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Quantum algorithm for solving open-system dynamics on quantum computers using noise
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In this paper we present a quantum algorithm that uses noise as a resource. The goal of our quantum algorithm
is the calculation of operator averages of an open quantum system evolving in time. Selected low-noise system
qubits and noisy bath qubits represent the system and the bath of the open quantum system. All incoherent qubit
noise can be mapped to bath spectral functions. The form of the spectral functions can be tuned digitally, allowing
for the time evolution of a wide range of open-system models at finite temperature. We study the feasibility of
this approach with a focus on the solution of the spin-boson model and assume intrinsic qubit noise that is
dominated by damping and dephasing. We find that classes of open quantum systems exist where our algorithm
performs very well, even with gate errors as high as 1%. In general the presented algorithm performs best if the
system-bath interactions can be decomposed into native gates.
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I. INTRODUCTION

Quantum computers promise a substantial speedup for
solving certain types of numerical tasks, in particular the
simulation of large quantum systems [1]. However, due to the
large error rates and short coherence times of present quantum
computers [2], only small examples have been demonstrated
using digital quantum computing. For useful near-term appli-
cations, there is a need for current research to be focused on
more efficiently exploiting noisy intermediate-scale quantum
(NISQ) computers. In this paper we present a quantum algo-
rithm which, in fact, utilizes typical noise in NISQ devices by
incorporating it into the computation itself.

Models for open quantum systems [3,4] (short, open-
system models or OSMs) have been developed for the study of
a small number of degrees of freedom, the system, interacting
with a large environment, the bath. Accordingly, the use of an
open-system model is often called the system-bath approach.
The idea is that certain dynamical or steady-state properties
of the system can be the key to understanding the overall
behavior of the full system-environment pair. The bath can
be modeled with less accuracy, making the approach eco-
nomic. One widely studied example is the energy transfer
involved in photosynthesis [5], where the system is a finite
number of local excitations (excitons) and the bath is the
vibrational modes. The effect of the bath on the system is de-
scribed by a spectral function, and the effect strongly depends
on its height and form [6]. The limit of a smooth spectral
function (on the scale of the system-bath couplings) can be de-
scribed by the well-known Lindblad or Bloch-Redfield master
equation.

An open system is characterized by nonunitary time evo-
lution. Therefore, a quantum algorithm that time evolves an
open-system model on a quantum computer must implement
this in some way. This can be accomplished by introducing
entanglement with additional (external) qubits and perform-
ing measurements on them. Here one class of methods

implements directly a quantum map between an initial and
final density matrix of the system [7–11]. This assumes that
the time evolution is known beforehand. If one must in-
stead solve for this time evolution, a Trotterization needs to
be implemented [12–20]. Most such approaches consider an
open-system model that is described by a Lindblad master
equation. A Trotter time evolution under a Lindblad master
equation can be performed on a quantum computer using
the same approach known for closed quantum systems: the
system is coupled to the external qubits at each Trotter step,
which are measured and thus create nonunitary quantum
operations. Without access to quantum feedback control, a
technical challenge here is the required reset of the external
qubits after each Trotter step during the computation. This
can, however, also be realized via controlled qubit dissipation
[14,15,17,18]. Classical gates can also be implemented using
similar approaches [21].

One attractive way to implement open system time evo-
lution on NISQ computers is to directly map intrinsic qubit
noise to noise processes in the model to be simulated
[9,10,20,22,23]. Here noise is no longer an impediment but
is rather a key component of the computation itself. Such
an approach is more intuitive for analog quantum simula-
tion. However, it can also be developed for digital quantum
simulation; although a Trotter time-evolution might involve
many different gate operations, it is possible to describe
the effect of noise in the form of a static Lindblad master
equation [24]. One limitation of previous noise-utilizing al-
gorithms has been that they fall in the category of smooth
spectral functions.

In this paper we present a noise-utilizing quantum algo-
rithm that time evolves an open-system model that has a
strongly structured bath. The structured bath is represented
by a finite number of bath modes subjected to Lindblad dis-
sipation, a method known from classical numerical methods
[25–30]. On a quantum computer, low and high noise qubits
represent the system and the bath modes of the open quantum
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system. Significant variations in qubit coherence times may
appear in state-of-the-art quantum computers [31], and it is
typically possible during calibration to make some qubits
better at the expense of others. In our work, we use this to our
advantage by using the lower quality qubits as bath qubits for
mimicking the effect of a continuous spectral function. By uti-
lizing the intrinsic noise, we also avoid the need to introduce
additional external qubits and their reset methods. We give a
detailed description of how the spectral function, as seen by
the time-evolved system, can be made strongly structured and
digitally tunable and to match to the open-system model of
interest.

The performance of the proposed algorithm is studied
through numerical simulation on conventional computers. In
particular, we study the quality of the results of the algorithm
for a spin coupled strongly to a broad bosonic mode as well
as to a bosonic ohmic bath. Here, we establish a mapping be-
tween the open-system model and the noisy-algorithm model
in the case of noiseless system qubits. We also study the so-
lution for an electron-transport model by representing it using
a generalized spin-boson model, as well as map the system-
qubit noise to the model spectral function. Our central finding
is that the quantum algorithm performs best if the system-bath
interactions can be decomposed into native gates, for instance,
the XX Ising interaction to variable Mølmer-Sørensen (MS)
gate or the XX + YY interaction to variable iSWAP gate.
The restriction to native gates can, however, be lifted for some
open-system models.

The paper is structured as follows. In Sec. II we intro-
duce the concrete open system model whose noise-utilizing
quantum algorithm will be presented in this paper. In Sec. III
we present the protocol of the bath mapping, i.e., the map-
ping between an open-system model and a noisy-algorithm
model. In Sec. IV we go through three practical examples
of solving the open-system dynamics. The examples were
implemented using numerical simulations on conventional
computers. Conclusions and discussion are given in Sec. V.
Many important details of our approach are left to be pre-
sented in the Appendixes. In Appendix A we generalize the
approach to also cover multispin systems. In Appendix B we
go through details of our model of noisy quantum computa-
tion. In Appendix C we discuss principles of a quantum circuit
optimization, where one tailors the form of the effective Lind-
bladian. In Appendix D we quantify the main error sources in
our approach. Finally, in Appendix E we discuss how to map
a fermionic open-system model to a spin-boson model.

II. OPEN-SYSTEM MODEL

While the plethora of physical phenomenon encountered
in nature naturally correspond to a wide range of potential
open system models, we focus here on one concrete model
of a specific form. In particular, in its most general form, the
open-system Hamiltonian we consider can be written

Ĥ0 = ĤS + ĤB + ĤC, (1)

where ĤS is the Hamiltonian of the system, ĤB of the bath,
and ĤC describes their coupling.

In this work we explicitly consider problems that can be
represented as a two-state system interacting with a bosonic
bath [6] by the so-called spin-boson model:

ĤS = − h̄�

2
σ̂z, (2)

ĤB =
∑

k

h̄ωkb̂†
kb̂k, (3)

ĤC = σ̂x

∑
k

vk

2
(b̂†

k + b̂k ). (4)

The model system consists of a single spin which has an
energy-level splitting h̄�. The model bath consists of bosonic
modes k with natural frequencies ωk . The boson creation
and annihilation operators satisfy [b̂k, b̂†

l ] = δkl . The coupling
between the system and bath is here chosen to be transverse
[32] and occurs via the bath operator

X̂ =
∑

k

vk (b̂†
k + b̂k ). (5)

The couplings vk are real numbers (possible phases were
absorbed into the definitions of the boson operators). A gen-
eralization to the multispin case is presented in Appendix A.

Since the bath Hamiltonian is noninteracting, its free-
evolution statistics are Gaussian (time evolution according to
ĤB). This means that in the interaction picture, a trace over the
bath degrees of freedom results in an expression where the
bath appears only via two-time correlation functions, whose
Fourier transform is the spectral function:

S(ω) =
∫ ∞

−∞
dteiωt 〈X̂ (t )X̂ (0)〉0. (6)

Here X̂ (t ) = eit ĤB X̂ e−it ĤB and the index 0 refers to an average
according to the free evolution of the bath. The effect of the
bath on the system is then fully determined by this function.

In thermal equilibrium we have

S(ω) = 2π
∑

k

v2
k δ(|ω| − ωk )

1 − exp
(
− h̄ω

kBT

) sgn(ω). (7)

The temperature controls the symmetry (or lack thereof)
between the positive (energy absorption by the bath) and nega-
tive (energy emission by the bath) frequencies. The functional
form of the spectral function is important in the sense that it is
not a constant and therefore does not correspond to just white
noise. In particular, this implies that the bath has a memory,
i.e., it is non-Markovian.

The wide applicability of the spin-boson theory is based
on the fact that the bath described by ĤB does not necessarily
need to consist microscopically of bosonic modes, but need
only be effectively Gaussian. An example of such bath is given
in Appendix E, where we derive a spin-boson model of a spin
coupled to an electronic bath.

III. BATH MAPPING

At the center of our approach is a mapping between an
open-system model and a noisy-algorithm model. The map-
ping is visualized in Fig. 1. The open-system model is first
represented using a model that includes only spins, with
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FIG. 1. Bath mapping, i.e., mapping between an open-system
model and a noisy-algorithm model. As described in the paper, the
open-system model Ĥ0 is first coarse grained to an auxiliary-spin
model Ĥ and additional spin broadening. A quantum algorithm time
evolves the qubits describing the spins according to Ĥ . The combined
effect of unitary gates and nonunitary qubit noise is described by an
effective Lindbladian Leff. The auxiliary-spin model broadening and
the noise broadening according to Leff are set equal by choosing the
Trotter time step correctly. A circuit optimization may be needed to
have Leff in a desired form.

