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We compute the quantum maximal correlation for bipartite Gaussian states of continuous-variable systems.
Quantum maximal correlation is a measure of correlation with the monotonicity and tensorization properties that
can be used to study whether an arbitrary number of copies of a resource state can be locally transformed into
a target state without classical communication, known as the local state transformation problem. We show that
the required optimization for computing the quantum maximal correlation of Gaussian states can be restricted to
local operators that are linear in terms of phase-space quadrature operators. This allows us to derive a closed-form
expression for the quantum maximal correlation in terms of the covariance matrix of Gaussian states. Moreover,
we define Gaussian maximal correlation based on considering the class of local Hermitian operators that are
linear in terms of phase-space quadrature operators associated with local homodyne measurements. This measure
satisfies the tensorization property and can be used for the Gaussian version of the local state transformation
problem when both resource and target states are Gaussian. We also generalize these measures to the multipartite
case. Specifically, we define the quantum maximal correlation ribbon and then characterize it for multipartite
Gaussian states.
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I. INTRODUCTION

The problem of preparing a desired bipartite quantum state
from some available resource states under certain operations
is of great foundational and practical interest in quantum in-
formation science. This problem has been extensively studied
within the class of local operations and classical communi-
cation in the context of entanglement distillation, where two
parties aim to prepare a highly entangled state using copies
of a weakly entangled state [1–4]. The optimal rate of entan-
glement distillation for pure states equals the entanglement
entropy [1], and there are mixed entangled states that are not
distillable [5].

A more recent version of this problem is local state
transformation under local operations and without classical
communication [6]. (See Fig. 1 for a precise description of
the problem.) This problem is highly nontrivial even if the
goal is to generate only a single copy of the target state σA′B′

using arbitrarily many copies of the resource state ρAB. The
difficulty remains even if the target state is not entangled or
even in the fully classical setting [7] (see also [8]).

To study the local state transformation problem, we need
measures of correlation that are monotonic under local op-
erations and remain unchanged when computed on multiple
copies of a bipartite state. The latter crucial property is called
tensorization and is required since in local state transforma-
tion we assume the availability of arbitrarily many copies of
the resource state while we aim to generate only a single copy
of the target. There are resource measures, based on certain
free operations, for Gaussian states [9], quantum coherence
[10], and nonclassicality of quantum states [11] that satisfy the
tensorization property. However, this property is not satisfied

by most measures of correlation, such as mutual information
and entanglement measures, which makes them inapplicable
to the local state transformation problem. Quantum maximal
correlation was introduced as a measure that satisfies both the
monotonicity and the tensorization properties and therefore is
suitable for proving bounds on this problem [6]. In particular,
based on these properties, one can see that local state transfor-
mation is not possible if the maximal correlation of the target
state is higher than that of the resource state (see Sec. II for
more details).

Quantum maximal correlation of a bipartite quantum state
ρAB is defined as sup |tr(ρABX †

A ⊗ YB)|, where the supremum is
taken over all local operators XA and YB that satisfy tr(ρAXA) =
ρ(ρBYB) = 0 and tr(ρAX †

A XA) = ρ(ρBY †
B YB) = 1. It is shown

that computing quantum maximal correlation is a tractable
problem for systems with a finite-dimensional Hilbert space
[6]. However, in general, it is not clear how to calculate quan-
tum maximal correlation for states of continuous-variable
systems with infinite-dimensional Hilbert spaces, as the space
of local operators XA and YB becomes intractable. Of particular
interest is the class of Gaussian states that are readily available
in the laboratory and can be used as resource states to prepare
other states.

In this paper, we compute the quantum maximal correla-
tion for Gaussian states of continuous-variable systems. This
measure enables us to study the local state transform problem
when either the resource state or the target state is Gaussian.
In this case, we show that for Gaussian states it is sufficient to
optimize over local operators XA and YB that are linear in terms
of phase-space quadrature operators. This turns the inherently
infinite-dimensional problem of computing quantum maximal
correlation into a finite-dimensional one (see Theorem 2 for
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FIG. 1. Local state transformation problem. Two parties share an
arbitrary number of copies of a resource state ρAB and their goal is
to generate a single copy of a target state σA′B′ . They are allowed
to apply local quantum operations, but classical communication is
forbidden. Quantum maximal correlation, a useful measure to study
the local state transformation problem, is monotonic under local op-
erations and remains unchanged when computed on multiple copies
of the state. The latter is known as the tensorization property. The
local state transformation is not possible if the quantum maximal
correlation of σA′B′ is larger than that of ρAB.

the statement of our main result). Moreover, we define Gaus-
sian maximal correlation as a measure based on Hermitian and
linear local operators in terms of quadrature operators, corre-
sponding to local homodyne measurements. This measure can
be used in the Gaussian local state transform scenarios, where
the target and resource states are Gaussian. In particular, this
shows that copies of weakly correlated Gaussian states cannot
be locally transformed to a highly correlated Gaussian state.
This result should be compared to previous results showing
that entanglement in Gaussian states cannot be distilled using
Gaussian operations [12–15].

We also generalize the quantum maximal correlation to
the multipartite setting. We define an invariant of multipartite
quantum states, called a quantum maximal correlation ribbon,
that, similar to the bipartite case, satisfies the monotonicity
and the tensorization properties. We also show that to com-
pute the maximal correlation ribbon for multipartite Gaussian
states it suffices to restrict the optimization to local operators
that are linear in terms of quadrature operators.

The structure of the paper is as follows. In Sec. II we
review the notion of quantum maximal correlation from [6].
In Sec. III we review the definition of Gaussian states and
some of their main properties. We note that the objective
function in quantum maximal correlation is a bilinear form
which can be thought of as an inner product. Then, to compute
the maximal correlation it would be useful to find orthonormal
bases for the space of local operators XA and YB. Following this
point of view, Sec. IV is devoted to the introduction of such
an orthonormal basis for Gaussian states which might be of
independent interest. The results of this section will be used
to prove our main result in Sec. V. We introduce the Gaus-
sian maximal correlation in Sec. VI. Considering examples
of Gaussian states in Sec. VII, we further illustrate various

features of these correlation measures. We also generalize
the definition of maximal correlation for multipartite states
in Sec. VIII by introducing the quantum maximal correlation
ribbon. We show that the maximal correlation ribbon satisfies
the monotonicity and the tensorization properties and com-
pute it for multipartite Gaussian states. Detailed proofs of the
results in the multipartite case are left for the Appendixes. We
conclude the paper in Sec. IX.

II. REVIEW OF QUANTUM MAXIMAL CORRELATION

Given a bipartite probability distribution pAB, its maximal
correlation is defined as the maximum of the Pearson correla-
tion coefficient over all functions of random variables A and
B [16–19]. Specifically, the classical maximal correlation is
given by1

μ(A, B) = supE[ fAgB], (1)

where the supremum is taken over all real functions fA and
gB with zero mean and unit variance, i.e., E[ fA] = E[gB] = 0
and E[ f 2

A ] = E[g2
B] = 1. The classical maximal correlation is

zero if and only if the two random variables are independent
and equals one if they have a common bit, meaning that there
are nontrivial functions f and g such that f (A) = g(B).

The maximal correlation for Gaussian distributions was
first computed in [20]. The main result of [20] is that in the
computation of maximal correlation for a Gaussian distribu-
tion pAB over R2, it suffices to restrict the optimization in (1)
to functions fA and gB that are linear in A and B, respectively.
Based on this, there are essentially unique choices of linear
functions fA and gB and then μ(A, B) for such a Gaussian
distribution pAB equals

μ(A, B) = |Cov[A, B]|√
Var[A]Var[B]

, (2)

where Cov[A, B] = E[AB] − E[A]E[B] and Var[A] =
Cov[A, A] is the variance. The result of [20] was derived
by thinking of ( f , g) �→ E[ f g] as an inner product on the
space of functions. Then, in the Gaussian case one can use
the orthonormal bases of Hermite polynomials for the spaces
of functions fA and gB to turn the problem of computing the
maximal correlation into the problem of computing overlaps
of functions in these bases. The main technical contribution
of [20] is essentially computing these overlaps.

The maximal correlation in the quantum case can be de-
fined by replacing functions in Eq. (1) with local operators
[6]. Given a density operator ρAB describing the joint state of
a bipartite quantum system, the quantum maximal correlation
is defined as

μ(A, B) : = sup
XA,YB

|tr(ρABX †
A ⊗ YB)|,

tr(ρAXA) = tr(ρBYB) = 0, (3)

tr(ρAX †
A XA) = tr(ρBY †

B YB) = 1,

1In the classical literature, maximal correlation is usually denoted
by ρ. Here in the quantum case, following [6], we save ρ for density
matrices and denote maximal correlation by μ.
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where the supremum is over all choices of local operators XA

and YB. Note that, in this definition, these operators are not
necessarily Hermitian; hence we maximize over the modulus
of the objective function tr(ρABX †

A ⊗ YB). If, however, the opti-
mal operators are found to be Hermitian, one can express them
using their spectral decompositions XA =∑n fA,n�A,n and
YB =∑m gB,m�B,m, where fA,n and gB,m are real eigenvalues
and the projectors �A,n and �B,m (

∑
n �A,n =∑m �B,m = I)

can be viewed as local measurement operators for each sub-
system. In this case, the quantum maximal correlation of state
ρAB is given by

μ(A, B) =
∑
n,m

fA,ngB,m p(n, m) = E[ fAgB], (4)

which is equal to the classical maximal correlation of the
joint probability distribution p(n, m) = tr(ρAB�A,n ⊗ �B,m)
associated with the local measurements. This implies that, in
general, the quantum maximal correlation is an upper bound
on the classical maximal correlation associated with the joint
outcome probability of any local measurements on the state
ρAB. Note that, as shown in [21] and discussed in Sec. VII,
for some quantum states the optimal local operators are non-
Hermitian and hence cannot be viewed as local observables.

An application of the Cauchy-Schwarz inequality shows
that 0 � μ(A, B) � 1. It can be shown that μ(A, B) = 0 if and
only if ρAB = ρA ⊗ ρB is a product state. Note that if ρAB is
not a product, there always exist local measurements whose
outcomes are correlated and hence their maximal correlation
is nonzero. Also, if μ(A, B) = 1 for some Hermitian local
operator XA and YB as above, one can verify that the joint
outcome probability distribution in (4) is perfectly correlated
[6]:

p(n, m) = tr(ρAB�A,n ⊗ �B,m) = pnδn,m. (5)

This form means that the shared state between two par-
ties can be used to extract perfect shared randomness
through local measurements. Based on this, we can see
that μ(A, B) = 1 for any pure entangled state |ψAB〉 =∑

n cn|nA, nB〉, with {|nA〉} and {|nB〉} the Schmidt bases, and
its completely dephased version in the Schmidt bases ρAB =∑

n |cn|2|nA〉〈nA| ⊗ |nB〉〈nB|, which is a separable state. In
these cases, considering observables NA =∑n hn|nA〉〈nA| and
NB =∑n hn|nB〉〈nB| for subsystems A and B, the optimal
local operators in (3) can be found as XA = (NA − 〈NA〉)/�NA

and YB = (NB − 〈NB〉)/�NB, with identical means 〈NA〉 =
〈NB〉 =∑n |cn|2hn and identical standard deviations �NA =
�NB = (

∑
n |cn|2h2

n − 〈NA〉2)1/2.
The maximal correlation satisfies two crucial properties

[6].
(i) Data processing. If σA′B′ = �A→A′ ⊗ 	B→B′ (ρAB),

where �A→A′ and 	B→B′ are local quantum operations
[quantum completely positive and trace-preserving (CPTP)
superoperators], then

μ(A′, B′) � μ(A, B).

(ii) Tensorization. For any bipartite density matrix ρAB and
any integer n we have

μ(An, Bn) = μ(A, B),

where the left-hand side is the maximal correlation of the state
ρAnBn = ρ⊗n

AB considered as a bipartite state.
The first property says that maximal correlation is really

a measure of correlation and does not increase under local
operations. The second property, however, is an intriguing
property saying that no matter how many copies of ρAB are
shared between two parties, their maximal correlation remains
the same. This is unlike most measures of correlations (such
as mutual information and entanglement entropy) that scale
when the number of copies increases.

