
PHYSICAL REVIEW A 108, 062420 (2023)

Benchmarking a boson sampler with Hamming nets

Ilia A. Iakovlev ,1,2 Oleg M. Sotnikov ,1,2 Ivan V. Dyakonov,3 Evgeniy O. Kiktenko ,2 Aleksey K. Fedorov ,2

Stanislav S. Straupe,2,3 and Vladimir V. Mazurenko 1,2

1Theoretical Physics and Applied Mathematics Department, Ural Federal University, Ekaterinburg 620002, Russia
2Russian Quantum Center, Skolkovo, Moscow 121205, Russia

3Quantum Technology Centre and Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia

(Received 14 June 2023; accepted 22 November 2023; published 19 December 2023)

Analyzing the properties of complex quantum systems is crucial for further development of quantum devices,
yet this task is typically challenging and demanding with respect to the required amount of measurements.
Special attention to this problem appears within the context of characterizing outcomes of noisy intermediate-
scale quantum devices, which produce quantum states with specific properties so that it is expected to be hard
to simulate such states using classical resources. In this work, we address the problem of characterization of a
boson sampling device, which uses the interference of input photons to produce samples of nontrivial probability
distributions that at certain condition are hard to obtain classically. For realistic experimental conditions the
problem is to probe multiphoton interference with a limited number of the measurement outcomes without col-
lisions and repetitions. By constructing networks on the measurement outcomes, we demonstrate the possibility
to discriminate between regimes of indistinguishable and distinguishable bosons by quantifying the structures
of the corresponding networks. Based on this, we propose a machine-learning-based protocol to benchmark a
boson sampler with unknown scattering matrix. Notably, the protocol works in the most challenging regimes of
having a very limited number of bitstrings without collisions and repetitions. As we expect, our framework can
be directly applied for characterizing boson sampling devices that are currently available in experiments.
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I. INTRODUCTION

The idea behind quantum computing is to manipulate
complex (entangled, many-body) quantum states to solve
computational problems [1–3]. Certain quantum algorithms
use a feature of a possibility to efficiently check the correct-
ness of the obtained results, for example, as it takes place
for the Shor’s factorization algorithm [4]. In a general case,
however, the problem of characterization and verification of
quantum states that are produced by quantum computing de-
vices is highly nontrivial, yet it is essential to understand
whereas the quantum devices work correctly. This task be-
comes even more challenging taking into account the fact
that currently developed quantum processors are highly af-
fected by decoherence, so they belong to the class of noisy
intermediate-scale quantum (NISQ) devices. A celebrated ex-
ample is a seemingly unresolvable problem of sampling the
output of a pseudorandom 53-qubit circuit performed by the
Google team [5] with the Sycamore processor, which is expo-
nentially more difficult to do with classical computing. This
breakthrough study stimulated the development of the meth-
ods not only for efficient simulating large-scale quantum wave
function on classical devices [6–11], but also approaches for
distinguishing quantum states delocalized in the Hilbert space
from each other with a very limited number of measurements
[12,13]. Recent random circuit sampling experiments [14]
with 70 qubits defined a new boundary for demonstrating
quantum advantage.

In addition to the gate-based model of quantum computing,
remarkable progress with the developing of boson sampling

(BS) [15–17] has been performed [18] (starting by first ex-
perimental realizations [19–21]). Currently, BS represents a
popular quantum playground for testing novel approaches
[22–26] where one faces a certification problem for a pho-
ton device with exponentially large output state space in the
absence of a classical counterpart imitated with a classical
computer [27,28]. More specifically, for a given device that
takes n photons as an input and allocates them over m output
modes according to some probability distribution function,
one should be able to certify that the outcome data arise
from indistinguishable photons with a limited number of mea-
surements. Recent experiments on large-scale boson sampling
have been used to demonstrate quantum computational advan-
tage [29–32]. The certification of a boson sampler generally
assumes, first, unambiguously distinguishing it from a classi-
cal device that generates outcomes according to a distribution,
for instance, a uniform one. Moreover, a related problem is
to define whether given sets of samples were drawn from the
same boson sampler or different ones [22]. Finally, from prac-
tical perspective recognizing the regimes of indistinguishable
bosons to distinguishable ones, when performing a limited
number of experiments with a boson sampler is also of great
importance.

There are, generally speaking, two widely used strategies
for solving the problem of verification of a boson sampler.
The first one assumes that one exploits an insider information
on the boson sampler in question. For instance, it could be
details of a scattering matrix U describing the connection
between input and output modes [33–36]. The existence of
a trusted boson sampler that is assumed in some studies [37]
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FIG. 1. Protocol for constructing a Hamming network and certification of a boson sampler. (a) Schematic representation of the boson
sampler that takes three photons as input and distributes them over output modes according to some probability distribution function. (b) A
limited set of outcomes (bitstrings) without repetitions and collisions as obtained from the boson sampler. (c) Construction of the network in
which each node corresponds to the specific bitstring. If the Hamming distance between two bitstrings is smaller than or equal to the chosen
cutoff radius R, then the corresponding nodes are connected. For each node the total number of links (degree) is calculated. (d) Distribution of
the nodes (bitstrings) with respect to their degree allows discriminating between sets of uniform, distinguishable, and indistinguishable boson
bitstrings.

can also considerably facilitate the validation of a photonic
device with different clustering techniques. The second class
of approaches for certifying boson samplers fully relies on
the analysis of the measurement outcomes. For instance, the
statistical benchmarking proposed in Ref. [23] is based on the
calculation of pair correlation functions for all possible output
modes combinations. While, theoretically, these correlators
allow one to probe many-particle interference, the practical re-
alization of such a benchmarking requires some experimental
efforts in performing numerous measurements for all possible
inputs and should be verified in each case.

