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Additivity of states uniquely determined by marginals
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The pure states that can be uniquely determined among all (UDA) states by their marginals are essential
to efficient quantum state tomography. We generalize the UDA states from the context of pure states to that
of arbitrary (whether pure or mixed) states, motivated by the efficient state tomography of low-rank states.
The concept of additivity of k-UDA states for three different composite types of tensor product applies if the
composite state of two k-UDA states is still uniquely determined by the k-partite marginals for the corresponding
type of tensor product. We show that the additivity holds if one of the two initial states is pure and present the
conditions under which the additivity holds for two mixed UDA states. One of the three composite types of tensor
product is also adopted to construct genuinely multipartite entangled (GME) states. Therefore, it is effective to
construct multipartite k-UDA states with genuine entanglement by uniting the additivity of k-UDA states and
the construction of GME states.
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I. INTRODUCTION

In quantum mechanics the correlation between the whole
and its parts reflects a significant difference from its classical
counterpart [1]. A remarkable example is the Bell state, each
of whose single-party reduced states is maximally mixed.
This means that no useful information of each party can be
obtained by local measurements. For a prepared global state,
one can observe its parts by implementing measurements.
More importantly, can we infer or even reconstruct the global
state with given measurement results? This task is known as
quantum state tomography (QST) [2]. Performing QST based
on the reduced states is a common and efficient method to
characterize the global state [3–5]. It is closely connected to
another essential topic in quantum information, namely, the
marginal problem, which stems from quantum chemistry [6].
The marginal problem asks whether there is a global state
compatible with a given set of multipartite marginal reduc-
tions [7]. If the answer is positive, it is interesting to further
study whether such a global state is uniquely determined.
This uniqueness issue plays a core role in efficient QST [3,8],
because the general case of QST requires a large number of
observables as the dimension of the quantum system increases
[9].

If the set of marginal reductions is generated from a given
pure state, the uniqueness issue is specified as whether there
is another global state sharing all the same reductions as the
given state [10]. According to the scope of the discussion,
this problem is divided into two cases, namely, uniquely
determined among pure (UDP) states [11] and uniquely de-
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termined among all (UDA) states [12]. The former means
there is no other pure state satisfying the desired requirement
and the latter means there is no other state satisfying the
desired requirement. Such uniquely determined states are of
practical interest for the following reasons. First, they make
tomography meaningful and efficient as we mentioned above.
Second, they are closely related to the unique ground (UG)
state of a Hamiltonian that may be obtained by engineering
this Hamiltonian and then cooling down the system [13,14].
Third, the relation of the three classes of UDP, UDA, and UG
states implies a hierarchy of topological order (see Fig. 4 in
[15]). Thus, clarifying the relation between three such classes
of states is helpful in identifying topological states with or
without topological order. Topological states can be encoded
as topological stabilizer codes, for example, the toric codes
and the surface codes, which are widely used in quantum er-
ror correction to protect quantum information from unwanted
environmental interactions (decoherence) and other forms of
noise [16]. It is common to construct stabilizer codes by using
graph states whose stabilizer generators are related to simple
graphs [17,18]. These codes are typically defined in systems
with a large number of parties. Hence, it is necessary to study
the UDP and UDA states of a large number of parties. This is
one of our motivations for proposing the concept of additivity,
which allows us to generate UDA states of a larger number of
parties.

Bipartite states generally cannot be fixed by their single-
party reductions. Hence, the first nontrivial case of UDA
states should be tripartite states. It was first shown that almost
every pure three-qubit state is completely determined by its
bipartite reduced states [10]. Subsequently, it was shown that
almost every pure multipartite state (whose local dimensions
are all equal) is a UDA state by its reductions of a frac-
tion of the parties, and the fraction was specified as less
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than about two-thirds of the parties [12]. This fraction was
further improved to be just over half the parties [19]. With
the prior knowledge that the given state is pure, a stronger
result ensues that almost every tripartite pure state is uniquely
determined by only two of three bipartite marginals [11].
Similar conclusions were extended to the UDA states in some
tripartite systems [4,20]. These results imply that only a partial
reduction is sufficient to ensure the uniqueness. Thus, it is
interesting to find which reductions are enough to ensure
the uniqueness [21]. Note here that the term “almost every
state” is adopted to characterize the set of UDP or UDA
states, which means excluding a measure zero set from the
overall set being considered. In some cases such measure zero
set is explicit [21–23]. For example, only the n-qubit gen-
eralized Greenberger-Horne-Zeilinger (GHZ) states and their
local unitary equivalents cannot be fixed by the (n − 1)-qubit
reductions [23].

