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Invasiveness of nonequilibrium pure-dephasing quantum thermometry
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One of the main advantages expected from using quantum probes as thermometers is noninvasiveness, i.e.,
a negligible perturbation to the thermal sample. However, invasiveness is rarely investigated explicitly. Here,
focusing on a spin probe undergoing pure dephasing due to the interaction with a bosonic sample, we show that
there is a nontrivial relation between the information on the temperature gained by a quantum probe and the
heat absorbed by the sample due to the interaction. We show that time-optimal probing schemes obtained by
considering the total experiment time as a resource also have the benefit of limiting the heat absorbed by the
sample in each shot of the experiment. For such time-optimal protocols, we show that it is advantageous to have
strong probe-sample coupling, since in this regime the accuracy increases linearly with the coupling strength,
while the amount of heat per shot saturates to a finite value. Since in pure-dephasing models the absorbed heat
corresponds to the external work needed to couple and decouple the probe and the sample, our results also
represent a first step towards the analysis of the thermodynamic and energetic cost of quantum thermometry.
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I. INTRODUCTION

Estimating the temperature of a quantum system is a
task of fundamental and practical importance. Many quantum
technologies require very low temperatures to exploit frag-
ile nonclassical features; thus temperature must be assessed
with great accuracy while disturbing the system as little as
possible. This is the goal of quantum thermometry, a fer-
tile research field at the intersection of quantum metrology,
quantum thermodynamics, and open quantum systems [1,2].
The accuracy of equilibrium quantum thermometry has been
extensively discussed [3–7]. Going beyond equilibrium, tem-
perature can be estimated via quantum probes interacting with
a thermal sample, modeling the probe as an open quantum
system [8] and the sample as a bosonic [3,9–14] or fermionic
[15–17] environment, or by means of collisional approaches
[18–21]. Open quantum systems may also be used to probe
other environmental parameters [22–25] and for quantum
noise spectroscopy [26–28]. In recent experiments, impurities
in quantum gases have been used as thermometric probes
[29–31].

In this paper we investigate the perturbation induced on the
initial thermal state of the sample by the interaction with the
probe. We will call invasiveness this feature of nonequilibrium
thermometry protocols.1 Crucially, quantifying invasiveness
also requires a study of the dynamics of the environment
[32–39], especially important also in strong-coupling quan-
tum thermodynamics [40–42].

*francesco.albarelli@gmail.com
1To avoid confusion, we stress that this is not the notion of invasive-

ness appearing in the context of Leggett-Garg inequalities (which has
also been connected to quantum metrology [88]).

Concretely, we propose to quantify the invasiveness of
probe-based thermometric protocols in terms of the average
heat absorbed by the sample, a choice informed by thermo-
dynamics. We consider the spin-boson model [43], where
an environment of harmonic oscillators constitutes a thermal
sample coupled to a spin probe. We focus on a coupling
that preserves the probe’s internal energy, inducing a pure-
dephasing dynamics that can be exploited for thermometry
[12,28,44–46]. Since the probe does not exchange energy
with the environment, the thermodynamic features of the
model may appear trivial. However, external work is needed
to couple and decouple the probe and the sample, and heat
is dissipated into the environment [47–49], perturbing the
sample from its initial state of thermal equilibrium.

The manuscript is structured as follows. In Sec. II we intro-
duce the model, i.e., the pure-dephasing interaction between
the probe and the sample, the relevant figures of merit, and
their expressions. Section III contains explicit results showing
the interplay between thermometric accuracy and invasiveness
for a two-level probe coupled to a sample with an Ohmic-like
spectral density with exponential cutoff. Section IV concludes
the paper with some remarks and outlooks.

II. MODEL AND FIGURES OF MERIT

In this section we present the general pure-dephasing
model, define the relevant figures of merit, and present explicit
formulas for a specific instance that will be the basis for the
results presented in Sec. III. We highlight here the most impor-
tant equations derived in this section, so that the reader who
is already familiar with these topics may skip the derivations
and go straight to Sec. III. The unitary evolution operator of
the joint probe and sample system is in Eqs. (2) and (3), the
dephasing function is in Eq. (9), and the heat absorbed by
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the sample in Eq. (13). Specific results for two-level probes
coupled to a sample with a Ohmic-like spectral density with
exponential cutoff are presented in Sec. II C and form the basis
of the results shown in Sec. III. In particular, the explicit form
of the dephasing function is in Eq. (15), which can be used to
evaluate the thermometric accuracy in terms of the quantum
Fisher information (QFI) in Eq. (18), while the absorbed heat
is reported in Eq. (16).

A. Dephasing dynamics of the probe

We consider a finite-dimensional probe system with a
generic Hamiltonian HS = ∑

j ε j | j〉〈 j|, where | j〉 is the en-
ergy eigenbasis. The environment, i.e., the sample (we will
use the terms interchangeably), is modeled as noninteracting
harmonic oscillators with free Hamiltonian HE = ∑

k ωkb†
kbk ,

described by bosonic operators [b j, b†
k] = δ jk . The system and

environment are coupled by the interaction Hamiltonian HI =
AS ⊗ (

∑
k fkb†

k + f ∗
k bk ), with AS = ∑

j g j | j〉〈 j| diagonal in
the energy eigenbasis. The joint system-environment state
evolves unitarily as ρSE (t ) = U (t )ρSE (0)U (t )†, with U (t ) =
exp[−it (HS + HI + HE )]. Since [HS, AS] = 0, the system
undergoes a pure-dephasing dynamics: the populations of
the energy levels are constants of motion, while the off-
diagonal elements of the reduced density matrix ρS (t ) =
TrE [ρSE (t )] in the energy eigenbasis evolve as ρS (t ) =∑

i j ρS,i j (0)e−[�i j (t )+iϕi j (t )]|i〉〈 j|, with real dephasing functions
�i j (t ) and phases ϕi j (t ). We will now derive explicit expres-
sions for U (t ) and for these functions.

1. Global system-environment unitary evolution operator

Going to the interaction picture we obtain the time-
dependent Hamiltonian

HI (t ) =
∑

j

g j | j〉〈 j| ⊗
(∑

k

fkeiωkt b†
k + f ∗

k e−iωkt bk

)
, (1)

that satisfies [HI (t ), HI (t ′)] = −2i
∑

j,k g2
j | fk|2 sin ωk (t −

t ′)| j〉〈 j| ⊗ 1 and thus the time-ordered exponential
UI (t ) = T← exp−i

∫ t
0 dsHI (s) can be obtained exactly, e.g.,

via the Magnus expansion which terminates at second order:

UI (t ) = exp

[
−1

2

∫ t

0
ds
∫ s

0
ds′[HI (s), HI (s′)]

]

× exp

[
−i
∫ t

0
ds HI (s)

]
=
∑

j

eiφint
j (t )| j〉〈 j| ⊗

∏
k

D
(
α

j
k (t )

)
, (2)

where we have defined φint
j (t ) ≡ ∑

k | fk|2g2
j
ωkt−sin(ωkt )

ω2
k

, and

the action on the oscillators is a product of single-mode dis-
placements D(α) = exp[αb† − α∗b] with

α
j
k (t ) = −i fkg j

∫ t

0
ds eiωks = fkg j

1 − eiωkt

ωk
. (3)

Thus the overall evolution amounts to a displacement of the
oscillators conditioned on the state of the system.