The complexity of the boson sampler certification [31,38]
suggests to make use of the entire arsenal of available
methods, including those from completely different fields of
research dealing with problem of analyzing complex pro-
cesses. For instance, a fresh look at the problem can be taken
with machine learning (ML) techniques including clustering
methods [22,37,39], the combination of the low-dimensional
representation and convolutional neural network [40], or oth-
ers. While the main focus in these ML-based studies is on
the Hamming distance (or L1 norm) between bitstrings bi =
(b1

i , . . . , bm
i ) and b j = (b1

j, . . . , bm
j ) that is defined as Di j =∑m

k=1 |bk
i − bk

j |, as it has been shown, taking into account col-
lisions as well as bitstrings statistics also plays an important
role in validating boson sampler. Remarkably, discriminating
sets of boson sampler outcomes without both collisions of
photons and repetitions of events has not been demonstrated
up to date, which actually corresponds to a typical experimen-
tal situation.

In this work, we propose and demonstrate a protocol for
retrieving meaningful information about a photon interfer-
ometer, which can be extracted even when collision- and
repetition-free sets of boson sampler outcomes are only avail-
able. For this purpose, we use the concept of the Hamming
network recently introduced in Ref. [13] for the analysis of
the complexity of the quantum wave functions and detecting
quantum phase transitions. Specifically, we apply it to explore
the structure of links in the Hamming network constructed on
the basis of the measurement outcomes of a boson sampler

[see, Figs. 1(a) and 1(b)]. Each BS event is associated with
a colored node in the Hamming network. Since there are no
repetitions of the bitstrings, there are no nodes of the same
color in Fig. 1(c). Having chosen a cutoff radius R that can be
in the range between minimal and maximal bitstring distances
within the entire ensemble of outcomes, one compares it to the
Hamming distances of individual bitstring pairs. If R � Di j ,
we connect the ith and jth events with a link. According to the
network theory, the amount of connections a particular node
has is called its degree. Computing the statistics over the de-
grees [Fig. 1(d)] in the network constructed for a given set of
measurements outcomes allows characterization of the boson
sampler in the situation of information scarcity. As is shown
below, one can discriminate between uniform and nonuniform
samplers, as well as the distinguishable and indistinguishable
regimes of BS.

II. RESULTS

A. Constructing Hamming networks

We start our consideration with constructing Hamming
networks for the collision-free sets of bitstrings that were
generated with loading n photons into the boson samplers of
m = n2 output modes, where n = 4, 5, 6, and 7. According
to Ref. [15] it is believed that such a quadratic dependence
of modes number on n corresponds to the lower bound for
demonstrating quantum advantage with boson sampling. In
these BS settings the total number of the unique collision-
free outcomes is defined as Cn

m and equal to 1820 (n = 4),
53 130 (n = 5), 1 947 792 (n = 6) and 85 900 584 (n = 7).
By “collision-free set” we mean that all n photons are de-
tected in distinct output modes. This regime is consistent with
commonly used photodetectors that do not allow for photon
number discrimination. From the point of view of real boson
sampling experiments the considered configurations are real-
istic and imitate characteristics of the state-of-the-art devices
[34,41,42]. A detailed technical information concerning the
boson sampler simulator we use is given in Appendix A.
We would like to stress that each outcome (bitstring) is
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FIG. 2. (Left) Example of the Hamming network constructed for 100 outcomes taken from the boson sampler with four bosons and 16
output modes in the regime of indistinguishable particles. The cutoff radius R is equal to 2. (Right) Fragments of the Hamming networks
that contain nodes (red square) with the largest degree. These networks were constructed with N = 40, 60, 80, and 100 bitstrings from
indistinguishable (top row), distinguishable (middle row), and uniform (bottom row) photons sources.

unique within the particular set, which excludes using the
outcome’s statistics for recognizing the many-particle inter-
ference regime realized in BS. It makes the approaches relying
on the choice of the states with highest probability [22,37] out
of game and strongly motivates to employing methods [13]
that can reveal hidden dependencies, structures, and correla-
tions in a limited amount of data.