The above two properties of maximal correlation make it
suitable for proving the impossibility of certain local state
transformations. Suppose that ρAB and σA′B′ are two bipar-
tite states with μ(A, B) < μ(A′, B′). Then it is not possible
to transform ρAB to σA′B′ under local operations even if an
arbitrary many copies of ρAB is available. This is because if
there exist local operations �An→A′ and 	Bn→B′ acting on n
copies of ρAB such that σA′B′ = �An→A′ ⊗ 	Bn→B′ (ρ⊗n

AB ), then
we must have

μ(A, B) = μ(An, Bn) � μ(A′, B′),

where the equality is due to the tensorization property and the
inequality follows from the data processing inequality.

Let us examine the example of noisy Bell states. Let

ρ
(κ )
AB = κ|ψ〉〈ψ | + (1 − κ ) 1

4 I (6)

be a mixture of the Bell state |ψ〉 = 1√
2
(|00〉 + |11〉) and the

maximally mixed state I/4 for two qubits with 0 � κ � 1.
It is not hard to verify that μ(A, B) = κ (see [6]). Thus, by
the above observation, local transformation of ρ

(κ )
AB to ρ

(κ ′ )
AB is

impossible if κ ′ > κ even with arbitrarily many copies of ρ
(κ )
AB .

It is shown in Theorem 1 in [6] that the maximal correlation
μ(A, B) of ρAB is equal to the second Schmidt coefficient of
some vector associated with ρAB in a tensor product Hilbert
space. This makes the problem of computing μ(A, B) tractable
when the dimensions of the local Hilbert spaces of A and B are
finite. In the infinite-dimensional case, however, computation
of maximal correlation remains a challenge in general.

Our main result in this paper is to compute the maximal
correlation for Gaussian quantum states, which are of great
practical interest in quantum information processing. Similar
to the classical maximal correlation for Gaussian probability
distributions, we show that in the computation of μ(A, B) for
the Gaussian state ρAB, the optimization in (3) can be re-
stricted to operators XA and YB that are linear in local creation
and annihilation operators.

III. GAUSSIAN QUANTUM STATES

In this section we review the definition and some basic
properties of Gaussian states. For more details refer to [22,23].

The Hilbert space of an m-mode bosonic quantum sys-
tem is the space of square-integrable functions on R2m. We
denote the annihilation and creation operators of the jth
mode by a j = (x j + ip j )/

√
2 and a†

j = (x j − ip j )/
√

2, re-
spectively, where x j and p j are the phase-space quadrature
operators, similar to the position and momentum operators of
the quantum harmonic oscillator, that satisfy the commutation
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relations2

[x j, pk] = iδ jk.

We denote by

R = (x1, p1, . . . , xm, pm)	

the column-vector consisting of quadrature operators. Then
the above commutation relations can be summarized as

[R, R	] = i�m, (7)

where [R, R	] is understood as coordinatewise commutation
and �m = �1 ⊕ · · · ⊕ �1, with

�1 =
(

0 1

−1 0

)
.

For r = (r1, . . . , r2m)	 ∈ R2m, the m-mode displacement op-
erator (also called the Weyl operator) Dr is defined as

Dr = e−ir	�mR = exp

⎛
⎝i

m∑
j=1

(r2 jx j − r2 j−1p j )

⎞
⎠

=
m⊗

j=1

e(r2 j x j−r2 j−1p j ) =
m⊗

j=1

D(r2 j−1,r2 j ), (8)

which is the tensor product of the displacement operators for
each mode and hence is local. We note that D†

r = D−r. More-
over, as a consequence of the Baker-Campbell-Hausdorff
(BCH) formula3 we have

DrDs = e−i(1/2)r	�msDr+s.

This in particular means that DrD†
r = DrD−r = D0 = I , i.e.,

the displacement operator is unitary.
A crucial property of Dr is that4

DrRD†
r = R − r. (9)

This means that Drx jD†
r = x j − r2 j−1 and Drp jD†

r = p j −
r2 j , i.e., Dr displaces quadrature operators under conjugation,
thus the name.

For an arbitrary m-mode density operator ρ = ρA1,...,Am , the
vector of first-order moments in R2m is defined as

d(ρ) = tr(ρR), (10)

which contains the canonical mean values d(ρ)2 j−1 = tr(ρx j )
and d(ρ)2 j = tr(ρp j ). The covariance matrix, containing the
second-order moments, is defined as

γ (ρ) = tr(ρ{[R − d(ρ)], [R − d(ρ)]	}), (11)

where {·, ·} denotes anticommutation and as before {[R −
d(ρ)], [R − d(ρ)]	} is understood as coordinatewise anti-
commutation. Thus, γ (ρ) is a 2m × 2m matrix, which by
definition is real and symmetric. Furthermore, it can be shown

2We assume that h̄ = 1.
3If [X, [X,Y ]] = [Y, [X,Y ]] = 0, then eX+Y = eX eY e−(1/2)[X,Y ].
4For the proof note that if [X, [X,Y ]] = 0, then eXYe−X = Y +

[X,Y ]. Also, see Eq. (3.16) in [22].

[see Eq. (3.77) in [22]] that as a consequence of the canonical
commutation relations (7) we have

γ (ρ) + i�m � 0. (12)

This in particular means that γ (ρ) is positive definite.5

Let γ j (ρ) be the jth 2 × 2 block on the diagonal of γ (ρ).
Then, by definition, the covariance matrix of ρAj , the marginal
state on the jth mode, equals γ (ρAj ) = γ j (ρ). Similarly,
d(ρAj ), the first-order moment of the marginal state, equals
the jth pair of components of d(ρ).

Let us examine the effect of the displacement operator on
the first and second moments of a density operator. Let ρ ′ =
D†

rρDr. Then, by (9) we have

d(ρ ′) = tr(ρ ′R) = tr(ρDrRD†
r ) = d(ρ) − r. (13)

This implies that Dr[R − d(ρ ′)]D†
r = R − d(ρ) and therefore

by (11) we get γ (ρ ′) = γ (ρ). Thus, the application of the
local unitary Dr shifts the first-order moment of ρ but does
not change the covariance matrix.

The characteristic function of a density operator ρ is de-
fined as

χ (r) = tr(ρDr ).

The characteristic function fully determines a density operator
via

ρ = 1

(2π )m

∫
R2m

χ (r)D−rd2mr.

The Wigner function [24] is then defined as the Fourier trans-
form of the characteristic function

W (s) = 1

(2π )2m

∫
R2m

χ (r)eir	�msd2mr.

Applying the inverse Fourier transform, we obtain

tr(ρe−ir	�mR ) = χ (r) =
∫
R2m

W (s)e−ir	�msd2ms.

We note that this equation holds for any r ∈ R2m. Thus, think-
ing of both sides as functions of r, considering their Taylor
expansion, and comparing corresponding terms, we realize
that the same equation holds for all r beyond real ones, that is,
for any complex c ∈ C2m, we have

tr(ρec	R ) =
∫
R2m

W (s)ec	sd2ms. (14)

A quantum state is called Gaussian if its Wigner function
is Gaussian. In this case, the Wigner function is specified by
the first-order moments d = d(ρ) and the covariance matrix
γ = γ (ρ):

W (s) = 1

πm
√

det γ
e−(s−d)	γ−1(s−d). (15)

5Taking the transpose of (12), we find that γ (ρ ) − i�m � 0. Sum-
ming this with the original equation gives γ (ρ ) � 0. To verify that
γ (ρ ) does not have a zero eigenvalue, suppose that γ (ρ )r = 0 and for
s = r − εi�mr write the condition s†γ (ρ )s � −is†�ms to conclude
that r = 0.
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By using the Wigner function, one can verify that the
purity of Gaussian states can be calculated as tr(ρ2) =
(2π )m

∫
R2m W 2(s)d2ms = 1/

√
det γ . Therefore, pure Gaus-

sian states have det γ = 1.
The Wigner function of a marginal state is the marginal

distribution of the Wigner function of the joint state. Hence,
marginal states of the Gaussian state are also Gaussian. Note
also that, due to the uncertainty principle, the Wigner function
cannot be viewed as the joint probability distribution associ-
ated with local measurements.

Coherent states are well-known examples of a single-mode
Gaussian states, which are displaced vacuum states. For a
complex number α = (x + ip)/

√
2 let |α〉 = Dα|0〉, where

Dα = exp(αa† − ᾱa) = D(x,p). Then d(|α〉) = (x, p)	 and
γ (|α〉) = I , where I is the 2 × 2 identity matrix.6 Other impor-
tant examples are squeezed-vacuum states |z〉 = exp[z(a†2 −
a2)/2]|0〉 with squeezing parameter z and thermal states ρth =∫

exp[(−|α|2/n̄)]/(n̄π )|α〉〈α|d2α with mean-photon number
n̄. The first-order moments of these states are zero and their
covariance matrices are γ (|z〉) = diag(e2z, e−2z ) and γ (ρth) =
(2n̄ + 1)I .

In general, Gaussian unitary operators that map Gaussian
states to Gaussian ones can be described in terms of a dis-
placement operator and a unitary operator associated with
Hamiltonians that are quadratic in terms of quadrature opera-
tors (see Chap. 5 in [22]). The latter can be written in the form
UH = e−(1/2)iR	HR, in which H is a 2m × 2m real symmetric
matrix. Letting ρ ′ = UHρU †

H , it can be shown that

d(ρ ′) = SH d(ρ) (16)

and

γ (ρ ′) = SHγ (ρ)S	
H , (17)

where SH = e�mH is a symplectic matrix (satisfying
SH�mS	

H = �m). Examples of single-mode unitary operators
are the phase rotation with Hro = θ (I − Y ) and the symplectic
matrix Sro = cos(θ )I + i sin(θ )Y , and squeezing with Hsq =
zX and the symplectic matrix Ssq = diag(ez, e−z ), where Y
and X are the Pauli matrices. Using these two unitary oper-
ations and displacement, any single-mode pure Gaussian state
can be transformed to the vacuum state.

The following proposition provides a standard form for
Gaussian states under local unitaries.

Proposition 1. Let ρ = ρA1,...,Am be an m-mode Gaussian
state. Then there exists a local Gaussian unitary V such that for
ρ ′ = V ρV † we have d(ρ ′) = 0 and γ j (ρ

′) = γ (ρ ′
Aj

) = λ j I ,
with λ j � 1. If m = 2 we can further assume that the covari-
ance matrix can be in the standard form [25–27]

γ (ρ ′) =
(

λ1I ν

ν	 λ2I

)
, (18)

with ν = diag(ν1, ν2).
Proof. First, by applying an appropriate displacement op-

erator, that is, a local unitary, we can shift the first-order

6In this paper, In denotes the n × n identity matrix, but we drop the
subindex for n = 2.

moments to zero without changing the covariance matrix.
Next, to bring the state into the desired form, we use a local
unitary operator UH = e−(1/2)iR	HR, where H is block diag-
onal with 2 × 2 blocks on the diagonal (one block for each
mode). This means that block-diagonal symplectic matrices
correspond to local unitaries.

Now suppose that SH = diag(S1, . . . , Sm) is a block-
diagonal symplectic matrix with the Sj being 2 × 2 symplectic
matrices to be determined. Also, let γ j (ρ) = γ (ρAj ) be the jth
2 × 2 block on the diagonal of the covariance matrix. By (17)
we know that the application of the local unitary UH would
change γ j (ρ) to S jγ j (ρ)S	

j . By choosing each local unitary
to be a phase rotation that diagonalizes γ j (ρ), followed by a
squeezing operator that makes the diagonal elements equal,
we get γ ′

j = Ssq jSro jγ jS
	
ro jS

	
sq j = λ j I , with λ j � 1. Note that

λ j = 1 means that the marginal state ρ ′
Aj

is the vacuum state,
which is pure and hence cannot be correlated with the other
modes. Also, λ j > 1 implies a thermal marginal state with
mean photon number n̄ = (λ j − 1)/2. Putting these together,
we find that there is a local Gaussian unitary operator V =
UH Dr, consisting of local displacements, phase rotations, and
squeezing, that brings the covariance matrix to the desired
form with marginal thermal states.