2. Reduced state of the system

We write a generic initial state in block form as ρSE (0) =∑
i j ρS,i j (0)|i〉〈 j| ⊗ ρ

i j
E , where TrEρ

i j
E = 1 are normalized op-

erators, but not necessarily positive semidefinite when i 	= j.
When i = j these are the conditional states obtained with
probability ρS,ii(0) by measuring the system in the basis | j〉.
This means that the initial reduced state of the system is
ρS (0) = TrEρSE (0) = ∑

i j ρS,i j (0)|i〉〈 j|. We can thus write
the evolved state as

ρS (t ) =
∑

i

ρS,ii(0)|i〉〈i| +
∑
i 	= j

ρS,i j (0)ei(φint
i (t )−φint

j (t ))

× TrE

[∏
k

D
(
αi

k (t )
)
ρ

i j
E

∏
k′

D
(− α

j
k′ (t )

)]|i〉〈 j|,

(4)

showing explicitly that the populations are constants of mo-
tion, since TrE [

∏
k D(αi

k (t ))ρ ii
E

∏
k′ D( − αi

k′ (t ))] = 1. Note
that (4) includes the possibility of having initial system-
environment correlations—see also [50] for a study of pure
dephasing with correlated initial states.

We further assume an initial factorized state ρSE (0) =
ρS (0) ⊗ ρE (0) and an initial Gibbs thermal state ρE (0) =
e− HE

T /ZT of the environment, where ZT = Tr[e− HE
T ] is the par-

tition function. We choose units such that h̄ = 1 and κB = 1,
i.e., both temperature and energy are measured as frequencies.
The thermal state of the environment is factorized into thermal
states of each mode νk = e− ωk

T b†
kbk /Tr[e− ωk

T b†
kbk ], since the os-

cillators are not interacting. The evolved global state in the
interaction picture is

ρSE (t ) = UI (t )(ρS (0) ⊗ ρE (0))UI (t )†

=
∑

i j

ρS,i j (0)ei(φint
i (t )−φint

j (t ))|i〉〈 j|

⊗
∏

k

D
(
αi

k (t )
)
ρE (0)D

(−α
j
k (t )

)
. (5)

To evaluate the trace on the environment we use the Baker-
Campbell-Haussdorff formula to obtain

Trk
[
D
(
αi

k (t )
)
νkD

(− α
j
k (t )

)]
= Trk

[
D
(
αi

k (t ) − α
j
k (t )

)
νk
]
e

1
2 (−α

j
k (t )α∗i

k (t )+α
∗ j
k (t )αi

k (t )), (6)

where now Trk[D(α)νk] = exp[− 1
2 |α|2 coth( ωk

2T )] is the char-
acteristic function of a thermal state.

Keeping track of the phase factors, the reduced system state
ρS (t ) = TrE [ρSE (t )] in the Schrödinger picture is thus

ρS (t ) =
∑

i j

ρS,i j (0)e−(�i j (t )+iϕi j (t ))|i〉〈 j|, (7)

where the real-valued dephasing function affecting the off-
diagonal elements is

�i j (t ) = −
∑

k

ln Trk
[
D
(
αi

k (t ) − α
j
k (t )

)
νT
]

=
∑

k

1

2

∣∣αi
k (t ) − α

j
k (t )

∣∣2 coth
( ωk

2T

)
, (8)
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and the phase factor includes the usual difference of uni-
tary phases φSch

j (t ) = φint
j (t ) − tε j , containing both the effect

of the system Hamiltonian and the phases appearing in the
interaction-picture unitary (2), so that the phases in (7) are
ϕi j (t ) = φSch

j (t ) − φSch
i (t ). Besides being obviously irrelevant

for energetic considerations, the phase factors do not depend
on the environment initial state and thus on the temperature, so
they are also irrelevant for thermometry and we will neglect
them (formally, working in a suitable rotating frame). How-
ever, they may be useful to learn properties of the environment
spectral density, see, e.g., Ref. [28].

Taking the continuous limit, informally
∑

k | fk|2 
→∫∞
0 dω J (ω), where J (ω) is the spectral density that includes

both the density of states of the sample and a nonuniform
distribution of the coupling parameters fk , and using the def-
inition (3) we obtain the temperature-dependent dephasing
functions �i j (t ) = (gi − g j )2�T (t ), where

�T (t ) =
∫ ∞

0
dω J (ω)

1 − cos ωt

ω2
coth

( ω

2T

)
. (9)

B. Heat absorbed by the sample

We define the average heat absorbed by the sample
as the variation of the expectation value of its Hamil-
tonian [41] Q(t ) = TrE HE [(ρE (t ) − ρE (0))], with ρE (t ) =
TrSρSE (t ). Even if the system energy is conserved, the en-
vironment energy is not, since [HB, HI ] 	= 0. The reduced
state of the environment ρE (t ) = TrS[ρSE (t )] is a mixture of
displaced thermal states

ρE (t ) =
∑

j

ρS, j j (0)
∏

k

D
(
α

j
k (t )

)
ρE (0)D

(− α
j
k (t )

)
. (10)

We can evaluate the energy of the bath:

〈HE (t )〉
= TrB[HBρE (t )]

=
∑

j

ρS, j j (0)
∑

k

ωkTrk
[
b†

kbkD
(
α

j
k (t )

)
νkD

(− α
j
k (t )

)]

=
∑

j

ρS, j j (0)
∑

k

ωk

(
1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2). (11)

The absorbed heat is thus

Q(t ) = 〈HE (t )〉 − 〈HE (0)〉 =
∑

j

ρS, j j (0)
∑

k

ωk

∣∣α j
k (t )

∣∣2,
(12)

where we see that the thermal contribution remains the same,
and the absorbed energy only depends on the displacement
due to the interaction with the qudit. Taking the continu-
ous limit and using the definition (3) we obtain (see also
Ref. [36])

Q(t ) = 2

(∑
j

ρS, j j (0)g2
j

)∫ ∞

0
dω J (ω)

1 − cos ωt

ω
.︸ ︷︷ ︸

≡ Q(t )

(13)

In Eqs. (9) and (13) we have highlighted the nontrivial time-
dependent quantities �T (t ) and Q(t ) that also encode all the
dependence on the environment features, i.e., spectral density
and temperature. The system operators ρS (0) and AS only
affect the absorbed heat as a multiplicative factor; moreover,
when g2

j = g2
k ∀ j, k the heat Q(t ) is independent of ρS (0).

