

is the rotation angle and μ̂c = (μcx, μcy, μcz )T is the rotation
axis corresponding to the total propagator, with

μcx =
√

r2 + 1νy sin s̃ − rνz(cos s̃ − 1)

r2 + 1

= 2r sin s̃
2 sin

( t̃on−s̃
2

)
(r2 + 1) sin α

2

, (64a)

μcy = (r2 + 1)νy cos s̃ + r
√

r2 + 1νz sin s̃

r2 + 1

= r sin
( t̃on

2 − s̃
)

√
r2 + 1 sin α

2

, (64b)

μcz = νz(r2 cos s̃ + 1) − r
√

r2 + 1νy sin s̃

r2 + 1
= 0. (64c)

Note that the second lines of Eqs. (64) are obtained using
Eqs. (59) and (54).

Since the rotation axis μ̂c corresponding to the total prop-
agator lies on the xy plane, the rotation angle should be βc =
π/2 for the Bloch vector to end up on the equator. We proceed
to derive this algebraically. Using propagator (62) we find the
following probability amplitudes of the final state:

c1(t f ) = (−1)n cos
βc

2
, (65)

c0(t f ) = (−1)n sin
βc

2
(μcy − iμcx ). (66)

The final requirement z(t f ) = |c1(t f )|2 − |c0(t f )|2 = 0 leads
to the condition

cos2 βc

2
− sin2 βc

2
(|μcy|2 + |μcx|2) = 0

⇒ cos2 βc

2
− sin2 βc

2
= 0

⇒ cos βc = 0, (67)

which implies that

βc = nα = π/2, (68)

as previously anticipated using geometric arguments. The fi-
nal state on the Bloch sphere is easily found to be

�r(t f ) = (μcy,−μcx, 0)T . (69)

We finally find the durations of the pulses, which also
determine μcx, μcy. Using expression (59a) in Eq. (68) we find
the duration of the intermediate (full) On pulses, as a function
of r = �0/�,

t̃on = 2π − 2 sin−1
(√

r2 + 1 cos
π

4n

)
, (70)

where we note that π < t̃on < 2π from Eq. (54). Using ex-
pression (70) in Eq. (54) we find the duration s of the first On
pulse, also as a function of r,

s̃ = cos−1

(
− r2 ∓ B

√
B2 + r4 − 1

B2 + r4

)
, (71)

where

B = r2 cos π
4n√

1
r2+1 − cos2 π

4n

. (72)

The ∓ sign denotes that there are two solutions for the
duration of the first On pulse and it is easy to prove that
these two solutions add up to the duration of an intermedi-
ate (full) On pulse. Thus, there are two candidate optimal
pulse sequences with the same duration, one where the first
pulse is shorter than the last and another where the order is
reversed.

Note that in Eq. (70) the argument of sin−1 should be
confined in the interval [−1 1]. From this requirement we
find the maximum value r can take for a complementary
candidate optimal pulse sequence containing n Off pulses to
exist

rn
max = tan

π

4n
. (73)

Also, in Eq. (71) it should be B2 + r4 − 1 � 0, which leads to
the condition that r should be larger than the minimum value

rn
min = sin

π

4n
. (74)

Thus, a complementary candidate optimal pulse sequence
containing n Off pulses exists for r in the range

rn
min � r < rn

max. (75)

B. Symmetric case

The total propagator for a candidate optimal pulse se-
quence containing n Off pulses and for the case where the
first and the last On pulses have equal durations s is

U = UsUoff UonUoff · · ·UonUoff︸ ︷︷ ︸
n−1

Us

⇒ Us∗U = Us∗Us︸ ︷︷ ︸
on

Uoff UonUoff · · ·UonUoff︸ ︷︷ ︸
n−1

Us

⇒ Ut−sU = UonUoff · · ·UonUoff︸ ︷︷ ︸
n

Us

⇒ Ut−sU = (−1)ne− i
2 nαν̂·σ̂Us

⇒ U = (−1)nUs−t e
− i

2 nαν̂·σ̂Us, (76)

where α, ν̂ are given in Eq. (59). Using identity (34) we find
that

U = (−1)ne− i
2 βeμ̂e·σ̂ , (77)