Hamiltonian Ĥ , and additional spin broadenings. The spins
are represented by qubits on a quantum computer. The noisy-
algorithm model, on the other hand, describes the Trotter time
evolution according to Ĥ as a static Lindbladian Leff operating
on a time-evolved density matrix [24]. This indicates how
noise added after each unitary gate appears as nonunitary pro-
cesses in the simulated system; see Appendix B and Ref. [24].
The spin broadenings and the noise described by Leff are set
equal by choosing the Trotter time step τ correctly. The full
procedure is described in more detail below.

A. Coarse graining

In this part of the mapping, we reduce the number of bath
modes in the open-system model from infinite to n modes
with broadening. These broad modes are now called auxiliary
boson modes, and later they will be mapped to the (noisy) bath
qubits on the quantum computer. As a practical matter, in this
step we fit the target spectral function by n Lorentzians. We
also write a Lindblad master equation that is equivalent to this
coarse-grained spectral function.

1. Coarse graining when only the bath qubits are noisy

In this coarse-graining scheme, the target spectral function,
Eq. (7), is fitted by n Lorentzians,

S(ω) =
n∑

i=1

v2
i

κi

(κi/2)2 + (ω − ωi )2
. (8)

Here we use the counting index i instead of k, referring to
the auxiliary modes. The fitting is done by optimizing the
peak areas 2πv2

i , frequencies ωi, and broadenings κi. Later the
broadenings will be mapped to qubit noise. Therefore, in the
fitting the relative sizes of the broadenings need to be fixed
so that they will be consistent with the effective noise given
by the noisy-algorithm model Leff (Sec. III C). The absolute
size (a common prefactor) is a free fitting parameter, since
it will correspond to choosing the Trotter time step τ . The
coarse-graining results shown in this paper are based on a
least-squares fit, whose details are presented in Appendix A.

The couplings and frequencies obtained in the fitting cor-
respond to parameters of the Hamiltonian:

Ĥ = ĤS + σ̂x

n∑
i=1

vi

2
(b̂†

i + b̂i ) +
n∑

i=1

h̄ωib̂
†
i b̂i, (9)

and the mode broadenings to damping rates in the Lindblad
master equation:

˙̂ρ = i

h̄
[ρ̂, Ĥ ] +

n∑
i=1

κi

(
b̂iρ̂b̂†

i − 1

2
{b̂†

i b̂i, ρ̂}
)

, (10)

where ρ̂ is the density matrix of the spin and the auxiliary
boson modes.

We note that similar coarse-graining approaches have
been presented earlier in the context of representing non-
Markovian master equations using pseudomodes [25–30].
Indeed, our work offers an optimal translation of such
approaches to digital quantum simulation. Similar coarse-
graining approaches have also been presented in analog
quantum simulation of spin-boson models [32–35]. Also
closely related are other exact numerical methods where one
replaces continuous bosonic baths by a set of discrete modes,
such as the hierarchical equations of motion [36–38].

2. Coarse graining when the system qubit is also noisy

Our coarse graining can also account for decoherence of a
qubit representing the (system) spin. The decoherence of this
system qubit contributes via a background rate in the spectral
function. Here we proceed as before, except we instead opti-
mize the spectral function

S(ω) =
n∑

i=1

v2
i

κi

(κi/2)2 + (ω − ωi )2
+ 4h̄2κsystem. (11)

The system noise appears via the rate κsystem, which, however,
will not be an independent fitting variable. In the fitting, the
overall scale of the variables κ is arbitrary, but the relation
between the bath mode broadenings κi and the system noise
κsystem is fixed, reflecting the corresponding hardware proper-
ties. We then insert

κsystem = rκ, (12)

where, for simplicity, we assume homogeneous bath broaden-
ing κ . If the system qubit noise matches the bath qubit noise,
we have r = 1, unless a noise-symmetrization algorithm is
used (Sec. IV C), where we have r = 1/2.

The spectral function of Eq. (11) corresponds to a time
evolution according to the Lindblad master equation

˙̂ρ = i

h̄
[ρ̂, Ĥ ] +

n∑
i=1

κi

(
b̂iρ̂b̂†

i − 1

2
{b̂†

i b̂i, ρ̂}
)

+ κsystem(σ̂xρ̂σ̂x − ρ̂ ). (13)

The difference with Eq. (10) is the term proportional to
κsystem. We see that the system collapse operator in this term
is σ̂x, since the coupling to the bath is via this operator;
see Eq. (9). It follows that the bath mapping in this scheme
is exact if the system-qubit noise operator (in the corre-
sponding noisy-algorithm model) is also proportional to σ̂x.
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FIG. 2. Fitting of a target spectral function in the two discussed
bath-mapping schemes. (a) The system spin s couples to n auxiliary
boson modes b1, . . . , bn. The auxiliary modes further couple to an
environment, which leads to mode broadenings κi. (b) In the second
scheme, also the system spin couples to the environment, which
leads to a decoherence rate κsystem. (c) An example of fitting by
eight auxiliary modes without system noise. All modes are assumed
to have the same broadening. (d) An example of fitting the same
spectral function but in the presence of system noise. The system
noise contributes via a constant shift of the fitting function, leading
to a different set of optimal auxiliary-mode parameters.

It should be noted that an exact mapping can be obtained
also in the case of all qubits being subject to damping, after
a noise-symmetrization algorithm, as shown in Sec. IV C.
More generally, the bath mapping in such a scheme is most
likely only an approximation, when, for example, the system
is subjected to depolarizing noise, but can work well for a
weak coupling between the system and the bath. The fitting in
the two different schemes is illustrated in Fig. 2.

B. Representing auxiliary bosons by auxiliary spins

Here we write a Lindblad master equation that includes
only spins and is equivalent with the coarse-grained spin-
boson model. For this, we represent the derived auxiliary
boson modes by auxiliary spins. Common digital encodings
[39] cannot be applied, since they do not map damping of an
arbitrary auxiliary spin to single-boson annihilation, which is
the key correspondence in our algorithm. Instead, we replace
bosonic energy operators b̂†b̂ by a sum of auxiliary spin oper-
ators σ̂

j
+σ̂

j
− and bosonic coupling operators b̂† + b̂ by a sum of

auxiliary spin operators σ̂
j

x . In other words, in the Hamiltonian

Ĥ we switch

b̂†
i b̂i →

Ni∑
j=1

σ̂
i, j
+ σ̂

i, j
− , (14)

(b̂†
i + b̂i ) → 1√

Ni

Ni∑
j=1

σ̂ i, j
x . (15)

This mapping is based on the well-known property that collec-
tive spin operators can behave like bosonic operators if their
excitation numbers stay low, with an error O(1/N ). For a more
detailed analysis of this point, see, for example, Ref. [40]. The
coarse-grained model Hamiltonian, represented now by only
spins, becomes

Ĥ = ĤS + σ̂x

n∑
i=1

vi

2

Ni∑
j=1

1√
Ni

σ̂ i, j
x +

n∑
i=1

h̄ωi

Ni∑
j=1

σ̂
i, j
+ σ̂

i, j
− .

(16)

The spectral function as seen by the system, Eq. (8) or (11),
keeps its form, with the summation performed now over the
corresponding auxiliary-spin parameters.

How the fitting and the replacement of the auxiliary bosons
by auxiliary spins is done exactly is influenced by the open-
system model as well as the hardware properties. For example,
for sharp model peaks in comparison to model couplings
one may need Ni > 1. This choice implicitly assumes that
the corresponding bath qubits have homogeneous decoher-
ence rates, since the auxiliary spins are mapped later directly
to bath qubits. On the other hand, if significant differences
exist in the bath-qubit decoherence rates, or if the spectral
function fitting is more important than the bath Gaussianity,
one should impose one-to-one correspondence between the
auxiliary-boson modes and the auxiliary spins, i.e., fix Ni = 1.
These two choices are visualized in Fig. 3.

It is very valuable for the bath mapping that for auxiliary
spins the spectral-peak broadening can be theoretically not
only due to the damping rate γ but also due to the dephasing
rate �,

κi = γi + 2�i ≡ γ ∗
i . (17)

This property is important since it allows one to do the full
mapping procedure also when the bath qubits are subjected to
significant dephasing. The corresponding Lindbladian is (for
simplicity considering here Ni = 1)

˙̂ρ = i

h̄
[ρ̂, Ĥ ] +

n∑
i=1

γi

(
σ̂ i

−ρ̂σ̂ i
+ − 1

2
{σ̂ i

+σ̂ i
−, ρ̂}

)

+
n∑

i=1

�i

2

(
σ̂ i

z ρ̂σ̂ i
z − ρ

)
. (18)

The procedure is otherwise the same as for bath qubits sub-
jected to damping only, except the connection between the
broadenings of the bosonic bath and the hardware qubits is
made via Eq. (17). We verify this connection by numerical
simulations presented in Sec. IV A. [The possible system
noise is added similarly as in Eq. (13).]

It should be noted that broadening due to dephasing alone
does not lead to Gaussian equilibrium statistics: a finite damp-
ing rate γ is needed. This is because certain bath correlations
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FIG. 3. Two possible approaches for representing auxiliary bosons by auxiliary spins (and finally by bath qubits). (a) The coarse-grained
spin-boson model includes one spin coupled to one sharp auxiliary boson mode. The auxiliary boson mode is chosen to be represented by
N = 2 identical auxiliary spins. The new couplings are down-scaled by a factor 1/

√
N in order to keep the total spectral weight unchanged.