For m = 2, the above procedure gives a covariance matrix
of the form (

λ1I ν′

ν′	 λ2I

)
.

However, by including further local phase-rotation oper-
ations with the block-diagonal symplectic matrix SH ′ =
diag(S′

ro1, S′
ro2) into V , we can get(

λ1I S′
ro1ν

′(S′
ro2)	

S′
ro2ν

′	(S′
ro1)	 λ2I

)
,

where S′
ro1ν

′(S′
ro2)	 = ν is diagonal. Thus, we obtain the stan-

dard form of the covariance matrix for bipartite Gaussian
states. �

Another useful phase-space quasiprobability distribution is
the Glauber-Sudarshan P function [28,29] that, in terms of the
characteristic function, is given by

P(s) = 1

(2π )2m

∫
R2m

χ (r)er	r/4eir	�msd2mr. (19)

Using this distribution, a density operator of an m-mode sys-
tem can be expressed in terms of m-mode coherent states

ρ =
∫
Cm

P(α)|α〉〈α|d2mα, (20)

where α = (α1, α2, . . . , αm)	 ∈ Cm and by using α j =
(s2 j−1 + is2 j )/

√
2 we have P(α) = 2mP(s). For most quan-

tum states the Glauber-Sudarshan P function either takes
negative values or is a highly singular function, existing as
a generalized distribution [30]; these states are known as
nonclassical states [31]. Quantum states whose P(α) is a prob-
ability density distribution are known as classical states [32].
For Gaussian states, if

γ̃ (ρ) = γ (ρ) − I2m � 0, (21)
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where I2m is the 2m × 2m identity matrix, then the Fourier
transform (19) exists and the Glauber-Sudarshan P function is
a Gaussian distribution

P(s) = 1

πm
√

det γ̃
e−(s−d)	γ̃−1(s−d). (22)

In this case, the state is classical and separable.

IV. ORTHONORMAL BASIS FOR LOCAL OPERATORS

To compute the maximal correlation of Gaussian states, we
take a similar approach to the one used in [20] for computing
the classical maximal correlation of Gaussian distributions.
Specifically, we first express optimization (3) in terms of an
inner product on the space of operators and then compute
orthonormal bases with respect to this inner product for the
spaces of local operators. Operators in these orthonormal
bases may be thought of as quantum versions of Hermite
polynomials that form a basis for the space of functions [20].

Let ρ be an arbitrary quantum state which, for the sake of
simplicity, is assumed to be full rank. Then for any pair of
operators X and X ′ we define

〈X, X ′〉ρ := tr(ρX †X ′). (23)

Here 〈·, ·〉ρ satisfies all the properties of an inner product:
It is linear in the second argument and antilinear in the first
argument; also, 〈X, X 〉ρ � 0 and equality holds if and only
if7 X = 0. Therefore, the objective function in the quantum
maximal correlation (3) can be written in terms of the inner
product with respect to the joint state ρAB:

μ(A, B) = sup
XA,YB

|〈XA,YB〉ρAB |,

〈IA, XA〉ρA = 〈IB,YB〉ρB = 0,

〈XA, XA〉ρA = 〈YB,YB〉ρB = 1.

Here the conditions on the local operators are also expressed
in terms of the inner products associated with the marginal
states ρA = trB(ρAB) and ρB = trA(ρAB). Following a similar
approach to the one in [20] for computing classical maximal
correlation for Gaussian distributions, to compute the above
maximization it would be helpful to find orthonormal bases
for the space of local operators XA and YB with respect to
these inner products. Specifically, we want to express the local
operators as

XA =
∑

n

fnHA
n , YB =

∑
m

gmHB
m , (24)

where {HA
n : n} and {HB

m : m} are orthonormal bases with
respect to the inner products 〈HA

n , HA
n′ 〉ρA = δn,n′ and

〈HB
m , HB

m′ 〉ρB = δm,m′ , respectively.
Let ρAB be a two-mode Gaussian state. It is clear from the

definition that local unitaries do not change the maximal cor-
relation. Therefore, by using Proposition 1 and without loss
of generality, we assume that d(ρAB) = 0 and the covariance
matrix of ρAB is in the standard form (18), meaning that the
marginal states are thermal.

7Note that we assume that ρ is full rank.

In the following, we consider a single-mode thermal state
ρth with d(ρth ) = 0 and γ (ρth) = λI with λ > 1. We find an
orthonormal basis {Hn : n} with respect to the inner product
associated with the thermal state 〈Hn, Hn′ 〉ρth = δn,n′ . This ba-
sis can be used for both expansions in (24) and will be used to
compute the maximal correlation in the next section.

For any r ∈ R2 let

Cr = exp

(
r	ϒR − λ

4
r	ϒϒ	r

)
, (25)

where ϒ is a 2 × 2 matrix to be determined. Using the BCH
formula, we have

C†
r Cs = ηe(r	ϒ̄+s	ϒ)R,

where ϒ̄ is the entrywise complex conjugate of ϒ and

η = exp

(
− λ

4
(r	ϒ̄ϒ̄	r + s	ϒϒ	s) + i

2
r	ϒ̄�1ϒ

	s
)

.

Then, by using (14) and (15), we have

tr(ρthC
†
r Cs) = η

∫
R2

W (u)e(r	ϒ̄+s	ϒ)ud2u

= exp

(
λ

2
r	ϒ̄ϒ	s + i

2
r	ϒ̄�1ϒ

	s
)

, (26)

where W (u) = exp(−u	u/λ)/πλ is the Wigner function of
the thermal state. Now let

ϒ = 1√
2

(
1 −i

1 i

)
, (27)

which is unitary and gives

ϒ̄�1ϒ
	 =

(−i 0

0 i

)
.

This choice of ϒ simplifies (26) as

tr(ρthC
†
r Cs) = exp

(
(λ + 1)r1s1

2
+ (λ − 1)r2s2

2

)

=
∞∑

k,�=0

1

k!�!

(
(λ + 1)r1s1

2

)k( (λ − 1)r2s2

2

)�

.

(28)

On the other hand, we define the operators Hk,� by expand-
ing Cr as a function of r = (r1, r2)	,

Cr =
∞∑

k,�=0

1√
k!�!

ζ k
0 (λ)ζ �

1 (λ)rk
1r�

2Hk,�, (29)

with

ζ0(λ) =
√

λ + 1

2
, ζ1(λ) =

√
λ − 1

2
. (30)

We note that Hk,� is a polynomial of the quadrature operators
x and p of degree k + �. For instance, H0,0 = I and

H1,0 = 1√
λ + 1

(x − ip), H0,1 = 1√
λ − 1

(x + ip). (31)
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By using the expansion (29), we can then write

tr(ρthC
†
r Cs)

=
∑

k,�,k′,�′

ζ k+k′
0 (λ)ζ �+�′

1 (λ)√
k!�!k′!�′!

rk
1r�

2sk′
1 s�′

2 tr(ρthH†
k,�

Hk′,�′ ).

Comparing this equation with (28), we find that

〈Hk,�, Hk′,�′ 〉ρth = tr(ρthH†
k,�

Hk′,�′ ) = δk,k′δ�,�′ . (32)

Theorem 1. Let ρth be a single-mode thermal state with
d(ρth) = 0 and γ (ρth) = λI , with λ > 1. Define operators Hk,�

via (29), with Cr given in (25). Then

� = {Hk,� : k, � � 0} (33)

is an orthonormal basis for the space of operators with respect
to the inner product 〈·, ·〉ρth .

Proof. We have already shown in (32) that {Hk,� : k, � � 0}
is an orthonormal set. It remains to show that {Hk,� : k, � � 0}
spans the whole space of operators.

Let Vt be the space of polynomials of operators x and p of
degree at most t , i.e.,

Vt = span{I, x, p, x2, xp, p2, . . . , xpt−1, pt }.
We note that, as mentioned above, Hk,� is a polynomial of
operators x and p of degree k + �. Thus,

span{Hk,� : k + � � t} ⊆ Vt .

On the other hand, by the orthogonality relations already
established, we know that {Hk,� : k + � � t} is an independent
set. Thus, computing the dimensions of both sides in the above
inclusion, we find that span{Hk,� : k + � � t} = Vt . Thus, tak-
ing the union over t � 1, we find that span(�) is equal to
V∞ = ∪tVt , i.e., the space of all polynomials of the quadrature
operators. On the other hand, we know that the latter set
spans the whole space of operators.8 In fact, V∞ contains
the displacement operators, and any bounded operator can be
expressed in terms of displacement operators [34]. �

V. MAXIMAL CORRELATION FOR BIPARTITE
GAUSSIAN STATES

As discussed, the maximal correlation is invariant under
local unitary transformations. Hence, in order to compute
the maximal correlation for bipartite Gaussian states, we can
restrict the optimization to Gaussian states in the standard
form (18) through Proposition 1. Let ρAB be a bipartite Gaus-
sian state that is in the standard form with the first moment
d(ρAB) = 0 and the covariance matrix

γAB = γ (ρAB) =
(

λAI ν

ν	 λBI

)
, ν =

(
ν1 0

0 ν2

)
. (34)

Hence, the marginal states are thermal states with the co-
variance matrices γ (ρA) = λAI , γ (ρA) = λBI , and d(ρA) =
d(ρB) = 0.

8This is essentially the content of the Stone–von Neumann theorem
[33].

According to Theorem 1, we know that the sets {HA
k,� :

k, � � 0} and {HB
k,� : k, � � 0} are orthonormal bases with

respect to the inner products 〈·, ·〉ρA and 〈·, ·〉ρB , respectively.
Here HA

k,� and HB
k,� are defined in terms of the corresponding

quadrature operators and the parameters λA and λB, respec-
tively. To compute the maximal correlation μ(A, B), we use
the above bases to expand the local operators XA and YB. Then
the objective function in the definition (3), which is equal to
|〈XA,YB〉ρAB |, can be expressed in terms of the inner products
〈HA

k,�, HB
k′,�′ 〉ρAB , which we compute in the following.

Let CA
r and CB

r be the operator (25) in terms of the modal
quadrature operators RA = (xA, pA)	 and RB = (xB, pB)	, re-
spectively. As CA

r and CB
s are local operators and commute, we

have (
CA

s

)†
CB

r = τeu	ϒ̃RAB ,

where τ = exp(− λA
4 r	ϒ̄ϒ̄	r − λB

4 s	ϒϒ	s), u = (r
s), and

ϒ̃ = (ϒ̄ 0
0 ϒ

). Thus, by using the Wigner function (15), we
can compute the inner product〈

CA
r ,CB

s

〉
ρAB

= τ tr(ρABeu	ϒ̃RAB )

= τ

∫
R4

WρAB (v)eu	ϒ̃vd4v

= τ exp

(
1

4
u	ϒ̃γABϒ̃	u

)

= exp

(
1

2
r	ϒ̄νϒ	s

)

=
∑

p00,p01
p10,p11

ω
p00
00 ω

p01
01 ω

p10
10 ω

p11
11

p00!p01!p10!p11!

× rp00+p01
1 rp11+p10

2 sp00+p10
1 sp01+p11

2 ,

where ω00, . . . , ω11 are entries of 1
2 ϒ̄νϒ	 given by(

ω00 ω01

ω10 ω11

)
= 1

2
ϒ̄νϒ	 = 1

4

(
ν1 + ν2 ν1 − ν2

ν1 − ν2 ν1 + ν2

)
.