062425-7



EVANGELAKOS, PASPALAKIS, AND STEFANATOS PHYSICAL REVIEW A 108, 062425 (2023)

where βe is the rotation angle and μ̂e = (μex, μey, μez )T is the rotation axis corresponding to the total propagator, with

βe = 2 cos−1

[
sin nα

2 cos t̃on
2 sin

(
s̃ − t̃on

2

)
√

r2 + 1 sin α
2

+ cos
nα

2
cos

(
s̃ − t̃on

2

)]
, (78a)

μex =
r
{

4
√

r2 + 1 cos nα
2 sin

(
s̃ − t̃on

2

) − 2 sin nα
2 [cos (s̃−t̃on )+cos s̃−2]

sin α
2

}
4(r2 + 1) sin β

2

, (78b)

μey = 0, (78c)

μez =
2
√

r2 + 1 cos nα
2 sin

(
s̃ − t̃on

2

) − sin nα
2 [cos (s̃−t̃on )+cos s̃+2r2]

sin α
2

2(r2 + 1) sin β

2

. (78d)

Observe that now the rotation axis is off the equatorial
plane, on the xz plane, thus the rotation angle required to reach
the equator is larger than π/2. Applying this rotation to the
initial state we find the following probability amplitudes of
the final state:

c1(t f ) = (−1)n

(
cos

βe

2
− i sin

βe

2
μez

)
, (79)

c0(t f ) = −i(−1)n sin
βe

2
μex. (80)

The final requirement z(t f ) = |c1(t f )|2 − |c0(t f )|2 = 0 leads
to the condition

2|μex| sin
βe

2
=

√
2, (81)

from which we can calculate duration s since both βe and
μex are functions of the variable s and of parameters �0,�.
The geometric interpretation of Eq. (81) is shown in Fig. 3.
The two shaded orthogonal triangles are equal, thus the radius
AB of the circular arc (green solid line) traced by the tip of
the Bloch vector is |μex|, while from the orthogonal triangle
AO� formed by the initial and final Bloch vectors we find the
length of the corresponding chord A� to be

√
2. However, this

length can be expressed in terms of the radius |μex| and the
corresponding central angle βe = ∠AB� as in the left-hand

FIG. 3. Geometric interpretation of condition (81).

side of Eq. (81). The final state on the Bloch sphere is

�r(t f ) =
(

μz

μx
,−

√
μ2

x − μ2
z

μx
, 0

)
. (82)

To find the range of parameter r for which the symmet-
ric candidate optimal solution with n Off pulses exists, we
use that the duration of the first and last On pulses should
be restricted as 0 < s̃ < t̃on. Taking the upper limit s̃ → t̃on,
we easily find from Eq. (54) that both s̃, t̃on → π . Plugging
these values in Eq. (78a) we immediately get βe = π , while
Eq. (59a) gives

cos
α

2
= 1√

r2 + 1
, sin

α

2
= r√

r2 + 1
. (83)

Using successively Eqs. (81), (78b), and (83) we obtain

μex = 1√
2

r√
r2 + 1

cos
nα

2
+ 1√

r2 + 1
sin

nα

2
= 1√

2

sin
α

2
cos

nα

2
+ cos

α

2
sin

nα

2
= 1√

2

sin
(n + 1)α

2
= 1√

2
, (84)

which leads to α = π/[2(n + 1)]. But from Eq. (83) we get

r = tan
α

2
= tan

π

4(n + 1)
= rn+1

max , (85)

and this is the limiting value of r corresponding to s̃ → t̃on.
From Eq. (78d) we find in this case that

μez = cos
(n + 1)α

2
= 1√

2
. (86)

Working analogously for the lower limit s→0 we find t̃on→π ,
thus βe = π and Eq. (83) also holds. Then

μex = sin
(n − 1)α

2
= 1√

2
,

μez = − cos
(n − 1)α

2
= − 1√

2
, (87)
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(a)

(b)

FIG. 4. (a) Normalized durations of candidate optimal pulse-
sequences when the dimensionless parameter r = �0/� is in the
range rn

min � r < rn
max: symmetric pulse-sequence with n Off pulses

(green solid line), symmetric pulse-sequence with n + 1 Off pulses
(green dashed line), complementary pulse-sequence with n Off
pulses (red solid line). (b) Normalized duration of the optimal pulse
sequence versus r, forming a “stairway to heaven” as r → 0.