Equation (13) shows that the average heat absorbed by
the environment is always positive, a generic feature of
pure-dephasing models [36]; in this particular case it is also
independent of the temperature. While this feature may seem
puzzling, one should remember that there is no energy ex-
change between system and environment, and heat dissipation
is due to switching the interaction on and off. Indeed, Q(t ) is
equal to the work that must be performed to couple the system
and the environment at time 0 and later decouple them at time
t [48,49]. Thus, for probing schemes based on dephasing, the
figure of merit we use to quantify invasiveness corresponds
also to the work cost of the thermometry protocol (neglect-
ing the cost of state preparation [51,52] and measurement
[53,54]).

More generally it is possible to go beyond average quanti-
ties, and heat in quantum systems may be defined as a random
variable via the two-point measurement scheme [55]. For the
sake of simplicity, we will refer to the average Q(t ) as heat
and to the variance δ2Q(t ) as heat fluctuations, and we will
consider only these two quantities. We relegate the details
about this definition of heat, as well as an explicit calculation
of the heat fluctuations for our model, to Appendix A. We
report the result in the main text only for a two-level probe
system in Eq. (14), but the generic expression is reported in
Eq. (A9). Differently from the average heat, the fluctuations
depend on the temperature of the environment.

C. Two-level probe with Ohmic-like spectral density

For the sake of concreteness, from now on we focus
on a two-level probe, coupled through the operator AS =
λσz, where λ is an adimensional interaction-strength param-
eter, i.e., g0 = −g1 = λ in Eq. (9). This model has been
used, for example, to describe an atomic impurity in a
Bose-Einstein condensate [46,56,57]. The dephasing function
reads �01(t ) = �10(t ) = 4λ2�T (t ), the absorbed heat Q(t ) =
2λ2Q(t ), and the heat fluctuations

δ2Q(t ) = 2λ2
∫ ∞

0
dω J (ω)(1 − cos ωt ) coth

( ω

2T

)
. (14)

An analogous expression is reported also in Ref. [36]. The
heat variance is proportional to the dephasing factor �T (t ) for
a different spectral density, obtained by multiplying the orig-
inal one by ω2, i.e., with an Ohmicity parameter s increased
by 2 for the class we will now go on to consider. This also
ensures that the asymptotic value of δ2Q(t ) for t → ∞ does
not diverge, by leveraging on results on the finiteness of the
dephasing function [58,59].

We further choose a spectral density of the form J (ω) =
ω(ω/ωc)s−1C(ω,ωc), where s is the so-called Ohmicity pa-
rameter and distinguishes three regimes: Ohmic for s = 1,
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sub-Ohmic for 0 < s < 1, and super-Ohmic for s > 1. In
the main text we present results for an exponential cutoff

C(ω,ωc) = e−ω/ωc , which grants a closed-form expression for
the dephasing function [12]2:

�0(t ) = �(s − 1){1 − (t̃2 + 1)
1
2 − s

2 cos[(s − 1) arctan(t̃ )]}

�T (t ) = �0(t ) + (s − 1)sT̃ s−1�(s − 1)2

�(s + 1)
[2ζ (s − 1, T̃ + 1) − ζ (s − 1, it̃ T̃ + T̃ + 1) − ζ (s − 1,−it̃ T̃ + T̃ + 1)], (15)

where ζ (s, a) = ∑∞
n=0

1
(n+a)s is the generalized (Hurwitz) zeta

function, and we have introduced the adimensional t̃ = tωc

and T̃ = T/ωc for compactness. The absorbed heat (13) can
also be obtained

Qexp(t ) = ωc�(s)

⎛
⎝1 − cos [s arctan (tωc)](

t2ω2
c + 1

) s
2

⎞
⎠, (16)

where �(s) = ∫∞
0 t s−1e−t dt is the Gamma function.

In Appendix B we show additional results for a Gaussian
cutoff and a hard cutoff: the exchanged heat is obtained ana-
lytically, see Appendix B 1, while the dephasing function (9)
by numerical integration. While some phenomenology is dif-
ferent, the main qualitative features remain valid for different
cutoffs.

D. Thermometry as parameter estimation

Temperature is a parameter to be estimated by measuring
the probe. The accuracy of the estimation is influenced by
the measurement, formally a positive operator-valued measure
(POVM), and by the estimator T̃ processing the outcomes into
a temperature estimate. Since temperature is an energy-scale
parameter, it is common [3,6,60,61] and arguably more appro-
priate [62] to consider the relative error �2T̃ /T 2 as an error
quantifier or equivalently, its inverse, the signal-to-noise ratio
(SNR), as an accuracy quantifier.

For unbiased estimators, the quantum Cramér-Rao bound
(QCRB) [63,64] gives

T 2

�2T̃
� MT 2F[ρT (t )] ≡ MRT (t ), (17)

where F[ρT ] is the quantum Fisher information (QFI) of
the state ρT for the parameter T , expressed as F[ρT ] =
Tr[∂T ρT LT ] with the Hermitian symmetric logarithmic
derivative operator LT defined by 2∂T ρT = LT ρT + ρT LT ,
while M is the number of identical shots of the experiment.
The bound can be saturated asymptotically for large M by
optimal measurements and estimators. We have also intro-
duced the quantum signal-to-noise ratio (QSNR) [65] RT ≡
T 2F[ρT ], which will be our main figure of merit. Since the
QCRB is attainable, the inverse of the QSNR R−1

T represents
the optimal relative error in the regime of a large number of

2This expression is slightly different from Eq. (17) in Ref. [12]
due to some typos therein. Note also that the spectral density J (ω)
is defined in that paper with an additional factor 4, and the results
shown there are obtained by fixing λ = 1/2 in this work.

shots; we will often refer to this quantity as the relative error
(omitting “optimal” for brevity).

For a two-level probe in the initial state cos(θ/2) |0〉 +
sin(θ/2) |1〉 we have

F[ρT (t )] = [sin θ 4λ2 ∂T�T (t )]2

exp[8λ2�T (t )] − 1
, (18)

and the QCRB is attained by a projective measurement
on σx eigenstates [12]. A balanced superposition θ = π/2
is the optimal probe state and will always be considered.
Finding the optimal state is not as straightforward for higher-
dimensional probe systems; we will briefly discuss this aspect
in Sec. III B 2.

III. THERMOMETRIC PERFORMANCE VERSUS
ABSORBED HEAT

A. Dynamics of thermometric accuracy and absorbed heat

In Fig. 1 we plot the QSNR and the absorbed heat as
functions of the probing time. The parameter values for the
plots are chosen to highlight a few different features that these
figures of merit can display. First of all, the probe-sample
interaction in this model is responsible both for imprinting
the information about the temperature on the probe and for
increasing the mean energy of the sample. Consequently, dur-
ing the initial part of the dynamics there is always a tradeoff
between invasiveness and relative error: to increase the accu-
racy we must allow the sample to absorb some heat. Even if
the heat is always positive, it may display a nonmonotonic
behavior in time, as highlighted, e.g., by the curve in panel
(b1) for s = 3. However, Q(t ) settles to a finite asymptotic
value limt→∞ Q(t ) ∝ λ2ωC . On the contrary, the QSNR can
have a maximum in time and then decay to zero, as shown in
panel (a1) for s = 1, when the asymptotic probe state has no
coherence. In this case the parametric plot shows that after the
initial trade-off region the QSNR does not increase even if we
let the sample absorb more heat.