The main parameter when constructing the network for a
set of outcomes is the cutoff radius R that defines the particular
structure of the Hamming network. Since all the bitstrings
we collect have the same number of “1” bits the minimal
difference in the Hamming distance Di j between two arbitrary
chosen bitstrings is equal to 2, which is the minimal step for
the cutoff radius change. In Fig. 2 we give an example of such
a net constructed with R = 2 for which all the links have the
same weight. In other words, within our approach to differ-
entiate the photon sources we will only use the information
about number of degrees. One can see that, in the case of the
small R = 2, there are many nodes with a few links, which can
be explained by the small number of bitstrings in the sample
and a nonuniform distribution of the corresponding bitstrings
over state space. Visualization of the network’s fragments is
shown in Fig. 2 and constructed with minimal cutoff radius,
and small sets of bitstrings reveal a difference in change of
the largest presented degree depending on the size of the
bitstrings set for uniform and nonuniform samplers. In the
case of the nets constructed with uniform distribution this
quantity increases more slowly than for distinguishable and
indistinguishable ones. At the same time, by these fragments
we cannot discriminate the distinguishable and indistinguish-
able photons sources. In both cases the graphs obtained for the
same number of bitstrings look similar.

Such a structural difference between networks constructed
with uniform and nonuniform samples becomes more evident
when analyzing the probability distributions Pk of the network
nodes with respect to their degree k. One can think about
Pk as a probability that a random node in the Hamming net
has exactly k neighbors. The results obtained for individual

samples of 512 bitstrings and presented in Fig. 3(a) demon-
strate different locations of the means of these distributions.
This paves the way for benchmarking outcomes from a
nonuniform sampler in a fully unsupervised manner. More
specifically, for a given set of bitstrings obtained from an
unknown sampler we are able to generate the same num-
ber of bitstrings distributed uniformly, which can be done
efficiently with a classical computer. Then, one constructs
networks with bitstrings from unknown device and uniform
sampler. By comparing the means and standard deviations of
the resulting probability distribution functions one can make
the conclusion whether the initial set of bitstrings was gen-
erated with a uniform or nonuniform unknown sampler. The
validity of the proposed certification procedure is confirmed
by the results that were averaged over 512 samples taken from
the same interferometer [Fig. 3(b)] and those averaged over
100 independent interferometers [Fig. 3(c)]. In all cases the
difference in the distribution properties between the uniform
and nonuniform samplers is robust.

If one gets information about the scattering matrix U of the
device to be certified, there are efficient algorithms such as the
test of Aaronson and Arkhipov [43] that can validate a boson
sampler against uniform on the basis of several outcomes.
Importantly, the practical implementation of this test does not
assume the calculation of any permanent. In the cases when
the details of the multiparticle interferometer are unknown,
one can make use of a kind of clustering algorithm. For
instance, to characterize a boson device, a bubble clustering
protocol [22] proposed by Wang and Duan determines the
structure of the bit-string sample by utilizing the frequency
of generating individual outcomes. Our approach is different
since constructing Hamming nets to certify a BS device ex-
cludes repetitions in bit-string samples.

While recognizing uniform samplers is straightforward
with Hamming nets, the certification of distinguishable and
indistinguishable BS regimes is found to be a more challeng-
ing task. As follows from Figs. 3(b) and 3(c), the averaging
over samples and over scattering matrices leads to a strong
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(a)

(b)

(c)

FIG. 3. Comparison of the degree distributions estimated from
the Hamming nets that were constructed with uniform (green), dis-
tinguishable (red), and indistinguishable (blue) samplers outcomes.
These results were obtained for boson sampler with 16 modes and
four photons and cutoff radius R = 4. (a) Comparison of the dis-
tributions on the level of single sample of 512 bitstrings. (b) Data
averaged over 512 samples each containing 512 bitstrings obtained
from the same interferometer. (c) Results averaged over 100 inter-
ferometers. Data for each interferometer were averaged over 512
samples with size N = 512.

dispersion (colored regions) of the probabilities’ functions,
PD

k (for distinguishable particles) and PI
k (for indistinguishable

particles). In other words, a sampler can give a distribution of
the nodes that will strongly differ from the mean probability
profiles denoted with lines in Fig. 3(c). Although there are
some differences in the mean and standard deviation values
between the averaged distinguishable and indistinguishable
data [Fig. 3(c)], such differences are too small to be used by
a researcher for a manual benchmarking of a boson sampler.
It motivates us to develop a machine learning protocol for
certifying boson samplers as described in the next section.

B. Machine learning BS regimes

The theoretical description of a system or a process with
a limited number of observations available for a researcher is
a standard task in science that may arise in various fields. In
physics, classifying different types of Brownian motion with
short trajectories [44,45], constructing a phase diagram on

FIG. 4. (a) Schematic representation of the Pk distribution ob-
tained using N = 1024 bitstrings at R = 6. (b)–(d) Low-dimensional
visualisations of the configurations taken from the training sets for
n = 4 bosons and m = 16 output modes, N = 1024, and the cutoff
radius of 4. Red (light gray) and blue (dark gray) clouds correspond
to distinguishable and indistinguishable particles, respectively. Fea-
tures were taken from (b) the Hamming network and (c,d) correlation
functions approaches. (d) The last data set includes collisions and
repetitions. NM and CV denote the normalized mean and coefficient
of variation, which are the features introduced in Ref. [23] within the
mode-mode correlation function approach.

the basis of limited number of system’s snapshots [46,47],
approximating the ground state of a quantum Hamiltonian
on a quantum computer [48], and certifying a quantum state
on a quantum device by means of a few measurements [12]
represent only a few notable examples of problems among
many others. Remarkably, in these and other cases machine
learning (ML) has turned out to be a very valuable alternative
to standard techniques and advancing the corresponding fields
of research. In this sense, the boson sampling is no excep-
tion and there are various machine learning based schemes
for benchmarking boson devices. They include basic cluster-
ing ML algorithms [49] and neural network approaches [40]
as well.