We have κ = γ ∗, where the effective spin broadening is a sum of spin damping and dephasing, γ ∗ = γ + 2�. This mapping approach can be
applied if the bath qubits representing the auxiliary spins have relatively homogeneous broadenings. (b) An approach that can be applied when
the bath qubits have significantly differing broadenings or when improvement of bath Gaussianity is not needed. Here one imposes one-to-one
correspondence between the boson modes and the auxiliary spins.

that describe nonbosonic statistics decay in time according to
γ instead of γ + 2�.

C. Matching spin broadening with qubit noise

Here we describe how the Lindblad master equation op-
erating only on spins can be implemented in digital quantum
computing using noise. The key part is the matching of the
spin broadening with the qubit noise. This step should be done
consistently with the coarse graining (Sec. III A): variations
in the noise of qubits must appear as corresponding relative
variations in the auxiliary-mode broadenings κi. This demand,
however, does not lead to a self-consistency loop, but rather to
a unique determination of the variations of the auxiliary-mode
broadenings.

In this work we assume that the qubit noise is predomi-
nantly damping and dephasing. The form of the effective noise
can, however, depend on the choice of gate decompositions,
which needs to be taken into account when designing the
quantum circuits. This is detailed in Appendixes B and C.

In the considered case, the noisy-algorithm model
(Appendix B and Ref. [24]) gives the effective spin damping
and dephasing rates:

γi = Dtgateγ̄i

τ
, (19)

�i = Dtgate�̄i

τ
, (20)

where D is the depth of one Trotter-step circuit, tgate is the
physical time needed to perform one gate (assumed here to be
a constant), γ̄i and �̄i are the physical damping and dephasing
rates of the qubit representing the auxiliary spin i, and τ is
the chosen Trotter time step. We assume here that the errors
are similar for every gate and that they act also on qubits

that are at rest (idling). The potential variation in the widths
γi + 2�i needs to be accounted for in the coarse graining, as
discussed above. The contribution from finite system qubit
noise is similar.

Equations (19) and (20) with Eq. (17) can be used to solve
the Trotter time step τ , which was still a free parameter. This
solution corresponds to matching the spin broadening with the
qubit noise. For simplicity, let us now assume that all bath
qubits have homogeneous damping and dephasing rates, and
obtain

τ = Dε

κ
, (21)

where we have defined the gate error parameter

ε ≡ tgate(γ̄ + 2�̄). (22)

An important observation is that the correct value of the
Trotter time step τ scales linearly with the gate error ε. In
terms of qubit decay time T1 = 1/γ̄ and pure dephasing time
T
 = 1/�̄, the gate error is defined equivalently

ε = tgate

(
1

T1
+ 2

T


)
. (23)

In comparison to other error metrics in the literature [31,41],
the contribution from pure dephasing is doubled here. This is
because we do not average over the Bloch sphere, but instead
look at noise in the Z basis. When all qubits are subject to
damping only, the corresponding one-qubit Pauli (or average)
error is ε/2 (ε/3) and the two-qubit error is ε (4ε/5).

Since all terms of the normalized Hamiltonian Ĥ/κ are
fixed in the coarse graining, Eq. (21) gives the angles of
the unitary gates exp(−iĤτ/h̄)m = exp(−iDεĤ/h̄κ )m, i.e.,
the angles of the unitary gates in the Trotterization of the
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TABLE I. Circuit depths and gate errors in the three examples presented in Sec. IV when realized using different two-qubit gate
decompositions. The gate error is defined in Eqs. (22) and (23). Access to lower gate error ε allows the use of a smaller Trotter step (reduce the
Trotter error) and/or a larger total number of bath qubits nq (reduce the coarse graining and/or the bath Gaussianity error). In the three examples
we have nq = 8, 8, 4, respectively. We assume a system-to-all-bath device connectivity. For a nearest-neighbor connectivity, a system-bath swap
network can be applied (Appendix C), leading to at worst a 50% increase in qubit number and a (nq/2 − 1)nSWAP increase in circuit depth,
where nSWAP is the number of gates needed to perform the SWAP operation and we assume an even nq.

Example A Example B Example C

Decomposition Depth D Gate error ε (%) Depth D Gate error ε (%) Depth D Gate error ε (%)

Variable MS 1 + nq 1 1 + nq 5 1 + 2nq 1
Variable iSWAP 1 + 4nq 0.27 1 + 4nq 1.4 1 + 2nq 1
CNOT 1 + 3nq 0.36 1 + 3nq 1.8 1 + 4nq 0.53
Control-Z 1 + 5nq 0.2 1 + 5nq 1.1 1 + 6nq 0.36

time-evolution operator over simulation time t = mτ . This
completes the mapping.

IV. EXAMPLES

In this section we present examples of solving open-system
dynamics using our quantum algorithm. We solve dynamics
for three different models and study the quality by comparing
with exact or approximate solutions derived in the literature.
In Sec. IV A we study the dynamics of a spin coupled ultra-
strongly to a resonance mode with broadening. In Sec. IV B
we study a spin coupled to an ohmic bath. In these examples
we assume that the quantum computer has a noiseless system
qubit. In Sec. IV C we study the steady state and relaxation
dynamics of strongly interacting electrons hopping between
an island and leads. In this example, the system qubit is
allowed to be noisy too. The numerical results shown for the
Trotter time evolution were obtained using qoqo [42] with
QuEST [43] as the simulator backend, by solving the time
evolution of the density matrix of the qubits. We assume
all-to-all qubit-connectivity. However, an efficient algorithm
for a nearest-neighbor connectivity also exists and is presented
in Appendix C, leading to at worst a 50% increase in qubit
number.

A. Spin coupled ultra-strongly to a resonance
mode with broadening

Here we study the case of a bath with a resonance fre-
quency. We assume a Lorentzian spectral function, which can
be coarse grained exactly by single auxiliary boson mode
(Sec. III A). The coarse-grained open-system model has the
Hamiltonian

Ĥ = − h̄�

2
σ̂z + v

2
σ̂x(b̂† + b̂) + h̄ω0b̂†b̂. (24)

We consider the case of ultra-strong coupling, v = ω0 ∼ �,
and κ = v/2, which leads to clear non-Markovian system-
bath dynamics.

In the next step of the bath mapping, the auxiliary boson
mode is represented by N auxiliary spins (Sec. III B). On the
quantum computer, auxiliary spins correspond to bath qubits.
We assume all bath qubits have the same damping and de-
phasing rates, γ̄ and �̄. We assume a significant dephasing by
setting �̄ = γ̄ /2 (T
 = 2T1). The time evolution is performed
according to a Trotter expansion of the time-evolution opera-

tor exp(−iĤτ/h̄)m, decomposed into different two-qubit gates
(see below), with total simulated time t = mτ . The Trotter
time step τ is chosen so that the auxiliary-spin broadening
κ matches the effective qubit noise; see Sec. III C. This value
is given by Eq. (21). The circuit depths D are listed in Table I.

In Fig. 4 we show the time evolution of the expectation
value 〈σ̂x(t )〉 after the system spin is excited to +1 eigenstate
of σ̂x. The bath mode is initially at ground. In Fig. 4(a) we
compare the solutions obtained when using different number
of bath qubits N (auxiliary spins) to the numerically exact so-
lution of the bosonic open-system model. The time evolution
on the quantum computer is implemented using variable MS
two-qubit gates, which is a native gate of the time-evolved
Hamiltonian, Eq. (16). We see that the quantum-algorithm so-
lution approaches the correct one when the bath-qubit number
N is increased. This demonstrates that the algorithm works
for bath qubits subjected to damping and dephasing, and
that the auxiliary-spin bath behaves like one bosonic mode
after multiple spins are used to represent it. The latter result
is due to the ultra-strong coupling between the system and
bath. For weak system-bath couplings, N = 1 would be ad-
equate. The Trotter time steps are here chosen to be vτ =
0.18, 0.18, 0.2, for N = 8, 2, 1, respectively. They are chosen
to be relatively large, yet still small enough that they lead to
negligible Trotter error on the visual scale of the plot. These
choices fix the assumed gate errors ε to 1%, 3%, and 5%,
respectively.

In Fig. 4(b) we show non-native gate decompositions. We
show the results for two CNOT decompositions with restricting
to the case of N = 8 bath qubits. The optimal decomposition
consists here of a CNOT, a small-angle X rotation, and another
CNOT. There are still two versions of this circuit: either the
bath qubits being the control qubits (CNOT-B) or the system
qubit being the control qubit (CNOT-S). The results differ since
the CNOT operation as well as the noise properties are not
symmetric with interchanging the system and bath. We find
that the result for the non-native decomposition CNOT-B is the
same as for the native variable MS result (indistinguishable
on the scale of the plot). This is because the bath qubits are
never operated on by the large-angle gates, and therefore the
noise does not get transformed into another form. The results
for optimal control-Z decompositions, shown in Appendix C,
are similar. However, in the case of CNOT-S, we find a
noticeable difference with the correct open-system model
result, which implies changes in Leff. It can be derived
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FIG. 4. Open-system dynamics of a spin coupled to a broad bosonic mode solved using the quantum algorithm and a comparison to
the numerically exact solution (open-system model). We plot the time evolution of 〈σ̂x (t )〉 when the system spin is initially excited to +1
eigenstate of σ̂x and the bath mode is at ground. When time evolving on the quantum computer, the bath qubits are subject to damping
and dephasing. We consider model parameters v = ω0 = 2κ and in (a) and (b) � = 0.9ω0 and in (c) � = ω0. (a) An agreement with the
open-system model is achieved when multiple qubits are used to represent the significantly populated bosonic mode. This improves the
Gaussianity of the quantum-algorithm bath. We consider here a native (variable MS) gate decomposition and a gate error of 1%, 3%, and 5%
for N = 8, 2, 1, respectively. (b) When N = 8, the result for the non-native decomposition CNOT-B (bath as control) is practically the same as
for the variable MS, but the result for CNOT-S (system as control) differs due to the emergence of effective system-spin dephasing. We consider
here a gate error of 0.36%. (c) The spectrum of 〈σ̂x (t )〉 is characterized by a peak splitting by coupling v. Also plotted is the result for a large
Trotter step vτ = 1.0, corresponding to a gate error of 5.6%.

analytically (Appendix B) that here its approximate form in-
cludes system-qubit dephasing, which emerges even though
the physical system qubit is noiseless, the origin being the X
gates operated on the noisy bath qubits. This interpretation
is verified by additional numerical simulations, in which we
add system-spin dephasing to the open-system model; see
Fig. 4(b). We then find that the non-native decomposition
(CNOT-S) is not perfect, but still reproduces similar dynamics,
with faster decay of coherence.