On the other hand, using the expansion (29), we have〈
CA

s ,CB
r

〉
ρAB

=
∑
k,�

k′,�′

αk
0α

�
1β

k′
0 β�′

1√
k!�!k′!�′!

rk
1r�

2sk′
1 s�′

2

〈
HA

k,�, HB
k′,�′
〉
ρAB

,

where α0 = ζ0(λA), α1 = ζ1(λA), β0 = ζ0(λB), and β1 =
ζ1(λB) are given in (30). Comparing the above equations
yields 〈

HA
k,�, HB

k′,�′
〉
ρAB

= 0 if k + � �= k′ + �′. (35)

Moreover, if k + � = k′ + �′, then

〈
HA

k,�, HB
k′,�′
〉
ρAB

=
√

k!�!k′!�′!
αk

0α
�
1β

k′
0 β�′

1

∑
p00+p01=k
p10+p11=�
p00+p10=k′
p01+p11=�′

ω
p00
00 ω

p01
01 ω

p10
10 ω

p11
11

p00!p01!p10!p11!
.
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Now let XA and YB be arbitrary operators that satisfy
the conditions tr(ρAXA) = tr(ρBYB) = 0 and tr(ρAXAX †

A ) =
tr(ρBYBY †

B ) = 1. Consider the expansion of these operators in
the orthonormal bases {HA

k,� : k, � � 0} and {HB
k′,�′ : k′, �′ �

0} as follows:

XA =
∑
k,�

fk,�HA
k,�, YB =

∑
k′,�′

gk′,�′HB
k′,�′ .

The first condition on XA and YB means that 〈IA, XA〉ρA =
〈IB,YB〉ρB = 0. As IA = HA

0,0 and IB = HB
0,0, we find that f0,0 =

g0,0 = 0. The second condition on XA and YB can also be
written as 〈XA, XA〉ρA = 〈YB,YB〉ρB = 1. Thus,

‖f‖2 = ‖g‖2 = 1,

where f=( f0,1, f1,0, f1,1, . . . )	 and g = (g0,1, g1,0, g1,1, . . . )	
are the vectors of coefficients excluding the first ones f0,0 and
g0,0 that are zero. Hence, the inner product can be written as

〈XA,YB〉ρAB =
∑
k,�

k′,�′

f̄k,�gk′,�′
〈
HA

k,�, HB
k′,�′
〉
ρAB

. (36)

Let Q̂ be the matrix whose rows and columns are indexed
by pairs {(k, �) : k + � � 1} and whose ((k′, �′), (k, �))th en-
try is equal to

Q̂(k′,�′ ),(k,�) = 〈HA
k,�, HB

k′,�′
〉
ρAB

. (37)

We note that by (35), Q̂ is a block-diagonal matrix whose t th
block Q(t ) is associated with pairs (k, �) with k + � = t and is
of size (t + 1) × (t + 1):

Q̂ =

⎛
⎜⎜⎜⎜⎜⎝

Q(1) 0 0 · · ·
0 Q(2) 0 · · ·
0 0 Q(3) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠. (38)

The matrix elements in the t th block, for 0 � �, �′ � t , are
given by

(Q(t ) )�,�′ = 〈HA
t−�,�, HB

t−�′,�′
〉
ρAB

=
√

(t − �)!�!(t − �′)!�′!
αk

0α
�
1β

k′
0 β�′

1

×
∑

p10+p11=�
p01+p11=�′

p00+p01+p10+p11=t

ω
p00
00 ω

p01
01 ω

p10
10 ω

p11
11

p00!p01!p10!p11!
. (39)

In particular, the first block reads

Q(1) =
(

ω00
α0β0

ω01
α0β1

ω10
α1β0

ω11
α1β1

)

= 1

2

⎛
⎝ (ν1+ν2 )√

(λA+1)(λB+1)
(ν1−ν2 )√

(λA+1)(λB−1)
(ν1−ν2 )√

(λA−1)(λB+1)
(ν1+ν2 )√

(λA−1)(λB−1)

⎞
⎠

= 1

2

(
α−1

0 0

0 α−1
1

)
ϒ̄νϒ	

(
β−1

0 0

0 β−1
1

)
. (40)

Now we can state the main result of this paper.

Theorem 2. Let ρAB be a Gaussian state with d(ρAB) = 0
and covariance matrix (34). Let {HA

k,� : k, � � 0} and {HB
k′,�′ :

k′, �′ � 0} be orthonormal bases for the spaces of local opera-
tors of modes A and B, respectively, constructed in Theorem 1.
Let Q̂ be the matrix consisting of inner products of operators
in {HA

k,� : k + � > 0} and {HB
k′,�′ : k′ + �′ > 0} defined as in

(37) and with the block structure given in (38) and (39). Then
the maximal correlation for the Gaussian state is given by

μ(A, B) = ‖Q(1)‖.
Equivalently, this means that in computing the maximal cor-
relation in (3) we may restrict the optimization to XA and YB

that are linear in quadrature operators.
Proof. By using (36) and (38), the maximal correlation (3)

for a Gaussian state reads

μ(A, B) = ‖Q̂‖ = max
‖f‖=‖g‖=1

|f†Q̂g|,

where ‖Q̂‖ is the operator norm of Q̂. Given the block struc-
ture of Q̂, we know that ‖Q̂‖ = maxt ‖Q(t )‖. Thus, to prove
the theorem we need to show that

‖Q(1)‖ � ‖Q(t )‖ ∀ t > 1.

To this end, we derive an equivalent representation of the
matrices Q(t ).

For 0 � � � t and b = (b1, . . . , bt ) ∈ {0, 1}t , with |b| =∑
i bi, define

s�,b = δ�,|b|

√
�!(t − �)!

t!
(41)

and let S be the matrix of size (t + 1) × 2t with entries s j,b.
Observe that

(SS†)�,�′ =
∑

b

s�,bs�′,b

=
∑

b

δ�,|b|δ�′,|b|
�!(t − �)!

t!

= δ�,�′
∑

b:|b|=�

�!(t − �)!

t!

= δ�,�′ .

Thus SS† = It+1, with It+1 the (t + 1) × (t + 1) identity ma-
trix. Next, to simplify the notation we use Q = Q(1) and
compute

(SQ⊗t S†)�,�′ =
∑
b,b′

s�,bs�′,b′Q⊗t
b,b′

=
∑
b,b′

δ�,|b|δ�′,|b′|

√
�!(t − �)!�′!(t − �′)!

t!
Q⊗t

b,b′ .

For a given b, b′ ∈ {0, 1}t define paa′ as follows:

paa′ = {i : (bi, b′
i ) = (a, a′)}, (a, a′) ∈ {0, 1}2. (42)

Hence, by using (40), we get

Q⊗t
b,b′ = Qp00

00 Q
p01
01 Q

p10
10 Q

p11
11

= ω
p00
00 ω

p01
01 ω

p10
10 ω

p11
11

α
p00+p01
0 α

p10+p11
1 β

p00+p10
0 β

p01+p11
1

.
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On the other hand, we note that if |b| = � and |b′| = �′, then

� = p10 + p11, �′ = p01 + p11. (43)

For a fixed tuple (p00, p01, p10, p11) satisfying these equa-
tions, we can see that there are(

t

p00, p01, p10, p11

)
= t!

p00!p01!p10!p11!

pairs of (b, b′) that satisfy (42). Therefore, putting these to-
gether and comparing with (39), we obtain

(SQ⊗t S†)�,�′ =
∑

p10+p11=�
p01+p11=�′

p00+p01+p10+p11=t

(
t

p00, p01, p10, p11

)

×
√

�!(t − �)!�′!(t − �′)!
t!

Qp00
11 Q

p01
12 Q

p10
21 Q

p11
22

=
∑

p10+p11=�
p01+p11=�′

p00+p01+p10+p11=t

√
�!(t − �)!�′!(t − �′)!
p00!p01!p10!p11!

× ω
p00
00 ω

p01
01 ω

p10
10 ω

p11
11

α
p00+p01
0 α

p10+p11
1 β

p00+p10
0 β

p01+p11
1

= Q(t )
�,�′ .

Therefore, SQ⊗t S† = Q(t ) and

‖Q(t )‖ = ‖SQ⊗t S†‖
� ‖S‖ · ‖S†‖ · ‖Q⊗t‖
= ‖Q⊗t‖ = ‖Q‖t ,

where in the second line we use the fact that SS† = It+1, which
gives ‖S‖ = ‖S†‖ = 1. Next we note that ‖Q‖ � 1 because

‖Q‖ = max
f,g �=0

|f†Qg|
‖f‖ · ‖g‖

= max
f,g �=0

∣∣〈 f0HA
1,0 + f1HA

0,1, g0HB
1,0 + g1HB

0,1

〉
ρAB

∣∣
‖f‖ · ‖g‖

� max
f,g �=0

∥∥ f0HA
1,0 + f1HA

0,1

∥∥ · ∥∥g0HB
1,0 + g1HB

0,1

∥∥
‖f‖ · ‖g‖

= 1,

where in the third line we use the Cauchy-Schwarz inequality
and in the last line we use the fact that {HA

1,0 + HA
0,1} and

{HB
1,0 + HB

0,1} are orthonormal. Thus,

‖Q(t )‖ � ‖Q‖t � ‖Q‖ = ‖Q(1)‖
and therefore the maximal correlation for a Gaussian state in
the standard form becomes

μ(A, B) = ‖Q(1)‖ = max
‖f‖=‖g‖=1

|f†Q(1)g|. (44)

This implies that the optimal local operators, by using (31),
can be expressed as a linear combination of quadrature
operators

XA = f0HA
1,0 + f1HA

0,1 = αxxA + αppA, (45)

YB = g0HB
1,0 + g1HB

0,1 = βxxB + βppB, (46)

where the coefficients are determined by (44). Note that, in
general, the coefficients may be complex numbers and hence
the optimal operators may not correspond to local physical
observables. �

VI. GAUSSIAN MAXIMAL CORRELATION

In this section, we define another measure of correlation for
bipartite Gaussian states by restricting the optimization in (3)
to Gaussian observables [35], i.e., operators that are Hermitian
and linear in terms of quadrature operators and correspond
to homodyne measurements. We refer to this new correlation
measure as the Gaussian maximal correlation, which is given
by

μG(A, B) = sup
XA,YB

tr(ρABXA ⊗ YB), (47)

where ρAB is a bipartite Gaussian state and XA and YB

are local Hermitian observables that are linear in terms
of quadrature operators and satisfy tr(ρAXA) = tr(ρBYB) =
0 and tr(ρAX 2

A ) = tr(ρBY 2
B ) = 1. Note that, by definition,

μG(A, B) � μ(A, B).
Suppose that the covariance matrix of ρAB is

γAB = γ (ρAB) =
(

γA νAB

ν	
AB γB

)

and for simplicity assume that d(ρAB) = 0. By the restrictions
on XA and YB, there are real vectors rA and rB such that XA =
r	

A RA, YB = r	
B RB, and

1 = tr
(
ρAX 2

A

)
= 1

2 tr(ρA{XA, XA})

= 1
2 r	

A tr(ρA{RA, RA})rA

= 1
2 r	

A γArA,

and similarly r	
B γBrB = 2. Note that tr(ρAXA) = tr(ρBYB) = 0

is automatically satisfied since d(ρAB) = 0. Next, similar to
the above computation, it is easily verified that 2 tr(σABXA ⊗
YB) = r	

A νABrB. Therefore, rescaling rA and rB by a factor of√
2, the Gaussian maximal correlation reads

μG(A, B) = max
rA,rB

r	
A νABrB,

r	
A γArA = 1,

r	
B γBrB = 1. (48)

Writing the above optimization in terms of sA = γ
1/2
A rA and

sB = γ
1/2
B rB, we find that

μG(A, B) = ∥∥γ−1/2
A νABγ

−1/2
B

∥∥. (49)

Therefore, for a Gaussian state in the standard form (34) with
|ν1| � |ν2|, which can always be accomplished by relabeling
the phase-space quadratures, the Gaussian maximal correla-
tion becomes

μG(A, B) = |ν1|√
λAλB

. (50)
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Note that the joint probability distribution p(xA, xB) associated
with local homodyne measurements on the x quadratures is
Gaussian with Cov[xA, xB] = ν1, Var[xA] = λA, and Var[xB] =
λB. Therefore, comparing this equation with (2), we observe
that the Gaussian maximal correlation is in fact the classical
maximal correlation of the outcome probability distribution of
optimal local homodyne measurements. However, unlike the
classical case, Eq. (50) shows that μG(A, B) cannot be equal
to one, as due to the uncertainty relation (12), the covariance
matrix of physical states cannot have a zero eigenvalue.