In our case discriminating devices with distinguishable and
indistinguishable photons on the level of the Hamming net-
works can be also advanced with basic machine learning. To
show that, we first perform a feature selection procedure. We
find out that the most reliable features are two first moments
of the Pk distributions for such intermediate cutoff radii R for
which Pk is Gaussian-like and has both left and right sides
[Fig. 4(a)]. Namely, we use R = {2, 4, 6}, R = {2, 4, 6, 8},
R = {4, 6, 8, 10}, and R = {6, 8, 10, 12} for the samplers with
n = 4, 5, 6, and 7 photons, respectively. More details on the
radii choice are given Appendix B. By the example of the stan-
dard deviation and mean features presented in Fig. 4(b) one
can see that the clouds formed from distinguishable and indis-

062420-4



BENCHMARKING A BOSON SAMPLER WITH HAMMING … PHYSICAL REVIEW A 108, 062420 (2023)

(a)

(b)

FIG. 5. Machine learning certification of boson samplers. (a) Ac-
curacy of the logistic regression model on the testing data assessed
on the unseen U matrices. The results are obtained using N = 1024
bitstrings in each sample. The error bars are smaller than the symbol
size. (b) Dependence of the number of unique bitstrings N required
to reach the accuracy ∼98% on n. The machine learning algorithms
here were trained on the features extracted from both Hamming net
and mode-mode correlation functions. The amount of output modes
is equal to m = n2.

tinguishable outcomes are well separated for n = 4, which, as
we will show below, provides a high accuracy in classification
with ML.

At this stage, it is important to recall other quantities that
are based on a mode-mode correlation function used in the
previous theoretical [23,24,50] and experimental [31] works
for benchmarking an indistinguishable sampler against a dis-
tinguishable one. Such correlation functions are defined as
Ci j = 〈nin j〉 − 〈ni〉〈n j〉, where ni is the photon number in
the ith mode. The features (normalized mean, coefficient of
variation, skewness) extracted from distribution of the cal-
culated Ci j allow discriminating among different samplers.
As it follows from Fig. 4(c) our consideration challenges the
previous results since the clouds formed by different sam-
plers overlap in the feature space for bitstring sets subjected
to additional selection. Comparison of Figs. 4(c) and 4(d)
clearly shows that the outcomes’ repetitions and collision
events play a crucial role in forming well-separated clouds on
the level of features. Thus, the regime without collisions and
repetitions for n = 4 we explore in this work is of particular
difficulty.

Since separating clouds in the feature plane is a kind of
trade-off in our choice of the bitstring number in the sample
with respect to the total size of the state space, it becomes
important to implement the machine learning to control the
classification quality for boson samplers with n > 4. Among
the basic ML methods we tested (see Appendix C for more
details) the best benchmarking results on scattering matrices
unseen during the training stage were achieved with logistic
regression (LR). From Fig. 5(a) one can see that the accu-
racy of the classification based on the Hamming net features
gradually degrades as the number of bosons increases. For
instance, in the case of n = 7 it is about 97.7% [blue squares

in Fig. 5(a)], which clearly indicates the smallness of the
sample size (N = 1024) with respect to the total state space
dimension (85 900 584).

In turn, the ML models based on mode-mode correlations
demonstrate a considerable enhancement of the classifica-
tion accuracy for n = 5 in comparison with n = 4. It can be
explained by a larger effective separation of the centers of
the clouds in low-dimensional representation of the data for
distinguishable and indistinguishable particles. Nevertheless,
the fact that there is the deviation from the ideal 100% cer-
tification of the particle type evidences nonzero overlap of
the corresponding clouds. Figure 5(a) shows ML accuracy for
mode-mode correlators that behaves similarly to that obtained
with Hamming net data for n > 4. It has to be stressed one
more time that the previous works based on the calculation
of the mode-mode correlation functions did not develop an
intuition about the performance of this approach in the case of
the collision-free and repetition-free regimes and for the BS
setting with m = n2 dependence, which is one of the goals of
this work.

Importantly, both the Hamming nets features and mode-
mode correlation features are not correlated by the construc-
tion. This fact means that these features can be combined to
achieve better performance in distinguishing boson samplers
with machine learning. Indeed, in this case the resulting ML
accuracy increases to ∼98.3% for n = 7 [green diamonds
in Fig. 5(a)]. These ML results clearly show that accurate
benchmarking of unknown boson samplers is possible with
a very limited number of bitstrings without collisions and
repetitions.

Another important question is how the amount of unique
bitstrings required to achieve certain accuracy scales with n.
As can be seen from Fig. 5(b) N grows rather linearly and the
obtained values are experimentally reachable which indicates
the viability of the proposed approach. Here we fix the accu-
racy to be ∼98%. The reason why the BS with n = 5 requires
less bitstrings to reach the same accuracy can be explained
in the following way. On the one hand, it has more output
modes and therefore more degrees of freedom than the BS
with n = 4, which increase the difference in statistics of the
considered regimes. On the other hand, the used N covers the
larger portion of the entire basis than in the case of n � 6.