Otherwise, the QSNR can tend to a finite value, as shown
in panel (b1) for s = 3 if the asymptotic probe state is not
completely dephased, a phenomenon known as coherence
trapping [59,66]. In such situations the parametric plot in
panel (b3) shows that after the initial tradeoff there may be
regions in which both the absorbed heat and the error decrease
simultaneously. This is due to the different timescales over
which the two quantities vary appreciably, as highlighted by
the panels (a1) and (b1) on the left of Fig. 1. Importantly, the
key features of this analysis do not appreciably depend on the
cut-off choice, as we show in Appendix B.
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FIG. 1. Top [panels (a1) and (a2)]: Ohmic spectral density s = 1; bottom [panels (b1) and (b2)]: super-Ohmic spectral density s = 3; both
for coupling λ = 1. Panels (a1) and (b1): absorbed heat (solid black line, units on the right) and quantum SNR (colored lines for various
temperatures, units on the left) as a function of time. Panels (a2) and (b2): parametric plot of relative error for temperature estimation vs
absorbed heat. Each line represents a different temperature, as shown in the legend.

Long-time asymptotic results

We have already shown that depending on the Ohmicity
parameter, i.e., on the low-frequency behavior of the spectral
density, it is possible to retain some coherence in the probe
state even at asymptotically long times, preserving the abil-
ity to infer the temperature of the sample by measuring the
asymptotic probe state. This happens for values s > 2(1) at
finite (zero) temperature [58], and here we focus on the case
T > 0 and s > 2. For the exponential cutoff we were also able
to obtain an expression for the asymptotic dephasing func-
tion �T (∞) ≡ limt→∞ �T (t ) for T > 0 and s > 2 (while the
integral diverges for s � 2):

�T (∞) = 4�(s − 1)[ 2T̃ s−1ζ (s − 1, T̃ + 1) + 1]. (19)

While we were not able to derive this expression rigorously
from (15) for all parameter values, we have obtained it ana-
lytically for integer values s � 3 and extrapolated it to other
values of s, checking it matches numerical results. On other
hand, the asymptotic value of the heat Q(∞) ≡ limt→∞ Q(t )
is easily obtained and it is always finite:

Q(∞) = 2λ2ωc�(s); (20)

it is not monotonic in s and reaches a minimum at s0 ≈
1.4616.

In Fig. 2 we show the asymptotic thermometric accuracy
RT (∞), obtained by using (19) to evaluate the QSNR, and the
asymptotic absorbed heat Q(∞) in (20). We are restricted to
the case s > 2, otherwise the asymptotic QSNR would be zero
for T > 0. In this parameter region Q(∞) is monotonically
increasing in s. On the contrary, we see that the QSNR reaches
a maximum at particular values of s, which depend on the tem-
perature. This means that increasing the Ohmicity from s = 2
towards larger values to increase the QSNR also increases
the invasiveness until the optimal s is reached, but afterwards
no gain in thermometric accuracy is obtained by allowing

a large amount of asymptotically absorbed heat. While, as
usual, the absorbed heat does not depend on the temperature,
the bottom panel of Fig. 2 shows the QSNR optimized over
the Ohmicity parameter Ropt

T (∞) ≡ maxs>2 RT (∞). This op-
timized figure of merit has a dependence on the temperature;
it goes to zero for large and small temperatures and has a
maximum at some finite temperature. Overall the values of
Ropt

T (∞) are comparable to the values obtained at finite times
for s > 2, see, e.g., panel (b1) of Fig. 1, even if the values
obtained for s < 2 at finite time are generally much higher,
see, e.g., panel (a1) of Fig. 1.

We remark that this method of operating a pure-dephasing
thermometer, i.e., turning on the probe-sample interaction and
waiting a long time so that a steady state is reached, resembles

FIG. 2. Top panel: asymptotic absorbed heat (solid black line,
units on the right) and asymptotic quantum SNR (colored lines for
various temperatures, units on the left) as a function of the Ohmicity
parameter s. Bottom panel: asymptotic quantum SNR optimized over
Ohmicity s as a function of the temperature. In both panels the
coupling strength is λ = 1.
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FIG. 3. Absorbed heat per shot (top panels), optimal QSNR rate
(middle panels), and optimal probing time (bottom panels) as a
function of s for T/ωc = 0.2, 1, 10 (left panels) and as a function
of T for s = 1/2, 1, 3 (right panels). In both cases λ = 1.

the approach of equilibrium thermometry, in which the probe
is measured after reaching a steady state and thermalizing
with the sample. However, we stress that we are considering
an interaction that does not involve direct energy exchanges
between the probe and the sample and thus no thermalization
of the probe ever occurs.

B. Time-optimal schemes

In absence of coherence trapping the QSNR reaches a
maximum at a finite time and then decreases to zero, so it
is beneficial to restrict to relatively short interactions, both to
minimize the relative error and the invasiveness. Otherwise, it
may instead be beneficial to let the probe and sample interact
for long times. However, this conclusion does not take into
account the fact that time is a valuable resource in quantum
probing. Thus, we now focus on time-optimal schemes, with
the aim to quantify the invasiveness in this practically relevant
scenario.

The probing time t of each experiment can be chosen op-
timally, corresponding then to a total number of experiments
M = τ/t (assuming the time for state preparation and mea-
surement is negligible); this approach is standard in frequency
estimation [67–69]. Time-optimal quantum thermometry has
been studied, but considering a Markovian semigroup evo-
lution [3,70], is generally unfit to capture the short-time
dynamics of the probe [8].

According to the QCRB, the best accuracy obtainable in a
total time τ is

T 2

�2T̃
� τ max

t

RT

t
≡ τ RT , (21)

attainable in the limit τ � t when the experiment is repeated
many times. The optimal QSNR rate RT is the relevant
figure of merit for time-optimal schemes; the time topt =
argmaxt

F [ρT (t )]
t is the optimal duration of each shot of the

experiment and plays an important role.
We study time-optimal schemes by performing the t op-

timization in Eq. (21) numerically. In Fig. 3 we show the
optimal QSNR rate RT and the heat Q(topt ) absorbed during

each shot of the experiment, both as a function of s for three
values of T in the panels on the left, and as a function of T for
the three Ohmicity regimes in the panels on the right. We also
plot the corresponding optimal probing time topt. Notice that
Q(topt ) depends on the temperature implicitly through topt.

From the results in Fig. 3 we see that for decreasing s
the thermometric accuracy increases and the absorbed heat
decreases. A similar behavior appears for increasing temper-
ature. Thus, while time-optimal thermometry is not tailored
to minimize the invasiveness, it is effective to keep it under
control, meaning that it is possible to increase the accuracy,
e.g., by decreasing s, without increasing the invasiveness.