Considering the characterization of Gaussian CPTP maps
[22], one can verify that μG(A, B) is monotonic under local
Gaussian CPTP maps; the point is that under such local su-
peroperators in the Heisenberg picture, linear operators are
mapped to linear operators. Therefore, correlations between
phase-space quadratures cannot be increased under Gaus-
sian operations. Gaussian maximal correlation also satisfies
the tensorization property. To verify this, it suffices to use
(49), the fact that γ (ρAB ⊗ ρA′B′ ) = γ (ρAB) ⊕ γ (ρA′B′ ), and
‖ξ ⊕ η‖ = max{‖ξ‖, ‖η‖}. Therefore, the Gaussian maximal
correlation satisfies both the monotonicity and tensorization
properties and therefore can be used to study the local state
transformation problem when both resource and target states
are Gaussian. For example, this result shows that n copies of
a Gaussian in the standard form with the Gaussian maximal
correlation (50) cannot be locally transformed into another
Gaussian state with the same marginal states but with |ν ′

1| >

|ν1|.
We state yet another reformulation of the Gaussian maxi-

mal correlation. Note that

(γA ⊕ γB)−1/2γAB(γA ⊕ γB)−1/2

=
(

IA γ
−1/2
A νABγ

−1/2
B

γ
−1/2
B ν	

ABγ
−1/2
A IB

)
.

Then, using (49), we find that (γA ⊕ γB)−1/2γAB(γA ⊕
γB)−1/2 � 1 − μG(A, B). Therefore, we can write
μG(A, B) = 1 − V (A, B), where V (A, B) = max{q � 1 :
γAB � q(γA ⊕ γB)}. This formulation of the Gaussian
maximal correlation is related to the measure for Gaussian
resources [9] and is reminiscent of the entanglement
measure introduced in [13] for Gaussian states. Indeed,
the measure of [13] is defined by V ′(A, B) = max{q � 1 :
γAB � q(γ ′

A ⊕ γ ′
B)}, where γ ′

A and γ ′
B are covariance matrices

of some quantum states, while in our case they are the
covariance matrices of the marginal states of ρAB.

We finish this section by emphasizing the fact that the
Gaussian maximal correlation is monotonic under local Gaus-
sian operations, which preserve the Gaussianity of the state.
However, the quantum maximal correlation studies in previ-
ous sections is monotonic under all local operations.

VII. EXAMPLES

In this section, we further illustrate various features of the
correlation measures by considering examples of Gaussian
states. We consider two classes of bipartite Gaussian states
that are in the standard form with symmetric marginal states
and zero first-order moments.

The first class of Gaussian states is described by the covari-
ance matrix (18) with λA = λB = λ > 1 and ν1 = −ν2 = ν �
0. The physicality condition (12) implies that ν �

√
λ2 − 1,

and the state is entangled for λ − 1 < ν <
√

λ2 − 1. We re-
fer to these states as correlated-anticorrelated (CA) Gaussian
states. The maximal correlation for these states, using (40) and
(44), is given by

μCA(A, B) = max
‖f‖=‖g‖=1

( f̄0 f̄1)

(
0 ν√

λ2−1
ν√

λ2−1
0

)(
g0

g1

)

= ν√
λ2 − 1

, (51)

where the maximum is attained for f0 = f1 = g0 = g1 =
1/

√
2. Hence, optimal local operators using (45) and (46)

can be found as XA = a†
A/

√
λ + 1 + aA/

√
λ − 1 and YA =

a†
B/

√
λ + 1 + aB/

√
λ − 1, which are not Hermitian and can-

not be viewed as physical observables. Note that for ν =√
λ2 − 1, the Gaussian state corresponds to a two-mode

squeezed vacuum state

|ψAB〉 =
√

2

λ + 1

∑
n

(
λ − 1

λ + 1

)n/2

|nA, nB〉,

which is a pure entangled state with μCA(A, B) = 1. Here
{|nA〉} and {|nB〉} are the Fock states. Thus, following Sec. II,
one can easily verify that for two-mode squeezed vacuum
states the maximal correlation of μ = 1 can be achieved
using local Hermitian operators XA = (a†

AaA − n̄)/�n = HA
1,1

and YB = (a†
BaB − n̄)/�n = HB

1,1, where n̄ = (λ − 1)/2 and

�n = √
λ2 − 1/2 are the mean and the standard deviation of

the photon-number distribution of the marginal states, respec-
tively. This implies that the same maximal correlation can
be obtained for two-mode squeezed vacuum states by using
local Hermitian operators that are quadratic in the phase-space
quadrature operators. This means that, in general, optimal
local operators for the maximal correlation are not unique.

As discussed, the maximal correlation for Gaussian states
can be used to study the local state transformation problem
when the target state is not Gaussian. For example, by using
(51), it can be seen that any arbitrary number of copies of
CA Gaussian states cannot be locally transformed into the
noisy Bell state (6) without classical communication if ν <

κ
√

λ2 − 1. Note, however, that if two states have the same
amount of maximal correlation, it is not clear whether or how
the two states can locally be transformed into one another in
general.

We also consider a second class of Gaussian states de-
scribed by the covariance matrix (18) with λA = λB = λ > 1
and ν1 = ν2 = ν � 0. Note that for all physical values of
ν � λ − 1, these states are separable with a non-negative
Glauber-Sudarshan P function. We refer to these states as
correlated-correlated (CC) Gaussian states. Using (40) and
(44), the maximal correlation is given by

μCC(A, B) = max
‖f‖=‖g‖=1

( f̄0 f̄1)

(
ν

λ+1

0 ν
λ−1

)(
g0

g1

)

= ν

λ − 1
. (52)
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Here, for g0 = f0 = 0 and g1 = f1 = 1, we can see
that optimal local operators XA = aA

√
2/(λ − 1) and YB =

aB/
√

2/(λ − 1) are not Hermitian again. Of particular interest
is the case of ν = λ − 1 where μCC(A, B) = 1. In this case,
the Gaussian state can be written as

ρAB =
∫

2e−2|α|2/(λ−1)

(λ − 1)π
|α〉〈α| ⊗ |α〉〈α|d2α.

Using this representation, we can see that for any local mea-
surements {�A,n : n} and {�B,m : m},

tr(ρAB�A,n ⊗ �B,m) =
∫

2e−2|α|2/(λ−1)

(λ − 1)π
〈α|�A,n|α〉

× 〈α|�B,m|α〉d2α �= 0 (53)

for any n and m. Note that here the positivity of measure-
ment operators implies 〈α|�B,n|α〉 � 0 and 〈α|�A,m|α〉 � 0.
Also, 〈α|�|α〉 is in general an everywhere convergent power
series in terms of α and ᾱ and cannot be identical to zero
on some nontrivial region, unless � = 0 [30]. Therefore,
〈α|�A,n|α〉〈α|�B,m|α〉 cannot be zero almost everywhere. As
the joint outcome probability distribution (53) is not in the
form of (5), μCC(A, B) = 1 for ν = λ − 1 cannot be achieved
using Hermitian local operators. This example shows that
the maximal correlation of continuous-variable systems must
be optimized over all Hermitian and non-Hermitian local
operators.

It is easy to verify that even for non-Gaussian bipartite
states of the form

ρAB =
∫

P(α)|α〉〈α| ⊗ |α〉〈α|d2α, (54)

where P(α) is not necessarily Gaussian, the quantum max-
imal correlation of one is achieved using non-Hermitian
local operators XA = (aA − 〈aA〉)/�aA and YB = (aB −
〈aB〉)/�aB, with 〈aA〉 = 〈aA〉 = ∫ P(α)α d2α and �a2

A =∫
P(α)|α|2d2α − 〈aA〉2 = �a2

B. This fact can also be verified
by examples of two-qubit states (see [21]).

Comparing the maximal correlation of the CC and CA
states for the same marginal states and 0 � ν � λ − 1,
in which case both states are separable, we can see that
μCC(A, B) < μCA(A, B). Although the only difference
between the two classes is the sign of the correlation, this
shows that any arbitrary number of copies of the CC state
cannot be transformed to the CA state by local operations
and without classical communication. We note, however, that
these two states have the same amount of Gaussian maximal
correlation since by (50)

μGCA (A, B) = μGCC (A, B) = ν

λ
.

Hence, although the maximal correlation shows the
impossibility of the local state transformation of the CC
state into the CA state, the Gaussian maximal correlation
cannot detect this. We also note that for these states the
Gaussian maximal correlation is strictly less than the maximal
correlation given by (51) and (52).

As an application of the Gaussian maximal correlation
measure, suppose that a third party prepares a CA state ρAB

and sends one subsystem to Alice and the other one to Bob
through lossy channels. The covariance matrix of the shared

state between Alice and Bob is given by [22](
(τAλ + 1 − τA)I

√
τAτBνZ

√
τAτBνZ (τBλ + 1 − τB)I

)
,

where 0 � τA � 1 and 0 � τB � 1 are the transmissivities of
lossy channels to Alice and Bob and Z = diag(1,−1). We can
then see that, if τA < 1 and/or τB < 1, the Gaussian maximal
correlation of the shared state is less than the Gaussian maxi-
mal correlation of the initial state,

√
τAτBν√

(τAλ + 1 − τA)(τBλ + 1 − τB)
<

ν

λ
.

Therefore, using any arbitrary number of copies of the shared
state and without classical communication, Alice and Bob
cannot locally retrieve the initial state ρAB.

VIII. MULTIPARTITE GAUSSIAN STATES

Classical maximal correlation for multipartite probability
distributions was first defined in [36]. The maximal correla-
tion of an m-partite distribution is a subset of [0, 1]m, called
the maximal correlation ribbon. This subset for m = 2 is fully
characterized in terms of a single number that is the (bipar-
tite) maximal correlation (see Proposition 29 in [36]). Thus,
the maximal correlation ribbon is really a generalization of
the (bipartite) maximal correlation. Moreover, maximal cor-
relation ribbon satisfies the data processing and tensorization
properties, which are required for the local state transforma-
tion problem in the multipartite case.

In this section, we first generalize the classical notion of the
maximal correlation ribbon for multipartite quantum states.
Then we characterize the quantum maximal correlation ribbon
for multipartite Gaussian states. Here we briefly discuss these
results and give the details in Appendixes A and B.

Following the definition of the maximal correlation ribbon
in the classical case [36], in order to define a quantum max-
imal correlation ribbon, we first need a notion of quantum
conditional expectation. Let ρAm = ρA1,...,Am be an m-partite
quantum state and let ρAj , j = 1, . . . , m, be its marginal states.
For simplicity, we assume that ρAj is full rank for all j. Then,
for any 1 � j � m define the superoperator E (·) by

E j (X ) = tr¬ j
(
XρAmρ−1

Aj

)
,

where by tr¬ j we mean tracing out all the subsystems except
the jth one. Here E j (·) behaves like a conditional expectation
whose properties are given in Lemma 1 in Appendix A.