C. Three distinct measures of BS complexity

Characterizing photon interferometry is closely related to
the problem of describing the sampling complexity. Tradition-
ally, the main focus is on an exponential separation between
quantum and classical sampling times, which is considered
to be one of the important examples for demonstrating the
quantum advantage. However, this is only one of the possible
measures of how hard it is to create a sample with a given
boson device (computational complexity). A detailed com-
parison of the distinguishable and indistinguishable bitstrings
sources can enrich our understanding not only in terms of
sampling complexity, but also in relation to the structure of
the generated data, the quantification of information content,
and others. In fact, there are more than 42 different measures
[51,52] of the complexity that can be potentially used to
characterize a system.
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(a)

(b)

FIG. 6. Boson sampler complexity measures we analyze in this
work. (a) Fraction of the states from the Hilbert space as function
of performed measurements for uniform and boson sampler with
16 modes and four photons in regimes of distinguishable and indis-
tinguishable photons. Curves for the boson sampler were averaged
over 30 scattering matrices. (b) Unique degrees count of the sampler
network graphs for distinct cutoff radius R = 4.

In this work, we propose three different measures to dis-
criminate outcomes of the boson samplers with respect to the
time computational complexity, complexity of the data struc-
ture, and complexity of describing the information content.
The first one can be analyzed by the example of Fig. 6(a)
that shows the difference between distinguishable and indis-
tinguishable samplers in a fraction of the state space that is
captured when performing a different number of measure-
ments. One can see that it is more difficult to collect unique
bitstrings in the case of an indistinguishable sampler than a
distinguishable one with the same number of measurements.
The largest difference is observed for 104 measurements. It
can be understood from the fact that the probability distribu-
tion of the distinguishable bitstrings is closer to uniform than
the indistinguishable one.

The second complexity measure that provides a robust
quantitative characterization and discrimination of the con-
structed networks with respect to their structure is the number
of the unique degrees of the network. By this we mean
the number of classes in which each node has the same
degree. In Fig. 6(b) we compare the dependencies of the
number of the unique degrees on the sample size for dis-
tinguishable, uniform, and indistinguishable particles. These
results evidence that, for a given scattering matrix, a robust
discrimination of the multiphoton regimes can be fulfilled
at the cutoff radius R = 4 for the samples that are char-
acterized by minimal sizes of 27, which is smaller than
the total size of the state space of 1820. Importantly, the
dispersion of the calculated dependencies averaged over dif-
ferent samples is almost insensitive to the number of the
bitstrings in the sample. However, as it was shown above

FIG. 7. Shannon entropy of probability distributions calculated
for boson samplers with distinguishable (red solid line) and indistin-
guishable (blue dotted line) photons. The green dashed line denotes
the case of the uniform sampler. The data were averaged over 100
boson samplers with different scattering matrices.

the averaging over different U matrices leads to a strong
overlap of the unique degrees calculated with distinguish-
able and indistinguishable outcomes, which prevents us from
using such a measure for certifying BS in an unsupervised
manner.

The third measure to characterize BS complexity we de-
velop in this work is aimed at quantifying information content
produced by a boson sampler. It requires the account of
the outcomes’ probabilities, which means that we go be-
yond the consideration above and remove the restrictions
on the total number of measurements and the repetitions of
the bitstrings. However, the measurement outcomes are still
considered to be collision free. Naturally, the first candidate
to describe the information aspect of the BS complexity is
the Shannon entropy, H (X ) = −∑

x px log2 px, where px is
the probability of generating a particular bitstring x (here
X denotes a random variable of obtained bitstring). The
Shannon entropy estimates the optimal compression of data
[53] that may be achieved for a given source. The obtained
results (Fig. 7) show that the Shannon entropy is scaled
linearly with respect to the number of output modes. For
each BS setting the value of H (X ) calculated with the uni-
form sampler probabilities is nothing but the logarithm of
the corresponding state space size. Unfortunately, a weak
difference between the Shannon entropies calculated with
probability distributions of distinguishable and indistinguish-
able photons motivates us to look for another informational
measure.

In this situation, we propose first imitating the BS out-
comes with a quantum state that can be initialized on a
quantum computer or a quantum simulator. Upon measure-
ments, such a state should reproduce the bitstring statistics
of the collision-free boson sampler. It allows us to use the
entire arsenal of quantum information theory measures to
characterize such a wave function, and as we will show
below, to quantify the difference between distinguishable and
indistinguishable photons’ sources.

At the level of outcomes a collision-free boson sampler can
be imitated by using a system of quantum bits whose state in
σ z basis is characterized by a special structure of the basis
wave functions. More specifically, the number of “1” in each
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FIG. 8. Calculated von Neumann entropy for the quantum states
that upon projective measurements imitate collision-free outcomes
of boson samplers with distinguishable (red solid line) and indistin-
guishable (blue dotted line) photons. The data were averaged over
500 boson samplers with different scattering matrices. The green
dashed line denotes the uniform sampler results.

basis vector with nonzero probability is fixed to the number
of bosons n, while the total number of qubits is equal to the
number of output modes m. In analogy to the notable Dicke
states [54], one can write a random counterpart of such a
quantum state as

|�n〉 =
∑

j

α jP j (|0〉⊗m−n ⊗ |1〉⊗n), (1)

where the sum goes over all possible permutations, P j of
qubits, α j is the amplitude of the jth basis function.