In Fig. 4(c) we study the spectrum of the obtained time
evolutions. We plot here the absolute square of the fast Fourier
transform (FFT) of 〈σ̂x(t )〉. The correct open-system model
result shows a splitting of a resonance located originally at
ω0 to frequencies ω0 ± v/2. This is reproduced well by the
quantum algorithm with the bath-qubit number N = 8 and
the gate error of 1% (vτ = 0.18). We also show the result
for a very large Trotter step, vτ = 1.0 and N = 8, corre-
sponding to a gate error as large as ε = 5.6%. We find that
this result, with non-negligible Trotter error and sampling
error, is clearly closer to the correct result than the one with
N = 1 (vτ = 0.18, gate error of 4.5%), which has significant
bath-Gaussianity error. This result is specific for the case of
ultra-strong coupling, where the bath excitation number is
large and needs to be accounted for by large N , with the
possible cost of increased Trotter error. An error tradeoff in
the quantum algorithm is discussed more in Appendix D.

B. Spin coupled to an ohmic bath

The case of an ohmic bath emerges in many areas of
physics and highlights how the system-bath dynamics can
drastically change with the system-bath interaction strength.
We now show that this behavior is reproduced correctly by
the presented quantum algorithm.

An ohmic spectral function has the form

S(ω) = 4π h̄2αω

1 − exp
(− h̄ω

kBT

) , (25)

where the interaction strength is characterized by the so-called
Kondo parameter α as well as the temperature T . We choose
kBT/h̄� = 1.5, where h̄� is the spin splitting. We also in-
troduce a cutoff function exp(−|ω|/ωc) with ωc/� = 10. The
coarse graining is done by eight auxiliary boson modes with
a constriction to identical broadenings κi = κ and is shown in
Fig. 5.

In the quantum algorithm, we choose to represent each
of the auxiliary boson modes by one auxiliary spin. When
time evolving on the quantum computer, we assume that the
corresponding bath qubits are subjected only to damping. The
quantum algorithm is of the same form as for the resonant
bath considered in Sec. IV A, with the difference that here the
auxiliary spin parameters are not identical. We consider the
case of variable MS decomposition and a gate error ε = 5%
(�τ = 0.11). The conclusions made for the use of different
gate decompositions in Sec. IV A are valid here as well.

In Fig. 6 we show the time evolution of 〈σ̂x(t )〉 when the
system spin is again set initially to the +1 eigenstate of σ̂x and
when the bath is initially at equilibrium. We show the result-
ing dissipative dynamics for weak, intermediate, and strong
coupling limits, corresponding to α = 0.02, 0.1, 1.0. We com-
pare the quantum algorithm results to the so-called NIBA
(noninteracting blip approximation) calculation of the same
dynamics [6,44]. We perform this calculation for the original
ohmic spectral function as well as for the coarse-grained spec-
tral function. Since a noticeable difference appeared only for
strong couplings, the latter result is shown only for α = 1.0.
We find that the celebrated transition, from a weak-to-strong
damping and finally to a slow decay, is reproduced well by the
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FIG. 5. Fitting of an ohmic spectral function with exponential
cutoff by eight broad (auxiliary) boson modes. The fitting is done
with a constriction of auxiliary modes having identical broadenings
κi = κ .

quantum algorithm. We find a good agreement with the NIBA
even though each of the auxiliary boson modes is represented
by only one auxiliary spin. A difference to the NIBA emerges
only for large α. This difference is due to a combination
of imperfect fitting (see the result for the NIBA with the
coarse-grained bath) and elevated bath-qubit populations at
low-frequencies.

C. Electronic transport models

In the third example, we time evolve open-system dy-
namics according to a generalized spin-boson model that
can describe electronic transport, for example, across metal-
lic islands or quantum dots. This model is also interesting
since it allows for mapping system-qubit damping to the
coarse-grained spectral function exactly. The Hamiltonian
Ĥ0 = ĤS + ĤB + ĤC has the form

ĤS = − h̄�

2
σ̂z,

ĤB =
∑

k

h̄ωkâ†
k âk +

∑
k

h̄ωkb̂†
kb̂k, (26)

ĤC = σ̂x

∑
k

vk

2
(â†

k + âk ) + σ̂y

∑
k

vk

2
(b̂†

k + b̂k ). (27)

The model bath has two sets of bosonic modes, described
by the bosonic operators â and b̂, coupled to the system via
operators σ̂x and σ̂y. The spectral functions of these individual
baths are defined similarly as before, Eq. (7) and are identical
here. An example of an open quantum system that can be
modeled with this Hamiltonian is a single-electron transistor
(Appendix E). Here for strongly interacting electrons only two
island-charge states are relevant, and these are mapped to the
two states of the introduced system spin. The gate voltage of
the transistor translates into the energy-level splitting �. The
source-drain bias is assumed to be here zero.

We construct two quantum algorithms for solving this
problem. The first one is designed for a quantum hardware
with a noiseless system-qubit and bath qubits that are sub-
jected to damping noise, and the second algorithm for all
qubits being noisy. Furthermore, we consider a structured
spectral function S(ω), which is ohmic at low frequencies, has
resonances at ω0 and 2ω0, and is at relatively low temperature
kBT = 0.3h̄ω0 (Appendix E). This can describe transmission
lines with resonances. The system-bath coupling is of similar
magnitude as the resonance mode broadening. The spectral
function fitting corresponding to the two algorithms is shown
in Fig. 7(a).

In the algorithms, each auxiliary boson mode is represented
by one bath qubit. We have in total four bath qubits (two
independent baths). On hardware, this could be realized by
a system qubit with four neighboring bath qubits. We use a
variable MS decomposition and a gate error of 1%. In the case
of a noisy system qubit, X gates are introduced between the
original Trotter-step circuits in order to transform damping to
a sum of X noise and Y noise, which allows it to be mapped to
the spectral function; see Appendix C. We have a background
rate factor r = 1/2; see Sec. III A 2.

In Fig. 7(b) we show the obtained steady-state values for
the island charge 〈σ̂−σ̂+〉 as a function of the gate voltage
�. We also do a comparison to an open-system model so-
lution obtained by applying the numerical method developed
in Ref. [45]. We again apply the reference method to the
original spectral function as well as to the coarse-grained
spectral function. The shown classical solution is the result
in the limit α → 0 and corresponds to the Fermi function. In
the case of a noiseless system qubit (above plot), we find a
good agreement between the quantum algorithm result and
the open-system model solution. In particular, all different
results (except the classical one) are practically identical when
the bias �/h̄ is at the well-fitted spectral-function region. For
larger |�/h̄|, differences appear due to imperfect coarse grain-
ing. However, importantly, the results for the same spectral
functions stay practically identical. The coarse-grained spec-
tral function can be interpreted as describing a nonequilibrium
bath, with elevated temperature at higher energies. When all
qubits are subject to damping (bottom plot), the steady-state
island charge is now different for all gate voltages, when com-
paring to the original open-system model solution. However,
the results for the same spectral functions again stay almost
identical. This confirms that the system-qubit noise can indeed
be mapped to the spectral function of the open-system model.

In Fig. 7(c) we study the dynamical behavior of the island
charge when exciting the island charge initially to symmetric
superposition, i.e., to +1 eigenstate of σx. We present the
result for the spectrum of 〈σ̂x(t )〉. In the case of the noiseless
system qubit (above plot), we find that far from the resonances
� = ω0 or � = 2ω0, a narrow peak appears at frequency ω ≈
�. This corresponds to coherent phase oscillations between
the charge states with exponential decay of the coherence.
The system-bath dynamics are Markovian. Closer to the bath
resonances, the peak shows strong broadening as well as split-
ting into a triplet. We find that in this region the underlying
system-bath dynamics is non-Markovian, which occurs due to
the strong system-bath coupling. We also see that the same
key characteristics appear when solving the problem with the
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FIG. 6. Open-system dynamics of a spin coupled to an ohmic bath solved using the quantum algorithm and a comparison to the numerical
solution obtained using the NIBA (noninteracting blip approximation). We use a variable MS decomposition and a gate error of 5%. In the
quantum algorithm, the ohmic bath is represented by eight auxiliary boson-modes with a coarse-grained spectral function as shown in Fig. 5.
Each of the boson modes is represented by one bath qubit. We show the NIBA result also for the coarse-grained spectral function in the case
of strong coupling α = 1 (while for α = 0.02 and α = 0.1 the differences are negligible). We find that the famous transition from a weak
damping to a slow decay with increasing α is reproduced well by the quantum algorithm.

algorithm with system noise (bottom plot). This highlights
that dynamics of open quantum systems with a structured bath
can be solved with the presented quantum algorithm also in
the presence of strong system-qubit noise.

V. DISCUSSION

In this work we have developed a framework for noise-
utilizing quantum simulations. The presented quantum algo-
rithms map typical noise in digital quantum computing to
spectral function properties of open system models. At the
center of this approach is the noisy-algorithm model, which
describes the effect of noise in the form of a static Lind-
blad master equation operating on the time-evolved density
matrix [24].