and α = π/[2(n − 1)], for n �= 1. From Eq. (83) we find the
limiting value

r = tan
α

2
= tan

π

4(n − 1)
= rn−1

max , (88)

corresponding to s̃ → 0. The symmetric candidate optimal
solution with n Off pulses, n � 2, exists for r in the range

rn+1
max � r < rn−1

max . (89)

For n = 1, i.e., the pulse-sequence On-Off-On with equal
initial and final pulses, the limit s̃ → 0 is obviously not per-
mitted. In this case we set as upper limit for r the value
r0

max = r1
max = 1, above which a single On pulse is optimal.

C. Synthesis of the two cases

Now we compare the durations of the complementary and
symmetric candidate optimal solutions which exist for each
r � 1 to find the optimal. The total duration of the comple-

FIG. 5. Final Bloch vector on the equator �r(t f ) (black arrow),
as well as rotation angle β and axis μ̂ (red arrow) corresponding to
the total propagator of the optimal sequence, for various values of
parameter r = �0/� in the interval rn+1

max � r < rn
max: (a) r = rn+1

max ,
(b) rn+1

max < r < rn
min, (c) r = rn

min, (d) rn
min < r < rn

max.

mentary pulse sequence with n Off pulses is

T n
c � = n

(
π + t̃on√

r2 + 1

)

= n

[
π + 2π − 2 sin−1

(√
r2 + 1 cos π

4n

)
√

r2 + 1

]
, (90)

where rn
min � r < rn

max. Next, we find the duration of the
symmetric pulse-sequence with one Off pulse, n = 1. Using
Eq. (59a) in Eq. (78b) we obtain

μex = r(1 − cos s̃)

(r2 + 1) sin βe

2

, (91)

condition (81) leads to the solution

s̃∗ = cos−1

[
1 − 1√

2

(
r + 1

r

)]
, (92)

FIG. 6. Percentage deviation between the durations of the intu-
itive suboptimal and optimal pulse sequences.
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(a) (b)

(c) (d)

FIG. 7. Optimal pulse sequences containing a single On pulse. (a) Optimal pulse for r = 1.1. (b) Corresponding optimal trajectory.
(c) Optimal pulse for r = 10. (d) Corresponding optimal trajectory.

thus

T 1
e � = π + 2s̃∗

√
r2 + 1

= π + 2√
r2 + 1

cos−1

[
1 − 1√

2

(
r + 1

r

)]
. (93)

To compare T 1
e , T 1

c in the range r1
min = 1/

√
2 � r < r1

max =
r0

max = 1, we form the function

g(r) = cos

(
T 1

c � − π

2

√
r2 + 1

)
− cos

(
T 1

e � − π

2

√
r2 + 1

)

= 1√
2

(
r + 1

r

)
−

√
1 − r2

2
− 1. (94)

Since g(1/
√

2) = 0 and

g′(r) = r√
2(1 − r2)

⎡
⎣1 −

(√
1 − r2

r

)3
⎤
⎦ � 0, (95)

it is also g(r) � 0, which implies that T 1
c � T 1

e since the
cosines in Eq. (94) are negative and the larger one corresponds
to a smaller angle.

For n � 2 the analytical calculation of T n
e from condition

(81) becomes cumbersome, if not impossible. For this reason,
we recourse to the numerical solution of Eq. (81) for each r

in the interval of interest and express the duration of the pulse
sequence in terms of the solution s̃∗ as

T n
e � = nπ + 2s̃∗ + (n − 1)t̃on(s̃∗)√

r2 + 1
. (96)

The durations of the symmetric and complementary pulse
sequences in the interval rn+1

max � r < rn
max are schematically

depicted in Fig. 4(a). The comparison between the
numerically obtained T n

e (green solid line) and the analytical
T n

c (red solid line) reveals a simple pattern of optimality. For
each interval rn+1

max � r < rn
max, the symmetric pulse sequence

with n Off pulses is optimal in the segment rn+1
max � r < rn

min,
while the complementary pulse sequence with n Off pulses
is optimal in the segment rn

min � r < rn
max. This is consistent

with the result for n = 1 that was proved analytically
above. We can intuitively understand the optimality of the
complementary solution by observing that in this case the total
rotation angle is βc = π/2, while in the symmetric case from
condition (81) we find that sin (βe/2) = 1/(μex

√
2) � 1/

√
2,

thus βe � π/2. Note that for r = rn
min it is T n

c = T n
e . Indeed, it

can be easily shown that this point corresponds to the solution
s̃∗ = t̃on(s̃∗)/2, thus the complementary and symmetric
sequences coincide.