Both UDP and UDA states are typically specified as pure
states. Nevertheless, pure states are extremely unstable, which
leads to mixed states being more common in the laboratory.
This motivates us to consider the uniqueness issue in terms
of arbitrary (pure or mixed) states. We define the mixed UDA
states in Definition 2 by generalizing the typical definition.
One can verify whether an arbitrary state is a UDA by the the
flow chart depicted in Fig. 2. The QST of low-rank states has
been studied recently [24–26]. Analogous to pure UDA states,
mixed UDA states can also make the QST of low-rank states
more efficient. In this paper we study the generation of UDA
states in systems with a large number of parties and high local
dimensions. Specifically, we consider three different compos-
ite types of tensor product defined in Definition 3. Each type
of product corresponds to a type of system composition. We
illustrate such system compositions in Fig. 3. The first two
products are known as the tensor product and the Kronecker
product, respectively, which can expand the number of parties
and enlarge local dimensions, as shown in Figs. 3(a) and 3(b),
respectively. The third one combines the first two types of
products by applying the Kronecker product on a part of the
subsystems, which can expand the number of parties and en-
large local dimensions simultaneously, as shown in Fig. 3(c).
To characterize mixed UDA states, we extend two essential
properties of pure UDA states to the case of mixed ones in
Lemmas 1 and 2. The concept of additivity of UDA states for
each type of product applies if the corresponding product of
two UDA states is still a UDA state by the marginals of the
same number of parties. By virtue of the specific expressions
formulated in Lemma 3, we show that the UDA states admit
additivity if one of the initial two states is pure, as stated in
Theorem 1. Specifically, the additivity of UDA states holds
in the context of pure states. If the initial two states are
both mixed UDA states, we propose the conditions for the
additivity in Lemma 4 and conjecture there is generally no
additivity in this setting by Lemma 5. Furthermore, uniting
the construction of GME states proposed in Ref. [27] and the
additivity of UDA states, we derive an operational approach to
construct multipartite UDA states with genuine entanglement
in Proposition 1. We illustrate the construction process in
Fig. 4. By repeating this process, we construct a class of
GME states which are uniquely determined by two-particle
correlations only, in Example 1.

The remainder of this paper is organized as follows. In
Sec. II we clarify some notation and present necessary defi-
nitions and useful lemmas. In Sec. III we propose the concept
of additivity of k-UDA states and show that k-UDA states
admit the additivity in the case when one of the two initial
states is pure. We further discuss the additivity of two mixed
k-UDA states in this section. In Sec. IV we provide an effec-
tive method to construct genuinely entangled UDA states. A
summary and prospects for future work are given in Sec. V.

II. PRELIMINARIES

In this section we clarify some notation for convenience,
formulate necessary definitions of mixed UDA states and
different types of tensor products, and directly extend two
essential properties of pure k-UDA states to mixed k-UDA
states.

First, we introduce some notation for clear expression. For
any positive integer m, we denote by [m] the set {1, 2, . . . , m}.
Let S be a subset of [m]. Then we denote by Sc the comple-
ment of S in [m], i.e., [m]\S . Suppose that A1, . . . , Am are
m systems associated with the Hilbert spaces HA1 , . . . ,HAm ,
respectively. For any subset S ⊆ [m], we denote the compos-
ite system

⊗
i∈S Ai by AS associated with the Hilbert space⊗

i∈S HAi . Next suppose B1, . . . , Bn are n other systems as-
sociated with the Hilbert spaces HB1 , . . . ,HBn , respectively.
Let � = min{m, n} and S be a subset of [�]. Analogously,
we denote the composite system