Next recall that the variance of an operator X is defined by

Var(X ) = 〈X, X 〉ρAm − |tr(ρAm X )|2
= 〈X − tr(ρAm X )I, X − tr(ρAm X )I〉ρAm

= ‖X − tr(ρAm X )I‖2,

where as before 〈X,Y 〉ρAm = tr(ρAm X †Y ).
Definition 1. For an m-partite quantum state ρA1,...,Am let

S(A1, . . . , Am) ⊆ [0, 1]m be the set of tuples (θ1, . . . , θm)
such that for any operator X = XAn we have

Var(X ) �
∑

j

θ jVar[E j (X )]. (55)
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FIG. 2. (a) The MC ribbon is a convex subset of [0, 1]m and the
nontrivial part of S(A1, . . . , Am ) is the set of tuples (θ1, . . . , θm )
with

∑
j θ j > 1. For m = 2, the MC ribbon of a generic state is

the dark gray area plus the light gray area, which is the trivial part,
containing points satisfying θ1 + θ2 � 1. We note that by Eq. (57)
when μ(A1, A2) = 1, the MC ribbon is equal to this trivial part. (b) In
the case of m = 2, with the reparametrization q1 = 1/(1 − θ1) and
q2 = 1/θ2, by Eq. (57), the MC ribbon is determined by the line
μ2(A1, A2)(q1 − 1) = q2 − 1. We note that in this case the nontrivial
part of the MC ribbon takes the form of a ribbon, thus the name.

We call S(A1, . . . , Am) the maximal correlation (MC) ribbon
of ρA1,...,Am .

Note that since Var(X ) � 0, in the definition of
S(A1, . . . , Am) we set the restriction θ j � 0. Moreover, as
shown in Lemma 1 in Appendix A, we have

Var(X ) � Var[E j (X )] ∀ j. (56)

Thus, Eq. (55) implies θ j � 1. This is why S(A1, . . . , Am)
is defined as a subset of [0, 1]m. Moreover, by (56),
any (θ1, . . . , θm) ∈ [0, 1]m with

∑
j θ j � 1 belongs to

S(A1, . . . , Am) for any ρAm . Thus, the interesting part of
S(A1, . . . , Am) is the subset [0, 1]m beyond the above triv-
ial subset. Finally, from the definition, it is clear that
S(A1, . . . , Am) is a convex set. See Fig. 2 for a typical shape
of the MC ribbon.

It can be shown that for product states ρAm = ρA1 ⊗
· · · ⊗ ρAm , the MC ribbon is the largest possible set:
S(A1, . . . , Am) = [0, 1]m. On the other hand, for the maxi-
mally entangled state 1√

2
(|00〉 + |11〉), the MC ribbon con-

sists of only trivial points: S(A1, A2) = {(θ1, θ2) ∈ [0, 1]2 :∑
j θ j � 1}. (See Appendix A for more details.)
In particular, as shown in Theorem 5 in Appendix A, when

m = 2, the pair (θ1, θ2) ∈ [0, 1]2 belongs to S(A1, A2) if and
only if (

1

θ1
− 1

)(
1

θ2
− 1

)
� μ2(A1, A2), (57)

where μ(A1, A2) is the maximal correlation of the bipartite
state. This shows that the MC ribbon can be viewed as the
generalization of the maximal correlation.

As shown in Theorem 6 in Appendix A, the maximal
correlation ribbon also satisfies the data processing and the
tensorization properties.

(i) Data processing. For local quantum operations �
( j)
Aj→A′

j
,

if

σA′m = �
(1)
A1→A′

1
⊗ · · · ⊗ �

(m)
Am→A′

m
(ρAm ),

then S(A1, . . . , Am) ⊆ S(A′
1, . . . , A′

m).

(ii) Tensorization. For any ρAm and any integer n we have

S
(
An

1, . . . , An
m

) = S(A1, . . . , Am),

where the left-hand side is the MC ribbon of ρ⊗n
Am .

These two properties show that the MC ribbon is a relevant
invariant for the local state transformation problem in the
multipartite case.

Now we get to our main problem, namely, how to compute
the MC ribbon for multipartite Gaussian states. The following
theorem, which is a generalization of Theorem 2, is our main
result in this direction.

Theorem 3 (informal). To compute the MC ribbon for
Gaussian state it suffices to restrict X in (55) to operators that
are linear in phase-space quadrature operators.

For a formal statement of this result and its proof see
Appendix B.

Motivated by the definition of the Gaussian maximal cor-
relation (48), we can define a Gaussian maximal correlation
ribbon for multipartite Gaussian states as follows. For an m-
mode Gaussian state ρA1,...,Am let SG(A1, . . . , Am) be the set of
tuples (θ1, . . . , θm) ∈ [0, 1]m satisfying

Var

(
m∑

j=1

Xj

)
�

m∑
j=1

1

θ j
Var(Xj )

for all local operators X1, . . . , Xm that are Hermitian and linear
in terms of phase-space quadrature operators. We note that,
by Theorem 4 in Appendix A, removing the latter constraints
on the Xj , we recover S(A1, . . . , Am). Therefore, we have
S(A1, . . . , Am) ⊆ SG(A1, . . . , Am). Moreover, it is not hard
to verify that SG(A1, . . . , Am) is monotonic under the action
of local Gaussian operations and satisfies tensorization (in the
sense of Theorem 6).

To find an equivalent characterization of SG(A1, . . . , Am),
a straightforward computation as in the bipartite case shows
that (θ1, . . . , θm) belongs to SG(A1, . . . , Am) if and only if⎛

⎜⎜⎜⎜⎜⎝

1
θ1

γA1
0 · · · 0

0 1
θ2

γA2
· · · 0

...
...

. . .
...

0 0 · · · 1
θm

γAm

⎞
⎟⎟⎟⎟⎟⎠ � γA1,...,Am

,

where γA1,...,Am
is the covariance matrix of ρA1,...,Am and γAj

is
the covariance matrix of its marginal ρAj .

IX. DISCUSSION

The maximal correlation is of particular interest for the
local state transformation problem, where two parties are re-
stricted to local operations but do not have access to classical
communication. We have shown that the maximal correlation
for bipartite Gaussian states can be simply calculated by re-
stricting the optimization to local operators that are linear in
terms of the phase-space quadrature operators. As the space
of phase-space quadrature operators is two dimensional, this
turns the problem of computing the maximal correlation of
Gaussian states into computing the operator norm of a matrix
of size 2 × 2 (the Q(1) matrix) whose entries are given in terms
of the covariance matrix. These optimal local operators may
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not be Hermitian and therefore the maximal correlation in
general is an upper bound on the classical maximal correlation
of the joint outcome probability distributions associated with
optimal local measurements (local Hermitian observables).
Using our results, one can investigate the problem of local
state transformation with local operations when either the
resource or the target state is Gaussian.

We have also introduced the Gaussian maximal correlation,
as another measure of correlation for Gaussian states, by re-
stricting the optimization to the class of Hermitian and linear
operators in terms of quadrature operators. This measure cor-
responds to performing optimal homodyne measurements on
the phase-space quadratures and is relevant to the local state
transformation when both the resource and the target states
are Gaussian. Nevertheless, we have shown through examples
that sometimes the maximal correlation gives stronger bounds
on the local state transformation compared to the Gaussian
maximal correlation even if both states are Gaussian.

An interesting question, motivated by the definition of the
Gaussian maximal correlation, is whether one can define other
variants of maximal correlation by considering Hermitian
local operators that are quadratic or higher order in terms
of quadrature operators. As we have shown for two-mode
squeezed vacuum states, the optimal local measurements
yielding the maximal correlation of one are photon-counting
measurements that are non-Gaussian. This suggests that the
maximization in the Gaussian maximal correlation can be
further optimized using Hermitian and quadratic operators
in terms of quadrature operators. We leave the study of the
properties of such invariants for future works.

We have also generalized the maximal correlation to the
quantum maximal correlation ribbon for the multipartite case.
We have shown that the quantum maximal correlation ribbon
of Gaussian states can also be computed by restricting the
optimization to local operators that are linear in terms of
quadrature operators. Further, we have discussed its Gaussian
version based on using Gaussian local observables.

In this paper, in both the bipartite and multipartite cases,
in the computation of the maximal correlation for Gaussian
states, we assumed that each subsystem consists of a single
mode. Another interesting problem is to generalize our results
to cases where each party can have more than one mode of
the shared Gaussian state. For example, one can consider the
maximal correlation of a Gaussian state ρAB in which each
subsystem A and B consists of two modes.

The orthonormal basis of local operators we derived in
Sec. IV can be thought of as a quantum version of the basis of
Hermite polynomials that are orthonormal with respect to the
normal distribution. Here we used this basis to compute the
maximal correlation of quantum Gaussian states, yet given
the wide range of applications of Hermite polynomials, it
is conceivable to look for other applications of the basis of
Sec. IV.

Hypercontractivity ribbon is another invariant of quantum
states that gives bounds on the local state transformation
problem [37]. It would be interesting to compute the hyper-
contractivity ribbon for Gaussian states.

Finally, the quantum maximal correlation is really a mea-
sure of correlation and not a measure of entanglement, as it
can take its maximum value on separable states. It is desirable

to find a measure of entanglement that satisfies the tensoriza-
tion property; see [38] for an attempt in this direction.

APPENDIX A: QUANTUM MAXIMAL
CORRELATION RIBBON

In this Appendix we discuss in detail some properties of the
quantum maximal correlation ribbon mentioned in Sec. VIII.
We start with the conditional expectation operator defined by

E j (X ) = tr¬ j
(
XρAmρ−1

Aj

)
,

where tr¬ j means partial trace with respect to all subsystems
except the jth one. We note that E j maps an operator acting
on the whole system Am to an operator acting only on the jth
subsystem.

Lemma 1. (i) If Y is an operator acting on the jth subsys-
tem, then for any X we have

〈Y, X 〉ρAm = 〈Y, E j (X )〉ρA j
,

where the inner product is given in (23).
(ii) E j is a projection, i.e., E2

j = E j .
(iii) E j is self-adjoint with respect to the inner product

〈·, ·〉ρAm .
(iv) For an operator X we define its variance by

Var(X ) = ‖X − tr(ρAm X )I‖2
ρAm

= 〈X − tr(ρAm X )I, X − tr(ρAm X )I〉ρAm

= 〈X, X 〉ρAm − |tr(ρAm X )|2. (A1)

Then we have

Var(X ) = Var[E j (X )] + Var[X − E j (X )]. (A2)

Moreover, since Var[X − E j (X )] � 0 we have Var(X ) �
Var[E j (X )].

Equation (A2) can be understood as a quantum generaliza-
tion of the law of total variance.

Proof. (i) Since Y acts on the jth subsystem we have

〈Y, X 〉ρAm = tr(ρAmY †X ) = tr(Y †XρAm )

= tr[Y †tr¬ j (XρAm )] = tr
[
ρAjY

†tr¬ j (XρAm )ρ−1
Aj

]
= tr

[
ρAjY

†tr¬ j
(
XρAmρ−1

Aj

)] = 〈Y, E j (X )〉ρA j
.

(ii) We need to show that for YAj , acting on the jth subsys-
tem, we have E j (Y ) = Y . We compute

E j (Y ) = tr¬ j
(
Y ρAmρ−1

Aj

) = Y tr¬ j (ρAm )ρ−1
Aj

= Y ρAj ρ
−1
Aj

= Y.

(iii) We need to show that 〈E j (X ),Y 〉ρAm = 〈X, E j (Y )〉ρAm .

We compute

〈E j (X ),Y 〉ρAm = tr[ρAmE j (X )†Y ] = tr
[
ρAm tr¬ j

(
XρAmρ−1

Aj

)†
Y
]

= tr
[
tr¬ j
(
XρAmρ−1

Aj

)†
tr¬ j (Y ρAm )

]
= tr

[
tr¬ j
(
ρ−1

Aj
ρAm X †)tr¬ j (Y ρAm )

]
= tr

[
ρ−1

Aj
tr¬ j (ρAm X †)tr¬ j (Y ρAm )

]
= tr

[
tr¬ j (ρAm X †)tr¬ j (Y ρAm )ρ−1

Aj

]
= tr

[
tr¬ j (ρAm X †)tr¬ j

(
Y ρAmρ−1

Aj

)]
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= tr
[
ρAm X †tr¬ j

(
Y ρAmρ−1

Aj

)]
= tr[ρAm X †E j (Y )]

= 〈X, E j (Y )〉ρAm .