Another interesting observation is that in the interval under
consideration, a candidate optimal pulse sequence is also the
symmetric with n + 1 Off pulses (green dashed line), but it
always behaves worse than the symmetric sequence with n
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(a) (b)

(c) (d)

FIG. 8. Examples of optimal pulse sequences containing a single Off pulse. (a) Optimal complementary pulse sequence for r = 0.85.
(b) Corresponding optimal trajectory, where the red segments correspond to On pulses while the blue segment to the Off pulse. (c) Optimal
symmetric pulse-sequence for r = 0.55. (d) Corresponding optimal trajectory, where the green segments correspond to On pulses while the
blue segment to the Off pulse.

Off pulses. We can understand this behavior as follows. First,
note that obviously T n

e is a decreasing function of r since for a
larger control bound r the Bloch vector can be brought on the
equator at least in the timed needed with smaller r. Next, we
find and compare the values T n

e (rn+1
max ) and T n+1

e (r), r → rn
max,

i.e., the maximum value of T n
e on the left and the minimum

value approached by T n+1
e on the right of the interval, see

Fig. 4(a). From the analysis of the previous subsection we
have that, in the first case s̃∗, t̃on → π , while in the second
case s̃∗ → 0, t̃on → π , thus

T n
e

(
rn+1

max

)
� = nπ + (n + 1)π√(

rn+1
max

)2 + 1
, (97)

T n+1
e (r)� −−−−→

r→rn
max

(n + 1)π + nπ√(
rn

max

)2 + 1
. (98)

In the large n limit it is rn
max → 0 and the above expressions

for the maximum and minimum durations of the symmetric n
and n + 1 branches, respectively, tend to the common value
(2n + 1)π .

Putting all this information together, in Fig. 4(b) we plot
the duration of the optimal pulse sequence versus r, with
the corresponding color (green or red) indicating whether
the sequence is of the symmetric or complementary form,

respectively. Observe that a “stairway to heaven” diagram is
formed.

In Fig. 5 we display the final Bloch vector on the equator
�r(t f ), as well as the rotation angle β and axis μ̂ corresponding
to the total propagator of the optimal sequence, for vari-
ous values of parameter r in the interval rn+1

max � r < rn
max.

For r = rn+1
max the optimal pulse sequence is the symmetric

one, with βe = π and μ̂e = (1/
√

2, 0, 1/
√

2)T , thus �r(t f ) =
(1, 0, 0)T , see Fig. 5(a). For rn+1

max < r < rn
min the symmet-

ric pulse sequence remains optimal, but μex increases and
βe decreases, while �r(t f ) is rotated clockwise, as displayed
in Fig. 5(b). For r = rn

min the symmetric and complemen-
tary sequences coincide, β = π/2 and μ̂ = (1, 0, 0)T , thus
�r(t f ) = (0,−1, 0)T , see Fig. 5(c). For rn

min < r < rn
max the

complementary pulse sequence becomes optimal with βc =
π/2, see Fig. 5(d). For the complementary solution start-
ing with the shorter On pulse, as r increases towards rn

max,
vector μ̂c (dashed red arrow) is rotated towards (0, 1, 0)T

counterclockwise, thus �r(t f ) (dashed black arrow) is rotated
in the same sense towards (1, 0, 0)T . In the case of the com-
plementary solution starting with the longer On pulse, μ̂c

(solid red arrow) is rotated clockwise towards (0,−1, 0)T ,
while �r(t f ) (solid black arrow) is rotated in the same sense
towards (−1, 0, 0)T .
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(a) (b)

(c) (d)

FIG. 9. Examples of optimal pulse-sequences containing two Off pulses. (a) Optimal complementary pulse sequence for r = 0.4. (b) Cor-
responding optimal trajectory, where the red segments correspond to On pulses while the blue segments to Off pulses. (c) Optimal symmetric
pulse sequence for r = 0.35. (d) Corresponding optimal trajectory, where the green segments correspond to On pulses while the blue segments
to Off pulses.