The form of this static Lindbladian depends on the used
circuit decomposition. In the examples we have considered,
optimal circuit decompositions were based on native gates,
such as the small-angle single-qubit rotations, variable MS
two-qubit gates (XX interaction), or variable iSWAP two-
qubit gates (XX + YY interaction). We also found that
non-native gate decompositions can work as well, but may
also lead to alternations to the actually time-evolved open-
system model. The examples considered also showed that
the algorithm can perform very well even with gate errors
as high as 1%. The performance, however, improves with
decreasing gate error, as this allows for the implementation
of longer circuits, e.g., using a smaller Trotter time step. It is
thus beneficial to have as low of a gate error as possible. The
central parameters used in the examples are summarized in
Table I.

In the shown examples we considered single-spin systems.
It should be emphasized that the quantum algorithm can be
applied also to multispin systems, such as exciton-transport
models [5]. Actually, the algorithm is most efficient when time
evolving a model with multiple system spins, due possibly

to more efficient gate parallelization. More specifically, for
a fixed number of bath modes, system spins can be added
without additional cost (e.g., increase in the Trotter time step)
when exploiting all-to-all connectivity or the system-bath
swap network presented in Appendix C.

The derivation of the quantum algorithm assumed the use
of qubits with intrinsic noise that can be described using a
Lindbladian formalism. However, we note that the approach
is also directly applicable to more general quantum elements
and noise whose effect is rather of Bloch-Redfield form. Fur-
thermore, the general principles of modifying the effective
noise could also be applied to general non-Markovian noise.
Utilization of non-Markovian noise in quantum computing
has been addressed recently in Ref. [46].

The focus in this article has been on utilizing intrinsic bath-
qubit noise. However, the bath qubits can also be replaced by
resonators or phonon modes on hardware [32–35] with en-
gineered damping, which can offer more efficient simulations
for large boson numbers. It may also be possible to replace the
system qubits by error-corrected qubits, while having a large
number of physical qubits as the bath.

Finally, the quantum algorithm and conclusions presented
in this paper are not restricted to simulating the spin-boson
model, but are applicable also for more general open-system
models.
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FIG. 7. Steady-state and relaxation dynamics of a single-electron transistor island-charge, solved using two quantum algorithms (above,
without system noise, below, with system noise), and a comparison to a numerical solution obtained by a method presented in Ref. [45]
(referred to as the open-system model, OSM). We set the source-drain bias to zero and vary the gate voltage �. Both algorithms are based on
variable MS gate decomposition and a gate error of 1%. (a) Fitting of the resonant spectral function by two modes with identical broadenings
(above) and by two modes with identical broadenings and system noise (below). (b) A comparison between the solutions for the steady-state
island charge. We calculate the OSM solution for the original spectral function as well as for the coarse-grained spectral function. A difference
appears at high gate voltages due to an increased effective temperature of the coarse-grained bath at high energies. In the presence of the
system-qubit noise (below), a difference to the original open-system model result appears at all gate voltages due to an increased effective
temperature at all energies. The quantum algorithm result and the OSM result for the coarse-grained bath, however, stay similar. (c) The
spectrum of the charge relaxation dynamics (log scale) when initially setting the island charge to +1 eigenstate of σ̂x . A peak tripling appears
in the vicinity of the bath resonances. When solved with the algorithm with system noise (below), additional broadening appears but the key
characteristics remain.

APPENDIX A: GENERALIZATION TO MULTISPIN
SYSTEMS AND THE IMPLEMENTED FITTING ROUTINE

For simplicity, the main text considers only the case of
one system spin. The presented algorithm can, however, be
generalized to cover also multispin systems. An example of a
multispin Hamiltonian is

ĤS = −
∑

i∈system

h̄�ii

2
σ̂ i

z + 1

2

∑
i< j∈system

h̄(�i j σ̂
i
+σ̂

j
− + �∗

i j σ̂
j

+σ̂ i
−),

(A1)

ĤB =
∑

k

h̄ωkb̂†
kb̂k, (A2)

ĤC = 1

2

∑
i∈system

σ̂ i
z

∑
k

(v∗
ik b̂†

k + vik b̂k ). (A3)

The couplings �i �= j and v may be complex numbers (as only
a select number of phases can be absorbed into definitions
of the boson operators). This Hamiltonian is commonly used
to describe exciton transport in photosynthesis, where the

system spins correspond to excitons and the bosonic modes
to molecular vibrations.

The spectral function is defined analogously as for the
single-spin system. The multidimensional spectral function is
defined as

Si j (ω) =
∫

dteiωt 〈X̂i(t )X̂ j (0)〉0, (A4)

where

Xi =
∑

k

(vik b̂k + v∗
ikb†

k ). (A5)

In thermal equilibrium,

Si j (ω) = 2π

∑
k vikv

∗
jkδ(ω − ωk )

1 − exp
(− h̄ω

kBT

) , for ω > 0, (A6)

Si j (ω) = 2π

∑
k v∗

ikv jkδ(ω + ωk )

exp
(

h̄ω
kBT

) − 1
, for ω < 0, (A7)

S ji(ω) = S∗
i j (ω). (A8)
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We see that cross-correlations (i �= j) can appear if different
spins couple to the same bath modes.

The coarse graining is performed similarly for a single-spin
system and a multispin system. Here the original bosonic
bath is replaced by n auxiliary boson modes. Each of these
auxiliary modes has a central frequency ωm, coupling to the ith
system spin vim, and broadening κm. For a single-spin system,
the coarse-grained spectral function has the form (8). For a
multispin system this is generalized to

Si j (ω) =
n∑

m=1

vimv∗
jm

κm

(κm/2)2 + (ω − ωm)2
. (A9)

In the fitting presented in this paper, we optimize the cost
function

C =
∑
i� j

∫ ωmax

ωmin

dω
∣∣Si j (ω) − Starget

i j (ω)
∣∣2

, (A10)

by seeking optimal values for ωm, vim, and κm. The fitting
problem includes n frequencies, nns couplings, and n broad-
enings, where ns is the number of system spins. Furthermore,
the system-qubit noise can be included similarly as in the
case of the single-spin system (Sec. III A 2). Here a constant
background rate is added to diagonal components of Si j (ω),
assuming the system-qubit noise is uncorrelated. Possible
differences in the system-qubit decoherence rates can be ac-
counted for by generalizing the constant r in Eq. (12) to a
vector r j , where the index j refers to a system spin.

The fitting is restricted to some relevant frequency window,
here from ωmin to ωmax, which is usually determined by the
energy levels of the system, the size of the system-bath cou-
plings, and/or the frequency cutoff. One should also keep in
mind that the target spectral function, possibly obtained from
an experiment, may contain significant uncertainty, thereby
limiting the attainable fitting accuracy.

The computational task of finding optimal parameters faces
the general difficulties posed by nonlinear fitting problems.
The optimization as presented above is a relatively easy task,
but requires one to have a good heuristic for a starting guess. If
fitting in a black-box fashion, spectral functions that are sums
of sharp peaks or are very broad represent simple problems.
But spectra with large gaps, or with a combination of broad
and sharp peaks, are more challenging. In this case, a good
initial guess is crucial. As the dimensionality grows, the pa-
rameter space grows exponentially. However, for the purposes
of this work, i.e., for noisy qubits of NISQ computers, one is
in practice dealing with at most several tens of fitting modes,
and in this case suitable heuristics work most of the time, and
the fitting fails only in pathological cases.

APPENDIX B: NOISY-ALGORITHM MODEL

Here we give a short description of our model of quantum
computing with incoherent error. We assume that the noise
inserted after each gate is qubit damping and dephasing. This
can be justified for hardware with such intrinsic noise and for
the application of small-angle gates. The form of the noise in
the case of large-angle gates may vary [47]. However, the prin-
ciples of deriving the effective noise model and optimizing it

remain the same. For a more detailed derivation and validity
analysis of this noise model see Ref. [24].

1. Noise after gates (physical noise)

For the following discussion, we assume that the time-
propagation algorithm is based on a Trotter expansion over
time t = mτ ,

e−iĤt = e−iĤmτ = [e−iĤτ ]m ≈ [� je
−iĤjτ ]m. (B1)

Here the Hamiltonian H is divided into partial Hamiltonians,

Ĥ =
∑

j

Ĥ j, (B2)

whose contributions to the time evolution are implemented
using available unitary gates. For native (or natural) gates we
have

e−iĤjτ = Ûj, (B3)

whereas non-native decompositions have the form

e−iĤjτ = �kÛj,k . (B4)

In practice, the elementary gates Ûj,k include large-angle op-
erations, such as Rx(π/2) or CNOT.

In our modeling, the physical noise is included as nonuni-
tary operations after unitary gates,

Û → NU . (B5)

On the right-hand side, the unitary gate is represented as a su-
peroperator U and the nonunitary noise as a Kraus operator N .
It is always possible to establish such description of an inco-
herent error, assuming it keeps qubits in their computational
basis. In our modeling, also the identity gate is assumed to
come with noise. In other words, the noise is acting also on
idling qubits.

Assuming the effect of the noise per gate is weak, it is
possible replace the Kraus superoperators by Lindbladians L j

and physical gate times t j such that

N j ≈ 1 + t jL j, (B6)

where L j is a Lindblad operator describing the physical noise.