We would like to stress that �n is not the actual wave
function of the boson sampler that should contain information
about the complex scattering matrices [23] describing the in-
ternal structure of the device. In our case, we aim to reproduce
only the BS outcomes having collision-free statistics with
such a quantum state. It means that we have an infinite number
of choices when defining the coefficients α j in the wave func-
tion Eq. (1) that, in the general case, is a complex number with
the only constraint |α j |2 = p j , where p j is the probability to
generate jth bitstring with BS. To simplify the consideration
we take α j = √

p j to be a real-valued coefficient. As for the
particular complexity measure we choose von Neumann en-
tropy SA(|�n〉) = −Tr[ρA log2 ρA], where ρA = TrB |�n〉 〈�n|
is the reduced density matrix for a half-system bipartition into
regions A and B.

In Fig. 8 we compare the von Neumann entropies calcu-
lated in the case of wave functions imitating outcomes of
boson samplers with uniform, distinguishable, and indistin-
guishable particles. In the case of m � 9 the averaged data that
corresponds to the measure SA for indistinguishable particles
are well separated from others, which allows us to discrim-
inate this source. The wave functions �n corresponding to
the distinguishable and uniform device outcomes are featured
with a saturation of the entropy value of around two bits.
At the same time the quantum state that reproduces indis-
tinguishable outcomes demonstrates a permanent growth as
the number of modes increases. Remarkably, averaging of
these results over 500 boson samplers with distinct scatter-
ing matrices is characterized by the standard deviation that
decreases with increasing the mode’s number, which paves
another way to the accurate classification of unknown boson
sampling devices.

FIG. 9. Classical mutual information between two groups of out-
put modes 1, . . . , �m/2� and �m/2� + 1, . . . , m for boson samplers
with distinguishable (red solid line) and indistinguishable (blue dot-
ted line) photons. The green dashed line denotes the case of uniform
sampler. The data were averaged over 100 boson samplers with
different scattering matrices.

In general case, constructing the quantum state that imi-
tates BS outcomes assumes accumulation of the considerable
amount of bitstrings whose number should be enough to re-
store the probabilities of the basis functions. Then one needs
to initialize the quantum state with the particular amplitudes.
Thus, the practical realization of the third complexity mea-
sure is related to quantum-state tomography problem, which
is characterized by considerable limitations on the number
of qubits in the system in question. However, as it was
shown in Ref. [55], implementation of the neural network
quantum states can facilitate the solution of the tomography
problem for some classes of wave functions, which sug-
gests a distinct way for constructing such entanglement-based
BS testers.

One can also note that the von Neumann entropy SA(|�n〉)
actually provides a half of the value of the quantum mutual
information

I (A : B) = SA(|�n〉) + SB(|�n〉) − S (|�n〉) = 2SA(|�n〉)

(2)

between mode groups A and B. Here SB(|�n〉) and S (|�n〉) =
0 are von Neumann entropies of modes group B and whole
pure state |�n〉, correspondingly. In Fig. 9 we illustrate the
behavior of the corresponding classical mutual information

J (A:B) = H (A) + H (B) − H (X ), (3)

where H (A) and H (B) are Shannon entropies of the bit-
strings’ output at mode groups A and B, correspondingly.
One can see that the values of the classical mutual informa-
tion drastically differ for indistinguishable and distinguishable
photons. At the same time, the classical mutual information
for distinguishable photons is almost the same for the uniform
distribution. Thus, the behavior of the classical mutual infor-
mation agrees qualitatively with that calculated on the basis of
von Neumann entropy in the quantum case.

III. CONCLUSION AND OUTLOOK

In this paper, we develop the procedure for benchmark-
ing boson samplers and distinguishing different regimes of
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FIG. 10. Average sorted profiles for distinguishable (red solid
line) and indistinguishable (blue dotted line) regimes of boson
sampler with four photons and 16 output modes. Probability corre-
sponding to uniform distribution is denoted as green dashed line for
reference.

the multiphoton interference using network theory. Our ap-
proach is based on constructing networks for limited number
of collision- and repetition-free BS outcomes by using the
Hamming distances as a parameter that controls the net struc-
ture. Already at this level it becomes possible to distinguish
uniform and nonuniform BS devices by comparing the de-
gree distributions of the constructed networks. In turn, the
certification of the nonuniform samplers into distinguishable
or indistinguishable classes is shown to be a more deli-
cate problem that can be solved with machine learning. The
performed ML calculations reveal a high accuracy (>98%)
in classifying distinguishable and indistinguishable photons
sources. Importantly, the number of the bitstrings required
for such an accurate classification in the considered settings
changes slightly as the number of output modes increases
while there is an exponential growth of the state space
size.