As a side remark, we note that small values of s are in
general beneficial in the low-temperature regime to increase
the thermometric accuracy and not just for time-optimal pro-
tocols, as already hinted by the previous results. Indeed, at the
lowest order in T we have RT ∝ T 2(s+1) (the full expression
is involved and not particularly instructive but can be obtained
analytically). This means that the QFI always goes to zero as
T → 0 for s > 0 and thus the absolute error diverges. We note
that for other probe-sample interactions one can actually find a
vanishing absolute error in the limit T → 0, while the relative
error always diverges [71].

1. Role of the coupling strength

The very idea to use quantum probes might a priori suggest
that a small, albeit indeed non-negligible, coupling strength
λ should be preferable to reduce the impact of the probe on
the sample. However, by taking into account the invasiveness
of the probe, we show that this is not necessarily the case.
In physical systems the coupling strength can often be tuned
to some extent; for example, when the model describes an
impurity in a Bose-Einstein condensate, λ is related to the
scattering length [46].

On the one hand, a stronger coupling increases the amount
of heat absorbed by the environment, keeping everything else
fixed, since it appears as an overall multiplicative factor in
Eq. (13). On the other hand, it also makes the probe lose
coherence faster, leading to a shorter optimal probing time
during which less heat is absorbed. As shown in Fig. 4, the
overall behavior is favorable for large λ. While Fig. 4 shows
that the quantities are not monotonic in λ, as evidenced by
the low-temperature curves in the region 0 < λ < 1, we see
that as λ increases the absorbed heat and also the fluctuations
δ2Q(topt ) saturate to a constant, while the optimal QSNR rate
increases linearly with λ. This happens because the optimal
time decreases sufficiently fast as a function of λ; this also
has the effect that Q(topt ) tends to a small fraction of its
maximum possible maxt Q(t ) for λ = 1. While Fig. 4 shows
results for s = 1, in Appendix B we show that the large-λ
behavior generally holds also for sub-Ohmic and super-Ohmic
spectral densities.

Assuming that the optimal time is short, which is true
for λ large enough, we can expand around t = 0 both the
absorbed heat Q(t ) and the QFI. Quite generally, the first
two lowest-order terms are quadratic and quartic, a behavior
connected to the so-called Zeno regime of open quantum
systems [68,72,73]. It is paramount to keep also the fourth-
order contribution to have a nonmonotonic time dependence
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FIG. 4. Time-optimal QSNR rate (top panel, the inset is in loga-
rithmic scale), average absorbed heat per shot Q∗ ≡ Q(topt ) (second
panel from above), heat fluctuations at the optimal time δ2Q∗ ≡
δ2Q(topt ) (third panel from above), and optimal time (bottom panel)
as a function of λ for s = 1 and several temperature values, shown in
the legend.

and investigate the behavior of the optimal probing time.3

From this optimization we obtain that topt ∝ 1/λ for large λ

and thus Q(t ) tends to a constant as λ increases, while RT

grows linearly; see Appendix D for details. While the role
of coupling strength in quantum thermometry was studied
in different models and with different outcomes [15,46,74],
time-optimal schemes were not considered.

2. Higher-spin probes

Going beyond two-level probes, we study time-optimal
dephasing thermometry with a spin- j probe, coupled to the
sample via the operator AS = 2λJz. In the simplest case, by
initializing the probe in a spin cat state (| j, j〉 + | j,− j〉)/

√
2

the whole dynamics is fully equivalent to a spin- 1
2 , i.e., a

two-level, probe under the scaling λ 
→ 2 jλ, since the probe
system remains in a two-dimensional subspace. For this initial
condition, increasing the spin j is equivalent to increasing the
coupling strength λ for a two-level probe. However, while
for a two-level probe the optimal initial state is trivially a
balanced superposition, for j > 1/2 the choice of a spin cat
probe state is not necessarily optimal.

To study the truly optimal thermometric performance in
this scenario, we numerically optimize the QFI rate over initial
probe states by considering the quantity

Rmax
T = max

t

{
1

t
max
|ψSA〉

F[ET,t ⊗ IA(|ψSA〉〈ψSA|)]
}
, (22)

where ET,t is the completely positive trace-preserving map,
i.e., a dephasing quantum channel, that describes the reduced
dynamics of the system S interacting with the sample. Here
IA is the identity channel on an auxiliary system A, which
is treated as an ideal quantum memory that does not un-
dergo any evolution, and the initial pure state of S and A
can be entangled. Rmax

T is the ultimate metrological bound

3This is similar to the “Zeno time” defined in Ref. [89].

for a quantum channel, and it can be evaluated numerically
via semidefinite programming [75,76]. More details on this
procedure, including the explicit form of the channel ET,t , its
Kraus representation, and the derivatives of the Kraus opera-
tors, are relegated to Appendix C.

We show that, in some regimes, spin cat states are opti-
mal and match the ultimate metrological bounds for quantum
channels [75,76]. In particular, spin cat probes become opti-
mal when λ is large, and thus we suspect they may be optimal
also when j is large (for a fixed λ), beyond what we can reach
with our numerics.

IV. DISCUSSION AND OUTLOOK

We have analyzed a dephasing thermometry protocol, tak-
ing into consideration both the information encoded in the
probe and the transformation of the sample due to the in-
teraction with the probe, i.e., the invasiveness. In optical
quantum metrology, invasiveness is related to the amount
of light absorbed by optical samples [77,78]; similarly, we
have quantified invasiveness in quantum thermometry with the
amount of heat absorbed by the sample.

We have shown that to increase the thermometric accuracy
as quantified by the QSNR, it is necessary to let the sample
absorb a certain amount of heat. However, since the two quan-
tities have in general a different behavior, both as functions of
time and of the model parameters, there is no simple relation
between them. This means that while the thermometry scheme
is necessarily invasive to some extent, the parameter regions
where the thermometric accuracy is higher do not necessarily
correspond to the most invasive situations. This is particularly
evident for time-optimal schemes, for which we have shown
that minimizing the relative error generally also limits the ab-
sorbed heat. This happens also in regimes that may be thought
to be invasive, such as very strong coupling. As a matter of
fact, we have shown that this regime is useful because the
temperature information is encoded quickly onto the probe
state, and this compensates the fact that the absorbed heat at a
fixed time increases with coupling strength.

Beyond pure dephasing, it will be interesting to study in-
vasiveness when the probe’s energy can change, e.g., using
quantum thermal machines as thermometers [79,80]. Interest-
ingly, even for interactions that allow energy exchanges, an
equivalence between average work for coupling and decou-
pling and dissipated heat has been observed for short times
[81]. Similarly, it is believed that dephasing effects arise on
much shorter timescales than dissipation for open quantum
systems [82]. These observations motivate further research on
this topic, such as understanding the possibility of optimizing
over time-dependent couplings.