2. Effective noise

Noise after the unitary gates can appear in a different form
in the simulated system [24]. To understand how this noise
mapping works, consider a simple example of decomposing
some unitary to three elementary gates, V̂ = Û3Û2Û1. Since
unitary gates have also inverse gates, we can rewrite the noisy
version of this circuit as

Û3Û2Û1 → N3U3N2U2N1U1

= N3U3N2U−1
3 U3U2N1U−1

2 U−1
3 U3U2U1

≡ N3N ′
2N ′

1U3U2U1

≡ NV, (B7)
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TABLE II. Effective noise for different incoming noise types and two-qubit gates. We consider physical noise operators σ̂−, σ̂+, σ̂z under
control-X (CNOT) and control-Z unitary transformations. Here P̂0 = (1 + σ̂ control

z )/2 and P̂1 = (1 − σ̂ control
z )/2 are control-qubit projection

operators.

σ control
− σ control

+ σ control
z σ

target
− σ

target
+ σ target

z

CNOT σ control
− σ target

x σ control
+ σ target

x σ control
z P0σ

target
− + P1σ

target
+ P0σ

target
+ + P1σ

target
− σ control

z σ target
z

Control-Z σ control
− σ target

z σ control
+ σ target

z σ control
z σ

target
− σ control

z σ
target
+ σ control

z σ target
z

where N = N3N ′
2N ′

1 and

N ′
1 = U3U2N1U−1

2 U−1
3 , (B8)

N ′
2 = U3N2U−1

3 . (B9)

We see that the noise superoperator N1 got rotated by the
unitary transformation U3U2 and the noise superoperator N2

by U3. Furthermore, under the assumption of small noise-
probability we can approximate

N3N ′
2N ′

1 ≈ (1 + t3L3)(1 + t2L′
2)(1 + t1L′

1)

≈ 1 + t1L′
1 + t2L′

2 + t3L3. (B10)

Here the operators in the individual Lindbladians Li are ro-
tated by unitary gates Ûj>i exactly in the same way as the
noise superoperators were rotated by U j>i. The (noise part of)
the effective Lindbladian then becomes

τLeff = t1L′
1 + t2L′

2 + t3L3. (B11)

This result can be generalized to arbitrary circuits [24].
The transformation of noise to other effective forms in

a series of unitary gates has also been studied recently in
Refs. [10,48,49]. The effect of quasistatic noise in digital
quantum simulation has been addressed in Ref. [50].

3. Noise transformations in the examples

In most examples we consider native XX interaction (vari-
able MS) gates. In this case, the effective noise and the
physical noise have the same form, since we have approxi-
mately

N̂ ′ = Ûxx(τv)N̂Ûxx(−τv) ≈ N̂, (B12)

which is true when τv � 1 and Ûxx is a native gate. The
derivation of this result is sketched in Fig. 8.

The derivation of the effective noise for non-native de-
compositions is done as follows. In the case of CNOT-B

decomposition of the XX interaction (with bath qubits as the
control qubits; see Sec. IV A), we look at how the control
qubit i damping and dephasing operators transform under
CNOT (see Table II),

CNOT σ̂ i
− CNOT = σ̂ i

−σ̂x, (B13)

CNOT σ̂ i
z CNOT = σ̂ i

z . (B14)

Remember that a superscript i in a Pauli operator refers to
a bath qubit (or the corresponding auxiliary spin). This tells
us that physical bath-qubit damping gets translated into si-
multaneous bath-spin damping and system-spin flip, whereas
dephasing keeps its form. This result means that the effective

Lindbladian has the form

Leff[ρ̂] ≈ i

h̄
[ρ̂, Ĥ ] + (γ − δγ )

∑
i

Lσ i−[ρ̂] + �

2

∑
i

Lσ i
z
[ρ]

+ δγ
∑

i

Lσ i−σx
[ρ̂], (B15)

where we use a notation LA for a noise Lindbladian with noise
operator Â. It turns out that the last term on the right-hand
side of Eq. (B15) can be approximately factored into two
uncorrelated contributions,

Leff[ρ̂] ≈ i

h̄
[ρ̂, Ĥ ] + (γ − δγ )

∑
i

Lσ i−[ρ̂] + �

2

∑
i

Lσ i
z
[ρ̂]

+ δγ
∑

i

Lσ i− [ρ̂] + γsystemLσx [ρ̂], (B16)

where

γsystem = δγ
∑

i

〈σ̂ i
+σ̂ i

−〉. (B17)

FIG. 8. Derivation of the effective noise model in the case of
native gates and a circuit that describes a system-spin s coupled to
a bath spin b via XX interaction. Only the bath qubit is noisy. In the
derivation the noise operators are commuted to the end of the circuit.
In the case of τv � 1 we have N̂ ′ ≈ N̂ .
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We also get γsystem � γ , �, following from the fact that most
of the time the individual bath qubits are at ground. It follows
that γsystem can be neglected, and we have

Leff[ρ̂] ≈ i

h̄
[ρ̂, Ĥ ] + γ

∑
i

Lσ i− [ρ̂] + �

2

∑
i

Lσ i
z
[ρ̂]. (B18)

This has the same form as the physical noise.
For CNOT-S, i.e., when the system qubit is the control

qubit, the changes in the effective model are larger. This can
be derived by looking at the target-qubit noise conversions
(see Table II),

CNOT σ̂ i
− CNOT = P̂0σ̂

i
− + P̂1σ̂

i
+, (B19)

CNOT σ̂ i
z CNOT = σ̂zσ̂

i
z , (B20)

where P̂0 = (1 + σ̂z )/2 and P̂1 = (1 − σ̂z )/2 are projection
operators of the system qubit. The first equation implies that
physical bath-qubit decay can also transform into effective
bath-spin excitation. It can therefore be active even when the
bath is empty. Furthermore, this correlated noise wants to
project the system spin to one of its σ̂z eigenstates.

The effective Lindbladian becomes

Leff[ρ̂] ≈ i

h̄
[ρ̂, Ĥ ] + γ

∑
i

Lσ i− [ρ̂] + �

2

∑
i

Lσ z
i
[ρ̂]

+ �̄

2
Lσz [ρ̂], (B21)

where we have done noise factoring and neglected a contri-
bution introducing bath excitation (this approximation was
verified numerically). The size of �̄ can be solved numerically
and gives a noticeable system-spin dephasing.

The effective noise analysis of the optimal control-Z de-
composition (Fig. 10 below) is essentially the same as made
for the CNOT-B decomposition (see also Table II). This means
that the effective noise of a control-Z decomposition has the
same form as the physical noise.

APPENDIX C: QUANTUM CIRCUIT OPTIMIZATION

We assume that the effective noise given by Leff is dom-
inated by spin damping and spin dephasing. As discussed
above, this is possible for circuit decompositions based on
native (small-angle) decompositions. However, if large-angle
gates are needed, the quantum circuits should be designed so
that the large-angle gates act only on noiseless system qubits,
or one uses large-angle gates that do not modify the noise.
Also, the simulation algorithm used (like the swap-network
algorithm) should ideally support this approach. Furthermore,
if also the system qubits are noisy, it may be beneficial to
transform the system noise to a symmetric form, in order to
map it to an open-system model. These aspects are discussed
in detail in this Appendix.

1. Avoiding large-angle bath-qubit rotations

Large-angle rotations of bath qubits may rotate the noise
operators σ i

+ and σ i
z to very different forms. Such rotations

should then clearly be avoided. We give below several exam-
ples of gate decompositions that follow this principle.

FIG. 9. Examples of decomposing spin-spin interactions by na-
tive gates, without causing alternations to the effective noise model.
(Above circuit) XX interaction decomposed by variable iSWAP
gates. (Below circuit) Excitation hop decomposed by variable XX
gates.

Ideally we have access to a native gate of some two-qubit
interaction. In this paper we construct time propagation ac-
cording to XX interaction between a system qubit and a bath
qubit. Consider realizing this using a variable iSWAP two-
qubit gate, which is a native gate of an excitation hop,

ÛiSWAP(τv) = e−i(σ̂ s
+σ̂ b

−+σ̂ s
−σ̂ b

+ )τv/2. (C1)

Here s refers to a system qubit and b to a bath qubit. To obtain
the full XX interaction, we need to add the counter-rotating
terms. We can create these terms by another variable iSWAP
gate by surrounding it by X gates of one qubit. To avoid
rotations of the bath qubit, the X gates are applied to the
system qubit,

R̂x,s(π )ÛiSWAP(τv)R̂x,s(π ) = e−i(σ̂ s
+σ̂ b

++σ̂ s
−σ̂ b

− )τv/2. (C2)

The time propagation is then generated by the decomposition
shown in Fig. 9 (above circuit). When using this construc-
tion, and assuming noiseless system qubits, the physical and
effective noise Lindbladians have the same form. Note that
this is not the case for the decomposition where X gates are
performed on the bath qubits.

On the other hand, to obtain an excitation hop using the
native XX gate

Ûxx(τv) = e−iσ̂ s
x σ̂ b

x τv/2, (C3)

we need to supplement this with YY interaction. This can be
created from an XX gate with the help of Z rotations,

R̂z,s

(
−π

2

)
R̂z,b

(
−π

2

)
Uxx(τv)Rz,b

(π

2

)
Rz,s

(π

2

)
= e−iσ̂ s

y σ̂ b
y τv/2.

(C4)

Note that this also includes large-angle rotations of the bath
qubit. However, Z rotations do not change the form of damp-
ing (σ̂−) or dephasing (σ̂ z) operators (they just introduce a
phase shift which cancels out in the Lindbladian). The exci-
tation hop is then generated by the decomposition shown in
Fig. 9 (below circuit).

Also non-native two-qubit gate decompositions should fol-
low this principle. For example, according to our results in
Sec. IV A, using the bath qubit as a CNOT control qubit seems
beneficial. This can be understood qualitatively as a result
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FIG. 10. Optimal CNOT (above) and control-Z (below) decom-
position of the XX interaction. Large-angle rotations are performed
only to system qubits, which is expected to reduce the alternation of
the effective noise.

of the fact that the bath qubit is never flipped (subjected to
a large-angle gate). This decomposition is shown in Fig. 10
(above circuit). In Fig. 10 is also shown the optimal decompo-
sition when the control-Z gate is used (below circuit).