The proposed scheme for benchmarking boson samplers
is mainly based on the information about unique degrees of
the constructed networks. At the same time, network links
can have different weights depending on the particular val-
ues of the Hamming distance between outcomes. Taking
this into account would enrich and extend the characteriza-
tion of boson samplers by using network theory. However,
benchmarking with machine learning could also benefit from
considering the weights since it could produce distinct useful
features.

Ignoring the collision events in the BS data allows us
to explore a connection between BS sampling and quan-
tum computing. Namely, we derive and characterize random
Dicke wave functions that reproduce the statistics over BS
outcomes for distinguishable and indistinguishable sources.
These quantum states reveal different behavior in the en-
tanglement depending on the system size. Thus, a distinct
research line can be initiated to explore ways, including the
approximation of the wave function with neural network for
efficient reconstructing of random Dicke states on a quantum
device.

(a)

(b)

FIG. 11. Overall probability of generating outcome with colli-
sions. (a) Results obtained with fixed number of bosons, n = 3 and
different numbers of output modes. (b) The number of bosons and
output modes are varied as n = √

m, where m in the number of
output modes. The data for each setting were averaged over 1000
scattering matrices. Colored regions denote the corresponding stan-
dard deviations.

From the perspective of the real BS experiments, ex-
ploration of the intermediate regimes between limits of
indistinguishable and distinguishable particles that are purely
theoretical is of a particular interest for further development of
the Hamming network approach. In this regard, one can com-
bine the proposed machine learning scheme with numerical
methods for simulating the photon of a partial distinguishabil-
ity [56,57]. Thus, the ML models trained in this work can be
examined on the samples with predefined degrees of distigu-
ishability. However, such degrees can themselves be used as
labels in machine learning, which assumes the classification
with respect to more than two classes, as was done in this
work. All these steps will facilitate implementation of our
approach in diagnosing real BS devices.
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FIG. 12. (Top) Comparison of the averaged distributions for indistinguishable (blue upper line) and distinguishable (red lower line) bosons,
obtained at different cutoff radii using N = 1024 unique bitstrings from a boson sampler with n = 6 and m = 36. All the results are averaged
over 100 random U matrices. (Bottom) Accuracy dependence on the cutoff radii used to define feature vector. The best accuracy is marked
with purple square and equal to 98.9%.

APPENDIX A: BOSON SAMPLING

In this work we used the BOSON-SAMPLING PYTHON pack-
age [58] to calculate the probability distributions for a given
boson sampler matrix U that is an m × n matrix that de-
scribe a relation between the creation operators of input
(â†

j ) and output (b̂†
i ) modes. The Haar-distributed complex

unitary interferometer matrix itself was generated by using
the STRAWBERRY FIELDS PYTHON package [59,60], which
utilizes the classical groups approach [61]. In Fig. 10 we
compare the sorted probability distributions for collision-free
outcomes obtained from distinguishable, indistinguishable,
and uniform boson samplers. One can see that there is little
difference between the profiles obtained with distinguishable
and indistinguishable particles, which clearly demonstrates
the complexity of the source benchmarking with a limited
number of outcomes. In general, to reproduce these probabil-
ity profiles by using the statistics of the outcomes, the number
of bitstrings should be four or five times larger than the size
of the state space.

Detecting the collision events in the real experiments rep-
resents a significant technological challenge, which makes
selecting the collision-free outcomes a natural solution
when benchmarking a BS device. Since neglecting collision
events leads to considerable changes in the behavior of the
correlation-based features, as was demonstrated in Figs. 4(c)
and 4(d) in the main text, it is important to estimate the prob-
abilities of generating an event with collisions in different BS
settings. For instance, in Fig. 11(a) we show such a collision
outcome probability as a function of the number of output
modes at a fixed number of bosons. As one would expect, the
probability decays quickly as m increases.

The situation is completely different if the number of
output modes depends on the number of bosons as m = n2

[Fig. 11(b)], which can be associated to the lower bound for
demonstrating quantum advantage. In this case the collision
probability for indistinguishable particles does not decreases

with m. Instead it is saturated at a rather high value of about
0.55, which suggests a careful examination of the results of
the previous correlation-function-based studies [23,50] when
applying them for analysis of real experiments. Another
important finding is that the collision probability for distin-
guishable particles is about two times smaller than that for
indistinguishable ones. This means that the initial assumption
about the distinguishability of photons can be made based on
the amount of samples required to get N bitstrings without
collisions. However, when analyzing the experimental data,
one should also keep in mind the loss of photons and the
precision of the detectors used.

In contrast to the collisions, the amount of repetitions
drastically decreases with n. As can be seen from Table I,
bitstrings collected from BS with n � 6 are almost unique
up to some moderate number N . This is obviously con-
nected with the rapid growth of the state space. Thus,
excluding repetitions plays a role only when considering the
n = 4 sampler.

TABLE I. Percentage of repetitions (Nmeas − N )/Nmeas, (%) in
the Nmeas outcomes with N unique bitstrings. The results are averaged
over 100 random U matrices.