Quantifying invasiveness with the energy increase of the
environment will be particularly relevant for thermometry of
many-body samples in pure states: temperature is directly
related to the sample energy, and dephasing probes have been
proposed as thermometers [83]. Further, invasiveness could
also be characterized by considering the postmeasurement
state [84] and extended to thermometry with sequential mea-
surements [85,86].

As a final comment, we stress that energetic efficiency will
become a relevant issue for quantum technologies [87]. The
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problem of quantifying and optimizing the energetic costs
of quantum metrology protocols has received some attention
[51,52], but this endeavor is in early stages. Our work is also a
first step in this direction for dephasing quantum thermometry,
since the heat absorbed by the environment coincides with the
external work for coupling and decoupling the probe.
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APPENDIX A: HEAT FLUCTUATIONS IN THE TWO-POINT MEASUREMENT SCHEME

Following the two-point energy measurement scheme [36,55], we assume that the initial state is diagonal in the energy
eigenbasis, and we define heat as the random variable with distribution

p(Q) =
∑
m,n

pn pm|nδ(Q + En − Em), (A1)

where pn is the initial probability of measuring the value En for the environment energy and pm|n is the conditional probability
of measuring the environment energy Em at the final time t , given the initial energy En, i.e.,

ρE (0) =
∑

n

pn�n HE =
∑

n

En�n pm|n = Tr[�mUSE (t )ρS (0) ⊗ �nUSE (t )†], (A2)

where �n are projectors onto energy En eigenspaces, and moreover, pn = e−βEn/ZT , since the initial state is assumed to be
thermal.

The first and second moments of this random variable correspond to those of the observable HE (t ) − HE (0) (the time argument
means that the operators are evolved in Heisenberg picture). The average heat Q(t ) corresponds to Tr[ρE (0)(HE (t ) − HE (0))]
by definition, while one can check explicitly that the second moment is∑

m

Q2 p(Q) = Tr
[
H2

EρSE (t )
]+ Tr

[
H2

EρSE (0)
]− 2〈HE (t )HE (0)〉 = Tr[ρE (0)(HE (t ) − HE (0))2], (A3)

and thus the variance is

(δQ(t ))2 = �2HE (t ) + �2HE (0) − 2(〈HE (t )HE (0) − 〈HE (t )〉〈HE (0)〉). (A4)

The evaluation of these terms is straightforward but a bit lengthy. For the first term we obtain

〈
H2

E (t )
〉 = TrE

[
H2

EρE (t )
] =

∑
j

ρS, j j (0)

{∑
k

ω2
k

[
1

(eωk/T − 1)2 + 1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2 coth

( ωk

2T

)]

+
∑
k,k′

ωk

(
1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2)ωk′

(
1

eωk′ /T − 1
+ ∣∣α j

k′ (t )
∣∣2)}, (A5)

where we have used thermal expectation values obtained, e.g., from the characteristic function of a thermal displaced state
χ (ξ ) = Tr[D(ξ )D(α)νD(−α)] = exp[− 1

2 |ξ |2 coth( ω
2T )] exp[ξα − αξ ∗] as 〈a†man〉 = (−1)n ∂n+m

∂ξm∂ξ∗n χ (ξ ). The second term is
simpler, since it only depends on the initial state〈

H2
E (0)

〉 = TrB
[
H2

BρE (0)
] =

∑
k

ω2
k

[
1

(eωk/T − 1)2 + 1

eωk/T − 1

]
+
∑
k,k′

ωk

(
1

eωk/T − 1

)
ωk′

(
1

eωk′ /T − 1

)
. (A6)

Finally, the third term is

〈HE (t )HE (0)〉 = Tr[HBUI (t )HBρS (0) ⊗ ρE (0)U †
I (t )] =

∑
j

ρS, j j (0)

{∑
k

ω2
k

(
1

(eωk/T − 1)2 + 1

eωk/T − 1

)

+
∑
k,k′

ωk

(
1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2)ωk′

(
1

eωk′ /T − 1

)}
. (A7)

Putting everything together we obtain

∑
m

Q2 p(Q) =
∑

j

ρS, j j (0)

{∑
k

ω2
k

∣∣α j
k (t )

∣∣2 coth
( ωk

2T

)
+
∑
k,k′

ωkωk′

[(
1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2)( 1

eωk′ /T − 1
+ ∣∣α j

k′ (t )
∣∣2)

+
(

1

eωk/T − 1

)(
1

eωk′ /T − 1

)
− 2

(
1

eωk/T − 1
+ ∣∣α j

k (t )
∣∣2)( 1

eωk′ /T − 1

)]}
(A8)
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FIG. 5. Absorbed heat (in units of ωc) for Ohmic-like spectral densities, as a function of evolution time and Ohmicity parameter s, for three
choices of cut-off functions.

and

(δQ)2 = 2

⎛
⎝∑

j

ρS, j j (0)g2
j

⎞
⎠∑

k

| fk|2(1 − cos ωkt ) coth
( ωk

2T

)
+ 4

⎡
⎣∑

j

ρS, j j (0)g4
j −

⎛
⎝∑

j

ρS, j j (0)g2
j

⎞
⎠
⎛
⎝∑

j′
ρS, j′ j′ (0)g2

j′

⎞
⎠
⎤
⎦

×
∑
k,k′

| fk|2| fk′ |2 (1 − cos ωkt )(1 − cos ωk′t )

ωkωk′
. (A9)

Taking the continuum limit for a spin-1/2 particle with σz coupling (i.e., g0 = −g1 = λ) we obtain Eq. (14), which matches with
Eq. (47) in Ref. [36]. (The different numerical prefactor is due to the coupling operator being the spin operator σz/2 and to the
interaction strength λ being included in J (ω).)

APPENDIX B: ADDITIONAL RESULTS FOR OTHER
SPECTRAL DENSITIES

In this Appendix we present additional plots for different
spectral densities than those considered in the main text. We
explore Gaussian and hard cut-off functions and different
Ohmicity parameters.

Overall, we observe that the key qualitative observations
presented in the main text remain valid, while some finer
details depend on these features of the spectral density. Such
observation can be summed up as follows:

(a) A tradeoff between absorbed heat and relative error for
short times

(b) For intermediate and long times the detailed relation-
ship between the two quantities is less clear and depends on
whether the spectral density under consideration allows for
coherence trapping or not. Note that the presence of coher-
ence trapping depends on s and is independent of the cut-off
function, since it is related to the low-frequency behavior of
J (ω) as ω → 0.

(c) For time-optimal schemes it is beneficial to have
smaller values of s, since it decreases both the relative error
and the disturbance.

(d) For time-optimal schemes it is beneficial to go to very
large coupling values λ.

Before showing the results mentioned above, in Ap-
pendix B 1 we present a comparison between the absorbed
heat with the three different cutoffs. These expressions can
be obtained analytically and depend only on the time and
Ohmicity parameter; this is instructive to see some of the
different features induced by changing the cutoff function.