2. System-bath swap network

In common open-system models the bath is noninteracting.
For the presented quantum algorithm this means that a direct
connectivity between the bath qubits is not needed. Rather
a connectivity from the system to all bath qubits. If this is
provided, a simple Trotter expansion of the time propagation
is adequate.

On the other hand, if only nearest-neighbor interactions are
possible, but the device has a two-dimensional architecture, an
efficient swap-network algorithm can be developed. Here the
quantum states of the system spins are moved (swapped) in
the system-qubit network, located between the bath qubits; see
Fig. 11. The difference to the common swap algorithm (see,
for example, [51]) is that bath states are not swapped. Within
this modification, one avoids doing large-angle rotations of
the bath qubits. In the example circuit shown in Fig. 12, the
state of one system-spin is stored by two system qubits, one
per time. The system spin interacts with four auxiliary spins,
represented by the four bath qubits. Note that this method
most optimally time propagates ns system spins coupled to
2ns auxiliary spins.

FIG. 11. A two-dimensional qubit architecture that is optimal for
performing a Trotter time evolution of a system-bath model. In total
ns system qubits locate between 2ns bath qubits. The bath qubits
can also refer to any other resonance modes in the device, whose
interaction with the system qubits can be controlled digitally.

FIG. 12. Example of a system-bath swap algorithm on a two-
dimensional qubit architecture. Two system qubits are used to store
the information of one system spin. The system spin interacts with
four auxiliary spins, represented by the four bath qubits.

3. Noise symmetrization

So far we have assumed that the system qubits are noise-
less. Finite system noise may also be included if it is
transformed into the proper form. This can be achieved by
noise symmetrization, whose goal is to map system noise to
heating of the modeled bath.

A simple example of noise symmetrization is the appli-
cation of X gates to transform physical qubit damping into
effective spin excitation. This is based on the transformation

σ̂xσ̂−σ̂x = σ̂+. (C5)

We then insert X gates between (original) Trotter steps, and
make corresponding changes to the unitary gates (such as
Y → −Y ). In the case of system-qubit damping symmetriza-
tion, we then have the new Trotter-step circuits as shown in
Fig. 13. Here ˆ̄U = R̂x,s(π )Û R̂x,s(π ). Ideally the decomposi-
tion of ˆ̄U is similar to that of Û , or even ˆ̄U = Ū , which would
be the case for an XX interaction. This trick symmetrizes the
effective Lindbladian Leff terms as

γ σ̂−ρ̂σ̂+ → γ

2
σ̂−ρ̂σ̂+ + γ

2
σ̂+ρ̂σ̂−. (C6)

FIG. 13. Example of a noise-symmetrization algorithm based
on application of X gates to the system qubit between the Trotter
steps. Here ˆ̄U = R̂x,s(π )Û R̂x,s(π ). The goal is the transformation
of system-qubit damping partially into effective excitation, which
allows it to be mapped on the bath spectral function.
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Furthermore, since
γ

2
σ̂−ρ̂σ̂+ + γ

2
σ̂+ρ̂σ̂− = γ

4
σ̂X ρ̂σ̂X + γ

4
σ̂Y ρ̂σ̂Y , (C7)

we see that damping has changed to a coupling to two in-
dependent baths, via operators σ̂x and σ̂y. As demonstrated
in Sec. IV C and discussed more in Appendix E, this can be
mapped to a constant background of spectral functions in a
certain interesting class of open system models.

The system-noise symmetrization can be generalized to
all spin directions, in which case the system noise becomes
equivalent to depolarization. This corresponds to coupling to
three independent baths, via operators σ̂x, σ̂y, and σ̂z.

It should be noted that damping during the X gate itself
may transform partly into σ̂z noise in terms of the circuit-level
noise that is inserted after the X gates [47], in which case
the bath mapping to σ̂x and σ̂y noise (shown above) is only
approximate. However, in the case of long circuit depths,
the noise contribution from the X gates themselves is small.
Various noise symmetrization approaches have been studied
experimentally in Refs. [9,10,52].

APPENDIX D: ERROR SOURCES

Here we discuss three main error sources in the quantum
algorithm. These are the Trotter error, the coarse-graining
error, and the bath-Gaussianity error. We also discuss how the
key parameters determining their sizes become connected in
the quantum algorithm.

1. Trotter error

The time propagation is realized in time steps τ . Unless all
terms in the Trotter expansion commute, there is an error in
the time propagation [53]. At the center of this analysis is the
BCH (Baker-Campbell-Hausdorff) formula, which states

�i exp(τ Âi ) = exp(τ Ẑ ), (D1)

where to first order in τ we have

τ Ẑ =
∑

i

τ Âi + τ 2

2

∑
i< j

[Âi, Â j]. (D2)

The operator τ 2

2

∑
i< j[Âi, Â j] represents an error in the Trot-

terization. If Eq. (D1) corresponds to one Trotter step, the total
accumulated error during the full time evolution can now be
estimated to be

εTrotter ∼ O

⎛
⎝mτ 2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i< j

[Âi, Â j]

∣∣∣∣∣∣
∣∣∣∣∣∣
⎞
⎠, (D3)

where m is the number of Trotter steps and the total simulated
time t = mτ . This is of course a rather rough estimate and
should be analyzed more carefully for specific cases. Without
the presence of noise, the operators Âi can be identified as ex-
ponentiated partial Hamiltonians. When including the noise,
it is more convenient to switch to the superoperator notation,
where the operators Âi are exponentiated commutators (the
gates) and exponentiated Lindbladians (the noise) [47].

Let us first look closer at pure gate contributions to the
Trotter error. Assuming we are using the first-order Trot-

terization formula, we find that the error can be interpreted
as an additional Hamiltonian term H̃ in the effectively
time-propagated model (considering now single-spin system,
single-mode bath):

exp

[
− iτ

h̄
(ĤS + ĤB)

]
exp

(
− iτ

h̄
ĤC

)

= exp

[
− iτ

h̄
(Ĥ + H̃ )

]
, (D4)

H̃ = vτ

⎛
⎝−�

4
σ̂y

N∑
j=1

σ̂
j

x√
N

− ω0

4
σ̂x

N∑
j=1

σ̂
j

y√
N

⎞
⎠. (D5)

When comparing the form of H̃ to the original Hamiltonian
Ĥ , we can interpret each coupling term as possessing an error
term with characteristic size ∼O[vτ (|�| + ω0)]. We want this
contribution to be small. We can compare this to the energy
scale of the original coupling term. Assuming that � ∼ ω0,
the error has a relative magnitude O(�τ ). We would then de-
mand �τ � 1. Similarly, if we compare the error to the scale
of the system and bath energies, we then demand vτ � 1.
In general a comparison to the energy scale of the (possibly
slow) solution dynamics may need to be made, which can
differ from the energy scale of the Hamiltonian. In our case the
dissipation (with rate κ), however, sets a limit for long-time
correlations.

Special to our algorithm is the Trotter error in the noise
terms. This follows the same math as above. It is, however,
now more convenient to work with superoperators. In this
paper, qubit noise is assumed to be uncorrelated and thereby
the relevant contribution comes from commuting noise with
gates. We consider now only commuting bath noise with gates
that reproduce the σ̂xσ̂

i
x interaction (where i ∈ bath), since the

noise (damping or dephasing) superoperator commutes with
the gates producing the σ̂ i

z terms. A commutator between
noise and gate terms generates another noise superoperator,
whose “normal” operators are commuted with corresponding
partial (gate) Hamiltonians:

exp (Leffτ ) → exp

[(
Leff +

∑
i

L̃i
eff

)
τ

]
, (D6)

L̃i
eff[ρ] = [Ôi, σ̂

i
−]ρ̂σ̂ i

+ + σ̂ i
−ρ̂[Ôi, σ̂

i
+]

− 1
2 ([Ôi, σ̂

i
+σ̂ i

−]ρ̂ + ρ[Ôi, σ̂
i
+σ̂ i

−]), (D7)

Ôi = γ τ
−iv

4h̄
σ̂xσ̂

i
x. (D8)

Here we explicitly assume damping noise. We find [Ôi, σ̂
i
+] ∝

σ̂xσ̂
i
z , [Ôi, σ̂

i
−] ∝ −σ̂xσ̂

i
z , and [Ôi, σ̂

i
+σ̂ i

−] ∝ iσ̂xσ̂
i
y. The error

term
∑

i L̃i
eff then describes correlated effective noise. Note

that it has the same form as the leading-order term in τ

when the Lindblad noise operators
√

γ σ̂ i
− are rotated by

exp(−iτ Ĥi/2h̄). The error has characteristic size

εL ∼ O(vτγ ). (D9)

To have a small contribution in comparison to the correct noise
Lindbladian, which has the magnitude γ , we then obtain the
requirement vτ � 1.
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The true size of the Trotter error in comparison to the
relevant energy scales is, however, hard to predict analytically,
and in practice one needs to resort to numerical simulations.
In the examples of Sec. IV, we found that values vτ ∼ 0.2
were small enough to have a negligible Trotter error on the
visual scale of the plots.

2. Coarse-graining error

Unless the target spectral function is Lorentzian, or a (fi-
nite) sum of Lorentzians, there is always an error in the coarse
graining. Obviously, such an error is reduced when the num-
ber of Lorentzians n is increased. Several recent works study
errors originating in the imperfect spectral-function fitting, as
well as their correction, in the context of classical numerical
methods [26,54,55]. Particularly interesting for the noise-
utilizing quantum algorithm is an error-correction approach
based on calculating functional derivatives with respect to
spectral-function changes [26]. For the quantum algorithm
considered here, this would correspond to using a low-noise
qubit as a narrow-peak perturbation in the spectral function, to
implement a functional derivative. The leading-order correc-
tion is the derivative multiplied by the error in the spectrum
[26].