D. An intuitive suboptimal control

Motivated by the form of the optimal control, we consider
a simpler suboptimal pulse sequence where each On pulse
except the first has duration t̃on = π , while the duration s of
the first On pulse is determined from the final requirement to
bring the Bloch vector on the equator. The total propagator is
now

U = UonUoff · · ·UonUoff︸ ︷︷ ︸
n

Us

= (UonUoff )
nUs

= (−1)ne− i
2 nασy e− i

2 s̃n̂·σ̂ , (99)

where from Eq. (59a)

α = 2 tan−1 r, (100)

while n̂ = (sin α
2 , 0, cos α

2 )T from Eq. (57). Applying this
propagator to the initial state and demanding the final Bloch
vector to lie on the equator we get

cos s̃ = cos[(n + 1)α] + cos nα

cos[(n + 1)α] − cos nα
. (101)

Observe from Eq. (100) that for rn+1
max � r < rn

max it
is π/[2(n + 1)] � α < π/(2n). For α = π/[2(n + 1)]

Eq. (101) gives s̃ = π , while in the limit α → π/(2n) it gives
s̃ → 0. In Fig. 6 we plot the percentage deviation between the
durations of the suboptimal and optimal pulse sequences, as a
function of parameter r. Observe that it does not exceed 2.5%.

V. EXAMPLES

In this section we present examples of optimal controls and
trajectories for various values of parameter r. We start with
values r � 1, for which the optimal control is a single On
pulse. In Fig. 7(a) we show the optimal pulse for r = 1.1 and
in Fig. 7(b) the corresponding optimal trajectory. Similar re-
sults are displayed in Figs. 7(c) and 7(d) for the value r = 10.
Observe that, as r increases, the optimal pulse tends to a π/2
pulse. Next, we consider values of r for which the optimal
pulse sequence contains one Off pulse. In Fig. 8(a) we show
the optimal sequence for r = 0.85, which is of the comple-
mentary type, while in Fig. 8(b) we plot the corresponding
optimal trajectory. Note that the red segments correspond to
On pulses while the blue segment to the Off pulse. In Fig. 8(c)
we show the optimal sequence for r = 0.55, which is of the
symmetric type, while in Fig. 8(d) we plot the corresponding
optimal trajectory. Now the green segments correspond to On
pulses, in consistency with the colors used in Fig. 4, while the
blue segment to the Off pulse. Finally, in Figs. 9 and 10 we

062425-12



MINIMUM-TIME GENERATION OF A UNIFORM … PHYSICAL REVIEW A 108, 062425 (2023)

(a) (b)

(c) (d)

FIG. 10. Examples of optimal pulse sequences containing three Off pulses. (a) Optimal complementary pulse sequence for r = 0.26.
(b) Corresponding optimal trajectory, where the red segments correspond to On pulses while the blue segments to Off pulses. (c) Optimal
symmetric pulse-sequence for r = 0.2. (d) Corresponding optimal trajectory, where the green segments correspond to On pulses while the blue
segments to Off pulses.

present examples of complementary and symmetric optimal
pulse sequences with two and three Off pulses, respectively.

VI. CONCLUSION AND FUTURE WORK

In this article, we used Pontryagin’s Maximum Principle to
solve the problem of generating in minimum time a uniform
superposition of states in a two-level system, with fixed
energy spacing (detuning) between the two levels and a
single transverse control field restricted between zero and a
maximum amplitude. For each value of the ratio between the
maximum control amplitude and the detuning we derived the
optimal pulse sequence and calculated the durations of the
corresponding pulses. The presented framework can be also

exploited in the problem of fast charging a quantum battery
based on a two-level system, as well as for the optimization of
pulse sequences for the controlled preparation of the excited
state in a quantum emitter, which is a prerequisite for its usage
as a single-photon source. Additionally, it can be extended
for the efficient quantum control of interacting qubit arrays,
especially for the cases where only global transverse control
fields are employed as in Ref. [66], and in combination with
numerical optimal control for arrays with many qubits.
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