For the Gaussian and hard cutoffs we are able to evaluate
the dephasing function analytically only for T = 0, since the
integral is the same involved in the calculation of the absorbed
heat, but the results for T > 0 employed in Appendixes B 2
and B 3 are obtained by numerical integration.

1. Absorbed heat comparison

For the considered model the absorbed heat depends non-
trivially only on the evolution time and on the Ohmicity
parameter, since λ2 is only a multiplicative factor and there
is no temperature dependence, as can be seen from (12) or
Eq. (2) of the main text. This function of two parameters is
shown in Fig. 5 for different cut-off functions. For the expo-
nential cutoff the explicit expression is reported in Eq. (16),
and we see that it tends to increase for large s at all times,
while showing a peak for short times only in the super-Ohmic
region. We also see that the asymptotic value is not monotonic
in s, as reported in (20).

Also for the other cut-off functions the absorbed heat can
be evaluated analytically. For a Gaussian cutoff C(ω,ωc) =
e−ω2/ω2

c we obtain

QGauss(t ) = λ2ωc�
( s

2

){
1 − 1F1

([ s

2

]
;

[
1

2

]
; −1

4
t2ω2

c

)}
,

(B1)
with the asymptotic value

lim
t→∞ QGauss(t ) = λ2ωc�

( s

2

)
. (B2)
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FIG. 6. Plots analogous to Fig. 1 in the main text, but for Ohmic-like spectral densities with a Gaussian cutoff. Top [panels (a)]: Ohmic
spectral density s = 1; bottom [panels (b)]: super-Ohmic spectral density s = 3; both for coupling λ = 1. Panels (a1) and (b1): absorbed heat
(solid black line, units on the right) and quantum SNR (colored lines for various temperatures, units on the left) as a function of time. Panels
(a2) and (b2): parametric plot of relative error for temperature estimation vs absorbed heat. Each line represents a different temperature, as
shown in the legend.

For the hard cutoff C = �(ωc − ω), where �(s) is the Heavi-
side step function, we obtain

Qhard(t ) = 2λ2ωc
[
1 − 1F2

([
s
2

]
;
[

1
2 , s

2 + 1
]
; − 1

4 t2ω2
c

)]
s

,

(B3)
where pFq(�a; �b; z) = ∑∞

k=0
(a1 )k ...(ap)k

(b1 )k ...(bq )k

zk

k! is the generalized hy-

pergeometric function and (a)k = �(a+k)
�(a) are Pochhammer

symbols. The corresponding asymptotic value is

lim
t→∞ Qhard(t ) = 2λ2ωc

s
. (B4)

The nontrivial dependence on the parameters s and t for these
other two cut-off functions is shown in Fig. 5. There are some
qualitative differences between the heat for different cut-off
functions, the most important being that for a hard cutoff
we see oscillations and the absorbed heat tends to zero for
large s.

2. Thermometric performance versus heat as a function of time

In Figs. 6 and 7 we reproduce the plot in Fig. 1, but for a
Gaussian and a hard cutoff, respectively. The main qualitative
features are the same. There is an initial tradeoff between
absorbed heat and QSNR at short times, since both quantities
start from zero. The heat does not decrease back to zero
asymptotically, while the QSNR does for s = 1, but not for
s = 3 when trapped coherences are present in the probe. The
main qualitative difference is that for a hard cutoff an oscil-
latory behavior for sufficiently long times can be observed,
which is not present for Gaussian and exponential cutoffs.
Despite such qualitatively different behavior of the heat, the
main conclusions regarding the relationship between heat and
thermometric accuracy stated in the main text remain valid.

3. Time-optimal thermometry

In Fig. 8 we reproduce the plots in Fig. 4, but for a
sub-Ohmic spectral density s = 1/2 and for a super-Ohmic
spectral density s = 3. We see that the large-λ behavior high-
lighted in the main text, i.e., Q(topt ) saturating to a finite value
and RT growing linearly, remains valid. However, we see that
the behaviors for smaller values of λ are rather different, with
the super-Ohmic case showing more peculiar features.

In Fig. 9 we reproduce again the plot in Fig. 4, keeping the
Ohmicity parameter s = 1, but for Gaussian and hard cutoffs.

APPENDIX C: NUMERICAL EVIDENCE FOR THE
OPTIMALITY OF SPIN CAT STATES

Before considering all the details of the temperature es-
timation problem in the main text, we need to consider the
underlying problem of estimating a constant dephasing factor.

1. Evaluation of the optimal QFI for dephasing estimation

We focus on the estimation of a constant dephasing factor
� characterizing a dephasing channel E� that acts as follows
on a finite-dimensional system,

E�[ρ] =
∑
i, j

ρi je
−�(i− j)2 |i〉〈 j| ≡ E� ◦ ρ

E� =
∑
i, j

e−�(i− j)2 |i〉〈 j|, (C1)

where ◦ denotes the elementwise (Hadamard) product be-
tween two matrices; this is an instance of a so-called quantum
Hadamard channel [90].

This channel encodes the “operatorial” part of the ther-
mometry problem considered in the main text. The fact that
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FIG. 7. Plots analogous to Fig. 1 in the main text, but for Ohmic-like spectral densities with a hard (step function) cutoff. Top [panels
(a)]: Ohmic spectral density s = 1; bottom [panels (b)]: super-Ohmic spectral density s = 3; both for coupling λ = 1. Panels (a1) and (b1):
absorbed heat (solid black line, units on the right) and quantum SNR (colored lines for various temperatures, units on the left) as a function
of time. Panels (a2) and (b2): parametric plot of relative error for temperature estimation vs absorbed heat. Each line represents a different
temperature, as shown in the legend.

FIG. 8. Plots analogous to Fig. 3 in the main text, but for s = 1/2 (left) and s = 3. Time-optimal QSNR rate (top panels, the insets are
in logarithmic scale), absorbed heat per shot (middle panels), and optimal time (bottom panels), all plotted as a function of λ for several
temperature values, shown in the legend.

FIG. 9. Plots analogous to Fig. 4, but for a Gaussian (left) and hard (right) cutoff, both for s = 1 as in Fig. 4. Time-optimal QSNR rate
(top panels, the inset is in logarithmic scale), absorbed heat per shot (middle panels), and optimal time (bottom panels) as a function of λ for
several temperature values, shown in the legend.
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FIG. 10. Comparison between dephasing thermometry with optimal spin probes and with spin cat states.

� is actually a time-dependent function of the temperature
appears in the QFI only as a multiplicative factor, which
mainly plays a role in the optimization over the probing time.
The dephasing matrix E� is essentially the Choi matrix of the
channel, after removing redundant columns and rows of zeros.