(iv) Let Y = X − E j (X ). By (i) and the fact that IAm

can be considered as an operator acting on the jth subsys-
tem, we have 〈IAm , X 〉ρAm = 〈IAj , E j (X )〉ρA j

and tr(ρAmY ) =
〈IAm ,Y 〉ρAm = 0. This in particular means that tr(ρAm X ) =
tr[ρAjE j (X )]. Therefore,

Var(Y ) = 〈Y,Y 〉ρAm = 〈X − E j (X ), X − E j (X )〉ρAm

= 〈X, X 〉ρAm − 〈X, E j (X )〉ρAm

− 〈E j (X ), X 〉ρAm + 〈E j (X ), E j (X )〉ρA j

= 〈X, X 〉ρAm − 〈E j (X ), E j (X )〉ρA j

= 〈X, X 〉ρAm + |tr(ρAm X )|2 − |tr[ρAjE j (X )]|2
− 〈E j (X ), E j (X )〉ρA j

= Var(X ) − Var[E j (X )],

where in the third line we use (i). �
Now recall that the maximal correlation ribbon is defined

as

S(A1, . . . , Am)

=
{

(θ1, . . . , θm) : Var(X ) �
∑

j

θ jVar[E j (X )] ∀ X

}
.

(A3)

In the above definition (when the underlying Hilbert space
is infinite dimensional), X runs over the space BAm of op-
erators for which 〈X, X 〉ρm

A
is finite. We note that for such

an X ∈ BAm , by the Cauchy-Schwarz inequality, tr(ρAm X ) =
〈I, X 〉ρAm is also finite. Moreover, by the law of total variance
established in Lemma IX, E j maps BAm to B j , the space of
operators Xj acting on the jth subsystem with 〈Xj, Xj〉ρ j <

∞. Thus, S(A1, . . . , Am) is well defined even in the infinite-
dimensional case.

To establish (θ1, . . . , θm) ∈ S(A1, . . . , Am) we need to ver-
ify an inequality for all operators X ∈ BAm acting on the whole
system Am. In the following we show that we may restrict X
to be a linear combination of local operators belonging to B j .
We note that

L = B1 + · · · + Bm ⊂ BAm

is a subspace of BAm , where B1 + · · · + Bm is the closure
of the subspace B1 + · · · + Bm. Moreover, BAm is equipped
with the inner product 〈·, ·〉ρAm . Thus, we may consider the
orthogonal complement of L in BAm :

K = L⊥, BAm = L ⊕ K = (B1 + · · · + Bm) ⊕ K.

Let Y ∈ K. Then, by the orthogonality condition and part (i)
of Lemma 1 for XAj ∈ B j ⊂ L we have

0 = 〈Y, XAj

〉
ρAn

= 〈E j (Y ), XAj 〉ρA j
.

Thus, E j (Y ) is an operator acting on the jth subsystem that
is orthogonal to all local operators in B j . This means that

E j (Y ) = 0 for all j and Y ∈ K. Moreover, since IAm ∈ L we
have tr(ρAmY ) = 〈IAm ,Y 〉ρAm = 0.

Proposition 2. In the definition of the MC ribbon in (A3)
we may set the restriction X ∈ L, that is, we may restrict
X to operators that are linear combinations of local ones.
Moreover, we may assume that tr(ρAm X ) = 0.

Proof. First, by continuity we may assume that X
belongs to (B1 + · · · + Bm) ⊕ K ⊆ (B1 + · · · + Bm) ⊕ K =
BAm . Such an X can be written as

X = X1 + · · · + Xm + Y,

where Xj ∈ B j and Y ∈ K. Let X ′ = X1 + · · · + Xm ∈ L.
Then, by the above discussion we have E j (X ) = E j (X ′).
Moreover, using 〈X ′,Y 〉ρAm = 0 and tr(ρAmY ), we have

Var(X ) = Var(X ′ + Y )

= 〈X ′ + Y − tr(ρAm X ′), X ′ + Y − tr(ρAm X ′)〉ρAm

= 〈X ′ − tr(ρAm X ′), X ′ − tr(ρAm X ′)〉ρAm + 〈Y,Y 〉ρAm

= Var(X ′) + Var(Y )

� Var(X ′).

Putting these together, we find that if the inequality in (A3)
holds for X ′, then it holds for X .

We also note that Var(X ) = Var(X + cIAn ) and
Var[E j (X )] = Var[E j (X ) + cIAj ] = Var[E j (X + cIAn )]. Thus,
without loss of generality, we can assume that X in (A3)
satisfies tr(ρAm X ) = 0. �

For any 1 � j � m let

B0
j = {X ∈ B j : tr(ρAj X ) = 0} (A4)

and L0 = B0
1 + · · · + B0

m. Observing that B0
j is the orthogonal

complement of the identity operator in B j , we have

BAm = CI ⊕ L0
m ⊕ K.

By Proposition 2, in the definition of the MC ribbon we may
set the restriction X ∈ B0

1 + · · · + B0
m.

Theorem 4. For any 1 � j � m let {Fj,k : k = 1, 2, . . . } ⊂
B0

j , be an orthonormal basis for B0
j , where B0

j is defined in
(A4). Define

g jk, j′k′ := 〈Fj,k, Fj′,k′ 〉ρAm

and let G = (g jk, j′k′ ) be the Gram matrix associated with the
set
⋃

j{Fj,k : k = 1, 2, . . . }. Also, for (θ1, . . . , θm) ∈ [0, 1]m

let � be the diagonal matrix

� jk, j′k′ = δ j, j′δk,k′θ j . (A5)

Then (θ1, . . . , θm) ∈ S(A1, . . . , Am) if and only if �−1 � G,
meaning that �−1 − G is positive semidefinite. Equivalently,
(θ1, . . . , θm) ∈ S(A1, . . . , Am) if and only if for every Xj ∈
B0

j , j = 1, . . . , m, we have

Var

(
m∑

j=1

Xj

)
�

m∑
j=1

1

θ j
Var(Xj ). (A6)

Proof. By assumption, any X ∈ L0 can be written as

X =
m∑

j=1

∑
k

c jkFj,k .
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Since tr(ρAm X ) = 0 we have

Var(X ) = 〈Y,Y 〉ρAm

=
m∑

j, j′=1

∑
k,k′

c̄ jkc j′k′ 〈Fj,k, Fj′,k′ 〉ρAm

= c†Gc,

where c is the vector of coefficients c jk . Next, using E j (X ) ∈
B0

j , we have

Var[E j (X )] = 〈E j (X ), E j (X )〉ρAm

= ‖E j (X )‖2

=
∑

k

∣∣〈Fj,k, E j (X )〉ρA j

∣∣2
=
∑

k

∣∣〈Fj,k, X 〉ρAm

∣∣2

=
∑

k

∣∣∣∣∣
∑
j′,k′

c j′k′g jk, j′k′

∣∣∣∣∣
2

.

Also, a simple computation shows that

m∑
j=1

θ jVar[E j (X )] =
m∑

j=1

θ j

(∑
k

∣∣∣∣∣
∑
j′,k′

c j′k′g jk, j′k′

∣∣∣∣∣
2)

= c†G†�Gc.

Therefore, (θ1, . . . , θm) ∈ S(A1, . . . , Am) if and only if

c†Gc � c†G�Gc.

Equivalently, this means that G � G†�G. Now note that G
is the Gram matrix of a linearly independent set and is in-
vertible. Hence, multiplying both sides from the left and the
right by G−1 = (G†)−1, we find that G � G�G is equivalent
to G−1 � �. Next, using the fact that t �→ 1/t is operator
monotonic [39], we obtain the equivalence of (θ1, . . . , θm) ∈
S(A1, . . . , Am) and

�−1 � G.

This equation means that for any c we have c†�−1c � c†Gc.
Then, thinking of c as the vector of coefficients of the expan-
sions of operators Xj ∈ B0

j in bases {Fj,k : k = 1, 2, . . . } for
j = 1, . . . , m and following similar calculations as above, it
is not hard to verify that the above equation is equivalent to
(A6). �

Let us use this theorem to compute the MC ribbon for
the example of a product state ρAm = ρA1 ⊗ · · · ⊗ ρAm . In this
case, for basis operators Fj,k and Fj′,k′ with j �= j′ we have

〈Fj,k, Fj′,k′ 〉ρAm = tr(ρAj ⊗ ρAj′ F
†
j,k ⊗ Fj′,k′ )

= tr(ρAj F
†
j,k )tr(ρAj′ Fj′,k′ ) = 0.

Thus, the Gram matrix G is the identity matrix. In this case,
for any (θ1, . . . , θm) ∈ [0, 1]m and its associated matrix �

we have �−1 � G. This means that S(A1, . . . , Am) = [0, 1]m,
that is, for product states, the MC ribbon is the largest possible
set.

The following theorem shows that MC ribbon is really a
generalization of the maximal correlation in the bipartite case.

Theorem 5. In the case of m = 2 we have

S(A1, A2) =
{

(θ1, θ2) ∈ [0, 1]2 :

(
1

θ1
− 1

)(
1

θ2
− 1

)

� μ2(A1, A2)

}
.

Proof. By Theorem 4, (θ1, θ2) ∈ [0, 1]2 belongs to
S(A1, A2) if and only if for any Xj ∈ B0

j , j = 1, 2, we have

Var(X1 + X2) � 1

θ1
Var(X1) + 1

θ2
Var(X2).

We note that since tr(ρA1 X1) = tr(ρA2 X2) = 0 we have

Var(X1 + X2) = 〈X1, X1〉ρA1
+ 〈X2, X2〉ρA2

+ 2 Re〈X2, X1〉ρA2 .

Then (θ1, θ2) ∈ S(A1, A2) if and only if for every Xj ∈ B0
j ,

j = 1, 2, we have

2 Re〈X2, X1〉ρA2 �
(

1

θ1
− 1

)
Var(X1)

+
(

1

θ2
− 1

)
Var(X2).

Scaling X1 and X2 and replacing them with c1X1 and c2X2, we
obtain

2 Re(c1c̄2〈X2, X1〉ρA2 ) � |c1|2
(

1

θ1
− 1

)
Var(X1)

+ |c2|2
(

1

θ2
− 1

)
Var(X2) ∀ c1, c2.

This is equivalent to((
1
θ1

− 1
)
Var(X1) −〈X1, X2〉ρA2

−〈X2, X1〉ρA2

(
1
θ2

− 1
)
Var(X2)

)
� 0

being positive semidefinite, which itself is equivalent to

|〈X1, X2〉ρA2 | �
√(

1

θ1
− 1

)(
1

θ2
− 1

)√
Var(X1)Var(X2).

Therefore, (θ1, θ2) ∈ S(A1, A2) if and only if

max
|〈X1, X2〉ρA2

|√
Var(X1)Var(X2)

�
√(

1

θ1
− 1

)(
1

θ2
− 1

)
,

where the maximum is taken over X1 ∈ B0
1 and X2 ∈ B0

2.
We note that, by definition, the left-hand side is equal to
μ(A1, A2). �

Recall that for |ψ〉A1A2 = 1√
2
(|00〉 + |11〉) we have

μ(A1, A2) = 1. Thus, by Theorem 5, (θ1, θ2) ∈ S(A1, A2) if
and only if (1/θ1 − 1)(1/θ2 − 1) � 1, which is equivalent
to θ1 + θ2 � 1. Therefore, the MC ribbon for |ψ〉A1A2 is the
smallest possible set.

For the next result we first need a lemma.
Lemma 2. Let X , X ′, Y , and Y ′ be positive-semidefinite ma-

trices with the block forms X = (Xi j ), X ′ = (X ′
i j ), Y = (Yi j ),

and Y ′ = (Y ′
i j ). Suppose that X � Y and X ′ � Y ′, meaning
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that X − Y and X ′ − Y ′ are positive semidefinite. Then

X � X ′ � Y � Y ′,

where X � X ′ is a matrix whose (i j)th block equals Xi j ⊗ X ′
i j ,

and Y � Y ′ is defined similarly.
Proof. Since X − Y and X ′ − Y ′ as well as X ′ and Y are

positive semidefinite, (X − Y ) ⊗ X ′ and Y ⊗ (X ′ − Y ′) are
positive semidefinite. This means that (X − Y ) ⊗ X ′ + Y ⊗
(X ′ − Y ′) = X ⊗ X ′ − Y ⊗ Y ′ is positive semidefinite. Now
we note that X � X ′ − Y � Y ′ is a principal submatrix of
X ⊗ X ′ − Y ⊗ Y ′ and so is positive semidefinite. �

We now prove the main properties of the MC ribbon,
namely, the data processing inequality and the tensorization.