N n Distinguishable Indistinguishable

512 4 27.715 37.419
5 1.019 1.605
6 0.018 0.057
7 0.0 0.002

1024 4 54.045 67.680
5 1.957 3.322
6 0.055 0.095
7 0.002 0.001
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FIG. 13. Low-dimensional visualizations of the configurations
taken from the training sets for n = 6 bosons and m = 36 output
modes, N = 1024. Red (light gray) and blue (dark gray) clouds
correspond to distinguishable and indistinguishable particles, respec-
tively. Features were taken from the Hamming networks providing
the best possible accuracy on a single R (left) and pair of cutoff radii
(right). Namely, R = 8 and R = {4, 10}.

APPENDIX B: CHOICE OF THE CUTOFF RADII

In this section we discuss the choice of the cutoff radius
when constructing Hamming nets. As was shown in Ref. [13]
one should avoid overcounting isolated nodes and keep a
nontrivial network structure. Undoubtedly, such a choice is
problem-specific and in our study we are looking for the
R values at which properties of the distinguishable network
differs as much as possible from that obtained with indistin-
guishable bosons. We calculate the degree distribution that
defines a fraction of nodes with k connections to other nodes
and it is standard measure to characterize a graph or network.
We find out that the most reliable features are the two first
moments of the Pk distributions for such intermediate cutoff
radii for which Pk is Gaussian-like and has both left and
right sides.

Importantly, taking into account distributions at small R
may also be useful since the mean values of Pk distributions
are rather robust and then it gives some new dimensions to
the feature space where there is at least some discrepancy be-
tween the different BS regimes. However, as can be seen from
Fig. 12, this is not the case if we already took into account
all the meaningful cutoff radii. Thus, we use R = {2, 4, 6},
R = {2, 4, 6, 8}, R = {4, 6, 8, 10}, and R = {6, 8, 10, 12} for
the samplers with n = 4, 5, 6, and 7 photons, respectively.

The reason why the accuracy is low when taking into
account the single cutoff radius is that the clouds formed by
different samplers strongly overlap in the σ -μ plane. As can
be seen from Fig. 13, adding at least one extra R leads to the
formation of the almost-separated clouds in μ1-μ2 plane. We
should stress that both moments of Pk distributions are essen-
tial since it leads to better separation of the configurations in
the higher-dimensional parameter space.

APPENDIX C: MACHINE LEARNING

To solve the problem of distinguishing between two dif-
ferent BS regimes we train several basic ML algorithms
implemented in the SCIKIT-LEARN PYTHON package [62].

TABLE II. Comparison of the accuracy (%) of different ML
classifiers trained with the same data set on the unseen U matrices.
Features were taken from both Hamming network and mode-mode
correlations.

N n LR SVM RF k-NN

512 4 95.6(1) 94.3(1) 93.3(1) 93.0(1)
5 97.1(1) 96.9(1) 96.4(1) 96.6(1)
6 91.8(1) 91.6(1) 90.9(1) 90.7(1)
7 89.0(1) 88.9(1) 88.6(1) 88.7(1)

1024 4 100.0 100.0 100.0 100.0
5 99.8(1) 99.8(1) 99.7(1) 99.6(1)
6 98.9(1) 98.8(1) 98.5(1) 98.6(1)
7 98.3(1) 98.2(1) 98.2(1) 98.1(1)

Namely, a logistic regression (LR), a support vector machine
(SVM), random forest (RF), and k-nearest neighbors (k-NN)
classifiers. For LR we use the liblinear solver, for SVM (the
radial basis function as a kernel and γ = 1/Nf , where Nf its
the length of our feature vector), and for RF 300 estimators.
The amount of nearest neighbors in k-NN we adjust manually
for each data set to obtain the best accuracy. The rest of the
parameters of the algorithms were chosen to be the default
ones.

The main data set includes 100 samples for each regime for
each of 80 different U matrices. We randomly shuffle these
data and use 80% as a training set and 20% as a testing one.
To check the accuracy on the unseen data we generate and use
an additional 4000 samples from 20 completely new random
U matrices. Since each feature lies in its own range and has
its own dispersion, additional standardization is done on the
basis of the training samples.

As can be seen from Table II, all the presented algorithms
show similar performance on the unseen data when we use
features taken from both the Hamming network and mode-
mode correlations. However, LR is more stable, faster, and
slightly outperforms the rest in most cases which makes it
more preferable for the analysis of the currently available
interferometers.

It is important to note that the trainability of the ML
algorithms used for the discrimination in general does not
depend on n since the structure of the input feature vector
is constant. However, the features themselves, i.e., the first
two moments of the Pk distributions and the distribution of the
mode-mode correlations, depend on the ratio N/Cn

m, where n
is the number of photons and m is the number of the output
modes. Therefore, we expect that the differences between
the distinguishable and indistinguishable photons on the level
of features will become less significant if we fix N and in-
crease n further. Thus, the increase of n will definitely lead
to the decrease of the accuracy, and at some point, to the
inability of accessing the same precision under experimentally
achievable conditions. However, since we are dealing with the
ML algorithms, one cannot preliminary assess to what extent
these changes will affect the results. Nevertheless, the results
presented in the paper demonstrate that the proposed approach
is potentially applicable for the analysis of the currently avail-
able state-of-the-art BS.
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