To evaluate the optimal QFI we use the method introduced
in Ref. [75] based on the optimization over equivalent Kraus
representations {Kj} j=1,...,r of the dynamical map E�[·] =∑r

k=1 Kk · K†
k that encodes the parameter. Explicitly, it can

be evaluated as the minimization over a Hermitian matrix of
size r × r of a quadratic function of h involving the Kraus
operators and their derivatives:

F(�) = max
|ψ〉SA

F[E� ⊗ IA(|ψSA〉〈ψSA|)]

= 4 min
h=h†

∥∥∥∥∥∥∥
∑

k

⎛
⎝K̇k − i

∑
j

hk jKj

⎞
⎠†

×
⎛
⎝K̇k − i

∑
j′

hk j′Kj′

⎞
⎠
∥∥∥∥∥∥. (C2)

Here we see that the quantity evaluated by this method is not
only an optimization over initial states of the system but also
includes the possibility of using a noiseless ancillary system of
arbitrary dimension and initial entangled states. If the noise-
less ancillary system is not available, the quantity in Eq. (C2)
is generally just an upper bound. Crucially, this minimization

can be evaluated numerically by solving a semidefinite pro-
gram [76].

Given a spectral decomposition of the (real, positive
semidefinite) dephasing matrix E� = ∑d

j=1 κ jk jkT
j , one can

write a Kraus representation made of diagonal operators

Kj = √
κ jdiag(k j ). (C3)

Since the derivative of the dephasing matrix Ė ≡ ∂�E� is
known,

∂�E�[ρ] =
∑
i 	= j

ρi j (i − j)2e−�(i− j)2 |i〉〈 j| ≡ Ė� ◦ ρ

Ė = −
∑
i 	= j

(i − j)2e−�(i− j)2 |i〉〈 j|, (C4)

to compute the derivatives of the Kraus operators we need to
evaluate the derivatives of the eigenvalues {κ j} and eigenvec-
tors {k j} through first-order perturbation theory:

κ̇ j = kT
j Ė k j, k̇ j =

∑
i 	= j

kT
j Ė ki

κi − κ j
,

K̇j = κ̇ j

2
√

κ j
diag(k j ) + √

κ jdiag(k̇ j ). (C5)

Summing up, we can evaluate the optimal QFI numeri-
cally by first diagonalizing the dephasing matrix in Eq. (C1),
from which the Kraus operators and their derivatives can
be evaluated through Eqs. (C3) and (C5), and in turn these
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two sets of operators are fed to a semidefinite program that
solves the minimization in Eq. (C2). While we have used this
method for quantum thermometry, it could be applied to other
estimation problems. For example, in Ref. [23] the similar
problem of estimating a parameter appearing in the dephasing
function of a many-qubit state was studied by numerically
sampling random probe states, showing that in some regimes
Greenberger-Horne-Zeilinger (GHZ) states (completely anal-
ogous to spin cat states, but considering multiqubit systems
instead of a single spin- j system) are optimal, similarly to
what we show next.

2. Comparison between time-optimal schemes
with spin cat and optimal probe states

By employing the optimal QFI presented in the previ-
ous section to perform the time optimization, we obtain the
ultimate performance achievable with spin- j probe states. The
probe-optimized quantity in (22) is thus evaluated numerically
through (C2) as

Rmax
T = max

t

1

t
[4λ2∂T �T (t )]2F(4λ2�T (t )), (C6)

where the maximization over t is carried out using a Nelder-
Mead algorithm, while the function F(4λ2�T (t )) is evaluated
with a semidefinite program for each t .

Some of the results of this comparison are shown in Fig. 10.
We see that for both s = 1 and s = 0.5, the performance of
spin cat states coincides with the optimal result for very strong
coupling (e.g., λ = 20 in the two right panels of Fig. 10).
However, in the weak-coupling regime (e.g., λ = 0.05 in the
two left panels) the spin cat states start as optimal, then be-
come suboptimal with the optimal QFI rate that decreases
as the spin number j increases, but after this decline the
optimal QFI rate starts increasing again with j. Unfortunately,
evaluating the quantity in Eq. (C6) for larger values of j is
too computationally demanding. However, we suspect that

eventually, for j large enough, spin cat probes may become
optimal again, since for this class of states increasing j is
equivalent to increasing λ, and for large λ we have shown
that they are optimal. Similar conclusions may be found for
different values of s and T .

A previous indication of the optimality of spin cat probes
for the estimation of environmental parameters appearing in
the dephasing factor was given4 in Ref. [23]. In particular, it
was shown that for fixed j there is a threshold value, and if
the dephasing is weak enough it is optimal to use spin cat
states. We note, however, that the figure of merit optimized
in Ref. [23] was the QFI and not the QFI rate. Moreover,
for a fixed dephasing �, i.e., the quantum channel (C1), the
optimal state for asymptotically large j is not a spin cat state
[91]. However, for a time-dependent problem the scenario is
quite different, since the optimal time also scales with j and
the problem differs from the estimation of a fixed dephasing
factor �.

APPENDIX D: SHORT-TIME EXPANSIONS

We report here the short-time expansions of absorbed heat,
dephasing function, and QFI for the spectral density with
exponential cutoff. For conciseness, we implicitly express t
and T in units of ωc. The heat reads

Q(t ) = λ2[q(2)t2 + q(4)t4 + O(t6)], (D1)

q(2) = s(s + 1)�(s), (D2)

q(4) = − 1
12 (s4 + 6s3 + 11s2 + 6s)�(s), (D3)

and the dephasing function

�s,T (t ) = �
(2)
s,T t2 + �

(4)
s,T t4 + O(t6), (D4)

�
(2)
s,T = 2(s − 1)s�(s − 1)[2(s − 1)sT s+1�(s − 1)ζ (s + 1, T + 1) + �(s + 1)]

�(s + 1)
, (D5)

�
(4)
s,T = − [s(s3 + 2s2 − s − 2)�(s − 1)(2(s − 1)sT s+3�(s − 1)ζ (s + 3, T + 1) + �(s + 1))]

6�(s + 1)
, (D6)

from which the QFI reads

F[ρT (t )] = 16λ4 [∂T�s,T (t )]2

exp [8λ2�s,T (t )] − 1
= f (2)t2 + f (4)t4 + O(t6) (D7)

f (2) = λ2
(
∂T�

(2)
s,T

)2

2�
(2)
s,T

(D8)

f (4) = −λ4
(
�

(2)
s,T

)2(
∂T�

(2)
s,T

)2 + λ2
[
�

(4)
s,T (∂T�

(2)
s,T )2 − 2�

(2)
s,T ∂T �

(2)
s,T ∂T �

(4)
s,T

]
2
(
�

(2)
s,T

)2 . (D9)

4More precisely, Greenberger-Horne-Zeilinger states of multiqubit systems were considered instead of cat states of a spin- j system, but the
analysis is equivalent.
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As long as the coefficient f (4) is negative (this depends on the particular parameter values, but we can always find λ large enough
for which this holds), the optimal time is

topt = argmaxt
F[ρT (t )]

t
=
√

− f (2)

3 f (4)
, (D10)

which approaches zero as λ−1 for λ → ∞.
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