Theorem 6. (i) Data processing. Suppose that �Aj→A′
j

is
a quantum operator acting on the subsystem Ai. Then for
ρA1,...,Am and σA′

1,...,A
′
m

we have

S(A1, . . . , Am) ⊆ S(A′
1, . . . , A′

m).

(ii) Tensorization. For any ρA1,...,Am , σA′
1,...,A

′
m

we have

S(A1A′
1, . . . , AmA′

m) = S(A1, . . . , Am) ∩ S(A′
1, . . . , A′

m),

where the left-hand side is the MC ribbon of the state
ρA1,...,Am ⊗ σA′

1,...,A
′
m

considered as an m-partite state.
Proof. (i) Any quantum operation is a combination of an

isometry and a partial trace. Clearly, local isometries do not
change the MC ribbon. Thus, it suffices to prove data process-
ing under partial traces. To this end, we need to show that for
a state ρA1B1,...,AmBm we have

S(A1B1, . . . , AmBm) ⊆ S(A1, . . . , Am).

This inclusion is immediate once we note that in the definition
of the MC ribbon in (A3), we may restrict XA1B1,...,AmBm to act
nontrivially only on the subsystems (A1, . . . , Am).

(ii) Let {Fj,k : k = 0, 1, . . . } be an orthonormal basis for
BAj with Fj,0 = IAj . We note that {Fj,k : k = 1, 2, . . . } is
an orthonormal basis for B0

Aj
= {X ∈ BAj : 〈IAj , X 〉ρA j

= 0}.
Then the Gram matrix G of the set

⋃
j{Fj,k : k = 1, 2, . . . }

can be decomposed into blocks G = (G j j′ ), where the block
G j j′ consists of the inner products of elements of {Fj,k : k =
1, 2, . . . } and {Fj′,k : k = 1, 2, . . . }. Similarly, letting {F ′

j,k′ :
k′ = 0, 1, . . . } be an orthonormal basis for BA′

j
with Fj,0 = IA′

j
,

we can consider the associated Gram matrix G ′ = (G ′
j j′ ) as

above.
We note that the space of operators acting on AjA′

j is equal
to BAj A′

j
= BAj ⊗ BA′

j
. Then {Fj,k ⊗ F ′

j,k′ : k, k′ = 0, 1, . . . } is
an orthonormal basis for BAj A′

j
. Moreover, since Fj,0 ⊗ F ′

j,0 =
IAj A′

j
, the set {Fj,k ⊗ F ′

j,k′ : (k, k′) �= (0, 0)} is an orthonormal

basis for B0
Aj A′

j
. Thus, following Theorem IX, we need to

compute the Gram matrix of the set
⋃

j{Fj,k ⊗ F ′
j,k′ : (k, k′) �=

(0, 0)}. This set can be decomposed into
⋃

j{Fj,k ⊗ F ′
j,k′ :

(k, k′) �= (0, 0)} = F ∪ F ′ ∪ F̂ , where

F =
⋃

j

{Fj,k ⊗ IA′
j

: k = 1, 2, . . . },

F ′ =
⋃

j

{IAj ⊗ F ′
j,k′ : k′ = 1, 2, . . . },

F̂ =
⋃

j

{Fj,k ⊗ F ′
j,k′ : k, k′ = 1, 2, . . . }.

Observe that, first, these three sets are orthogonal to each
other. Second, the Gram matrix of F equals G, the Gram
matrix of

⋃
j{Fj,k : k = 1, 2, . . . }, and similarly the Gram

matrix of F ′ equals G ′. Third, a straightforward computation
shows that the Gram matrix of F̂ is equal to G � G ′, defined in
Lemma 2. Putting these together, we find that the Gram matrix
of the union is given by⎛

⎜⎜⎝
G 0 0

0 G ′ 0

0 0 G � G ′

⎞
⎟⎟⎠.

Now suppose that (θ1, . . . , θm) ∈ S(A1, . . . , Am) ∪
S(A′

1, . . . , A′
m). Then, by Theorem 4 we have �−1 � G

and �′−1 � G ′, where �′ is defined similarly to � but
probably with a different size. Thus, by Lemma 2 we have⎛
⎜⎜⎝

�−1 0 0

0 �′−1 0

0 0 �−1 � G ′

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝
G 0 0

0 G ′ 0

0 0 G � G ′

⎞
⎟⎟⎠. (A7)

Next we note that �−1 is diagonal, so

�−1 � G ′ = �−1 � diag(G ′
11, . . . ,G ′

mm),

where diag(G ′
11, . . . ,G ′

mm) is a the block-diagonal matrix with
blocks G ′

j j on the diagonal. On other hand, recall that G ′
j j is

the Gram matrix of the set {F ′
j,k′ : k′ = 1, 2, . . . }, which is

orthonormal. Thus, G ′
j j is the identity matrix. Therefore,

�−1 � G ′ = �−1 � diag(I (1), . . . , I (m) ),

where I ( j) is the identity matrix of an appropriate size.
Then, using Theorem 4, Eq. (A7) implies that (θ1, . . . , θm) ∈
S(A1A′

1, . . . , AmA′
m) and

S(A1, . . . , Am) ∩ S(A′
1, . . . , A′

m) ⊆ S(A1A′
1, . . . , AmA′

m).

Inclusion in the other direction is a consequence of the data
processing property proven in the first part. �

APPENDIX B: MAXIMAL CORRELATION RIBBON
FOR GAUSSIAN STATES

In this Appendix we compute the MC ribbon for multi-
partite Gaussian states. We show that, similar to the bipartite
case, in order to compute the MC ribbon via (A6), it suffices
to consider only observables X1, . . . , Xm that are linear in the
position and momentum operators. To prove this result, we
follow similar ideas used in Sec. V.

Let ρAm = ρA1,...,Am be an m-mode Gaussian state. We note
that, as is clear from its definition, the MC ribbon does not
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change under local unitaries. Thus, by Theorem 1 we may
assume that d(ρAm ) = 0 and

γ = γ (ρAm ) =

⎛
⎜⎜⎜⎜⎜⎝

λ1I ν12 · · · ν1m

ν21 λ2I · · · ν2m

...
...

. . .
...

νm1 νm2 · · · λmI

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where γ (ρAj ) = λ j I and ν j j′ = ν	
j′ j .

Theorem 7. Let ρAm be an m-mode Gaussian state with the
first moment d(ρm) = 0 and the covariance matrix given by
(B1). Let

� = diag

(√
λ1 + 1

2
,

√
λ1 − 1

2
, . . . ,

√
λm + 1

2
,

√
λm − 1

2

)

and ϒm = ϒ ⊕ · · · ⊕ ϒ , where ϒ is given in (27). Then
(θ1, . . . , θm) ∈ [0, 1]m belongs to S(A1, . . . , Am) if and only
if

1
2�−1ϒ̄m(γ + i�m)ϒ	

m �−1 � �−1 ⊗ I2, (B2)

where � = diag(θ1, . . . , θm) and I2 is the 2 × 2 identity ma-
trix. In particular, to compute the MC ribbon of ρAm , it suffices
to consider X1, . . . , Xm in (A6) that are linear in terms of
phase-space quadrature operators.

Proof. We follow similar steps as in the proof of Theorem
2. First, we note that the set {H ( j)

k,�
: k, � � 0} defined via (29),

for λ = λ j , forms an orthonormal basis for B j , the space of
operators acting on Aj . Moreover, we have H ( j)

0,0 = IAj , so

{H ( j)
k,�

: (k, �) �= 0} is an orthonormal basis for B0
Aj

. Thus, to
apply Theorem 4 we need to compute the Gram matrix of the
set
⋃

j{H ( j)
k,�

: (k, �) �= 0}. To this end, we decompose this set
in terms of the total degrees:

⋃
j

{
H ( j)

k,�
: (k, �) �= 0

} =
∞⋃

t=1

(⋃
j

{
H ( j)

k,�
: k + � = t

})
.

We note that by (35), basis operators with different degrees
are orthogonal to each other. Then the associated Gram matrix
takes the form diag(G (1),G (2), . . . ), where G (t ) is the Gram
matrix of

⋃
j{H ( j)

k,�
: k + � = t}. As computed in (40), the

inner product of elements of {H ( j)
k,�

: k + � = 1} and {H ( j′ )
k,�

:
k + � = 1} equals

G (1)
j j′ = 1

2

(
ζ−1

0 (λ j ) 0

0 ζ−1
1 (λ j )

)
ϒ̄ν j j′ϒ

	

×
(

ζ−1
0 (λ j′ ) 0

0 ζ−1
1 (λ j′ )

)
,

where ζ0(λ) and ζ1(λ) are defined in (30). On the other hand,
a simple computation shows that

1

2

(
ζ−1

0 (λ j ) 0

0 ζ−1
1 (λ j )

)
ϒ̄ (λ j I + i�)ϒ	

×
(

ζ−1
0 (λ j ) 0

0 ζ−1
1 (λ j )

)
= I2

is the identity matrix, i.e., the Gram matrix of {H ( j)
k,�

: k + � =
1}. Putting these together, we conclude that

G (1) = 1
2�−1ϒ̄m(γ + i�m)ϒ	

m �−1,

which is the left-hand side of (B2). Thus, the statement of the
theorem says that (θ1, . . . , θm) ∈ S(A1, . . . , Am) if and only if

G (1) � �−1 ⊗ I2.

We note that, by Theorem 4, (θ1, . . . , θm) ∈ S(A1, . . . , Am) if
and only if for any t we have

G (t ) � �−1 ⊗ It+1,

where � = diag(θ1, . . . , θm) and It+1 is the (t + 1) × (t + 1)
identity matrix. Thus, to prove the theorem we need to show
that if the above inequality holds for t = 1, then it holds
for all t . We note that t = 1 corresponds to degree-one basis
operators, which are linear in terms of quadrature operators.

Let S be the matrix of size (t + 1) × 2t used in the proof of
Theorem 2 whose entries are given by (41). Also, let

Sm = S ⊕ · · · ⊕ S = Im ⊗ S.

Based on the computations in the proof of Theorem 2, we have
SS† = I . Moreover, letting G (t )

j j′ be the ( j j′)th block of G (t ) that

consists of the inner products of elements of {H ( j)
k,�

: k + � =
t} and {H ( j′ )

k,�
: k + � = t}, we have S(G (1)

j j′ )
⊗t S† = G (t ). There-

fore, using the notation of Lemma 2, we have

Sm(G (1) )�t S†
m = G (t ). (B3)

Thus, to prove the theorem we need to show that if G (1) �
�−1 ⊗ I2, then Sm(G (1) )�t S†

m � �−1 ⊗ It+1. Starting from
G (1) � �−1 ⊗ I2 and using Lemma 2, we have

(G (1) )�t � (�−1 ⊗ I2) � (G (1) )�(t−1) = �−1 ⊗ I⊗t
2 ,

where the equality follows from the fact that �−1 ⊗ I2 is diag-
onal and the blocks on the diagonal of (G (1) )�(t−1) are equal
to I⊗(t−1)

2 . Next, conjugating both sides with Sm = Im ⊗ S and
using (B3) yields

G (t ) � Sm
(
�−1 ⊗ I⊗t

2

)
S†

m = (Im ⊗ S)
(
�−1 ⊗ I⊗t

2

)
(Im ⊗ S†)

= �−1 ⊗ SS† = �−1 ⊗ It+1,

which proves the theorem. �
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