3. Bath-Gaussianity error

The bath-Gaussianity error emerges when the auxiliary
spins do not perfectly represent a bosonic bath. In other words,
the mapping of Eqs. (14) and (15) leads to an error. The error
is generally of order O(1/N ), where N is the number of spins
representing one bosonic mode. For example, the operator ŝ =∑

i σ̂
i
+

∑
i σ̂

i
−/N has expectation values s + s(s − 1)/N (in the

relevant space of Dicke states [40]), where s is a non-negative
integer. The difference to the corresponding bosonic result is
the term s(s − 1)/N , which vanishes in the limit N → ∞. One
should note that the actual size of this error can be studied in
the quantum simulation by additional measurements and, if
needed, can be reduced by increasing the number of auxiliary
spins used to represent one bosonic mode.

4. Error-parameter dependency

There is a special dependency between the central param-
eters defining the size of the different errors. We derive now
a connection for a simple example. We start by noting that
the coarse graining is always done within some frequency
window, for example, within a cutoff frequency ωc. In the
simplest (yet still reasonably accurate) estimate, the auxiliary
boson modes are inserted at constant frequency intervals with
broadenings

κ ≈ ωc

n
. (D10)

We already note that an increase of n decreases κ . The circuit
depth also depends on n, and for the models considered in this
paper it is approximately

D ≈ nND0 = nqD0, (D11)

where N is the number of qubits representing an auxiliary
boson mode, and for simplicity we assume that it is the

same for every boson mode. The constant D0 is defined by
the simulation algorithm and the gate decomposition (see
Table I). Combining the above formulas with the earlier result
for the correct Trotter time step in the quantum simulation
(Sec. III C),

τ = ε D
κ
,

leads to a special relation

τωc ≈ n2NεD0. (D12)

The left-hand side of this equation is a measure of the Trotter
error (on the energy scale of the Hamiltonian). On the right-
hand side, we have a multiplication between the square of the
number of Lorentzians used in the coarse graining n (defining
the coarse-graining error) and the number of bath qubits per
boson mode N (defining the bath-Gaussianity error). The fac-
tors D0, ωc, and ε can be taken to be fixed constants. A change
in one parameter needs to be compensated with a change in the
other parameters. For example, achieving an increase in fitting
accuracy by dropping N from some previous value N0 to 1
means a change n2N = n2N0 → (nN0)2 × 1 = n2N2

0 , leading
to an additional factor of N0 cost increase in the Trotter time
step size. We can also generally conclude that the lower the
gate error ε, the better the quantum algorithm will perform,
since this allows for a larger tolerance in the other parameters
(n, N , and D0 can be larger, while τ can be smaller).

APPENDIX E: SPIN-BOSON MODEL
OF ELECTRONIC TRANSPORT

In this Appendix we discuss how to approximately map
a fermionic open-system model to a spin-boson model. The
key steps are (1) the assumption of Gaussian statistics of
the fermion coupling operator, (2) the replacement of this
operator by a boson coupling operator, and (3) the matching
of the spectral functions. It should be noted that this procedure
is not restricted to the specific Hamiltonian considered below
but is also more generally applicable.

Our open quantum system is described by the Hamiltonian
Ĥ = ĤS + ĤB + ĤC, where

ĤS = − h̄�

2
σ̂z, (E1)

ĤB =
∑

m

∑
k

Ekmĉ†
kmĉkm +

∑
m

∑
l

Elmd̂†
lmd̂lm, (E2)

ĤC = σ̂+F̂ + σ̂−F̂ †, (E3)

where the fermion coupling operator is

F̂ =
∑
klm

Tklmĉ†
kmd̂lm. (E4)

Here the operators ĉ(†) and d̂ (†) annihilate (create) an electron
in the system and in the bath, correspondingly. Simultane-
ously, the state of the island spin is flipped. The transverse
level m does not change in this electron transport event.

It has been understood that in the limit of a large number
of transverse levels, the bath coupling operator F̂ becomes a
Gaussian variable. Physically, in this limit, consecutive spin
flips which are induced by the system-bath electron hopping
always involve electron transitions corresponding to separate
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transverse levels. On the Keldysh contour, this step is often
referred to as the loop approximation, which is taken, for
example, in Ref. [45] for metallic transistors. For systems with
only one transverse channel instead, the loop approximation
can be valid (at least) when the bath memory time is shorter
than the average time between electron hoppings between the
island and a lead.

When establishing the equivalent spin-boson model, a cen-
tral role is played by the spectral function of the coupling
operator F̂ ,

S(ω) = 〈F̂ †(t )F̂ (0)〉ω = 〈F̂ (t )F̂ †(0)〉ω
= 2π

∑
m

∑
k

∑
l

|Tklm|2δ(ω − Elm/h̄ + Ekm/h̄)

× f (Elm)[1 − f (Ekm)], (E5)

where f (E ) is the Fermi function and the index ω refers to
a Fourier transformation under a free evolution of the bath,
as in Eq. (A4). When writing the corresponding spin-boson
model, we also need to account for the fact that the coupling
operator F̂ is not Hermitian and that the opposite-direction
spin flips are described by the same spectral function S(ω),
see Eq. (E5). It follows that replacing F̂ by a boson position
operator B̂ + B̂†, or by B̂, is not satisfactory. A replacement of
type

F̂ → B̂1 + B̂†
2, (E6)

where operators B̂(†)
1 and B̂(†)

2 are independent but character-
ized by a spectral function of the same form (see below), is
found to be satisfactory. Since the free-evolution statistics of
bosonic creation and annihilation operators are Gaussian, the
two baths (fermionic and bosonic) are indistinguishable for an
observer from the system, if the spectral functions match.

According to these observations, a spin-boson model that
describes the original spin-fermion problem is of the form

ĤS = − h̄�

2
σ̂z, (E7)

ĤB =
∑

k

h̄ωkB̂†
1kB̂1k +

∑
k

h̄ωkB̂†
2kB̂2k, (E8)

ĤC = σ̂+
∑

k

vk (B̂1k + B̂†
2k ) + σ̂−

∑
k

vk (B̂†
1k + B̂2k ). (E9)

A spin flip σ̂+ absorbs a boson from field 1 and creates a bo-
son into field 2. The spectral function, in thermal equilibrium,
is given by

S(ω) =
∑

k

〈B̂†
1k (t )B̂1k (0)〉ω +

∑
k

〈B̂2k (t )B̂†
2k (0)〉ω

= 2π
∑

k

v2
k δ(|ω| − ωk )

1 − exp
(− h̄ω

kBT

) sgn(ω). (E10)

The spin-boson model parameters vk are chosen so that the
spectral function of the fermionic problem is reproduced. In
the example of Sec. IV C, we choose a structured spectral
function of the form

S(ω) =
1∑

k=0

αω

1 − exp
(− ω

kBT

) 1

2π

κ ′(
κ ′
2

)2 + (ω − ωk )2
, (E11)

where α = 0.25, κ ′ = 0.4ω0, ω1 = 2ω0, and a cutoff function
1/[1 + (ω/ωc)4] with ωc = √

3ω0. The spectral function S(ω)
is then the target function in the coarse graining.

The form of coupling Hamiltonian (E9) supports the use
of the variable iSWAP two-qubit decomposition, since it is
the native gate of (system-bath) coupling σ̂+σ̂ i

− + σ̂−σ̂ i
+. The

counter-rotating coupling terms σ̂+σ̂ i
+ + σ̂−σ̂ i

− can be cre-
ated by surrounding the variable iSWAP by X gates; see
Appendix C.

Alternatively, an equivalent spin-boson Hamiltonian sup-
porting the variable MS (native XX) decomposition can be
derived by defining new bosonic operators

âk = 1√
2

(B̂1k + B̂2k ), (E12)

b̂k = i√
2

(−B̂1k + B̂2k ). (E13)

This changes the form of the coupling Hamiltonian,

HB =
∑

k

h̄ωkâ†
k âk +

∑
k

h̄ωkb̂†
kb̂k, (E14)

HC = σ̂x

∑
k

vk√
2

(â†
k + âk ) + σ̂y

∑
k

vk√
2

(b̂†
k + b̂k ). (E15)

When representing this with spin-spin Hamiltonian, the first
coupling term is replaced by σ̂xσ̂

i
x interaction and the second

coupling term by σ̂yσ̂
i
x interaction. The first coupling type is

native to variable MS, whereas the second one can be cre-
ated by surrounding the variable MS by π/2 Z rotations; see
Appendix C. It follows that the circuit depth, when time prop-
agating the system with variable MS according to this Hamil-
tonian, will be the same as when time propagating the system
with variable iSWAP according to the Hamiltonian (E9).

When time evolving the open-system model on the quan-
tum computer with a noisy system qubit, system-qubit X gates
are introduced between Trotter steps. This is done to transform
physical system-qubit decay partly into effective excitation;
see Appendix C. After this symmetrization, the physical decay
noise corresponds to an effective noise that has equal contribu-
tion of system decay and excitation. Equivalently, the physical
decay noise corresponds to an effective noise that has equal
contribution of incoherent X flips and Y flips; see Eq. (C7).
These system-environment coupling operators are the same
as in the considered system-bath model. It follows that system
noise can be mapped to a constant background of the bath the
spectral functions; see Sec. III A 2 and Eq. (11). This mapping
is demonstrated in practice in the example of Sec. IV C.
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