⊗
i∈S (Ai ⊗ Bi ) by (AB)S

associated with the Hilbert space
⊗

i∈S (HAi ⊗ HBi ). For more
simplicity, we denote the composite system

⊗
i∈[�](Ai ⊗ Bi )

by (C1, . . . ,C�), where � = max{m, n}, Cj = (AjBj ) for each
1 � j � min{m, n}, and Cj is Aj or Bj for each min{m, n} <

j � �.
Second, we define the states that can be uniquely de-

termined by their k-partite marginal reductions, in terms of
arbitrary states rather than pure states only. Since they are
generalized from the definitions for pure UDP states and pure
UDA states, we also present the typical definitions of pure
states as follows.

Definition 1. (i) For a pure state |ψ〉, if there is no pure
state |φ〉 ( �=|ψ〉) having all the same k-partite marginals as
|ψ〉, then |ψ〉 is called k uniquely determined among pure (k-
UDP) states. (ii) For a pure state ρ ≡ |ψ〉〈ψ |, if there is no
(pure or mixed) state σ ( �=ρ) having all the same k-partite
marginals as ρ, then ρ is called k uniquely determined among
all (k-UDA) states.

By definition, it is direct to conclude that a pure state |ψ〉
must be a k-UDP state if it is a k-UDA state. Nevertheless, the
converse is not obvious. In Ref. [3] the authors constructed a
four-qubit pure state that is a 2-UDP state but not a 2-UDA
state. This example reveals that the set of k-UDA states is
strictly included in the set of k-UDP states (see Fig. 1). Due to
the existence of k-UDP states but not k-UDA states, the UDA
property shows more essential uniqueness which could play a
more valuable role in quantum information processing tasks,
for example, the QST without prior knowledge.

According to Definition 1, the k-UDP states are required to
be pure states, while the k-UDA states can be extended to the
case of mixed states by supposing the initial state ρ is a mixed
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FIG. 1. The set of pure k-UDA states is strictly included in that
of pure k-UDP states. An example that is a k-UDP state but not a
k-UDA state has been proposed in Ref. [3].

one. We present the general definition for k-UDA states as
follows.

Definition 2. For an arbitrary state ρ (whether pure or
mixed), if there is no other state σ having all the same k-partite
marginals as ρ, then ρ is called k-uniquely determined among
all (k-UDA) states.

Note that, unless stated otherwise, the k-UDA states in this
paper are arbitrary (whether pure or mixed). By Definition 2
one can verify whether a state is a k-UDA state by the flow
chart depicted in Fig. 2. Here we mention that the mixed
k-UDA states (rank greater than one) do exist and thus the
generalization to the case of mixed states is appropriate. We
give some examples to support this fact. First, it is known
from Theorem 4 in [20] that almost every tripartite state ρ

supported on Cd1 ⊗ Cd2 ⊗ Cd3 (d1 � d2 � d3) with rank no
more than 	 d1

d3

 is a 2-UDA state by only two of three bipar-

tite marginals. When focusing on the four-qubit system, this
result also implies that almost all four-qubit states of rank 2
are 2-UDA states by regarding the first two qubits as a new
single subsystem. Second, a tripartite 2-UDA state supported
on Cd ⊗ Cd ⊗ Cd (d � 3) with rank d has been constructed
in Ref. [28]. This example also contains genuine entanglement
and inspires us to consider the existence of a subset of UDA
states, namely, both UDA and genuinely entangled, in Sec. IV.
Both the above two known examples are tripartite states, while
there are few results on multipartite mixed UDA states of more
than three parties. Third, in this paper we derive a method to
construct mixed UDA states supported on multipartite Hilbert
spaces with unequal local dimensions. We also provide a

FIG. 2. The oval represents the compatible set of those k-partite
marginals from ρ1,...,n. The ρ1,...,n is not a k-UDA state if there exists
a state σ1,...,n ( �=ρ1,...,n) in the oval.

family of such states in Example 1, which directly shows the
existence of multipartite mixed UDA states.

It follows from Ref. [19] that the marginals of fewer than
half of the parties are not sufficient for the uniqueness among
all states. This implies that some generic states of fewer
parties may transition from a k-UDA state to not a k-UDA
one as the number of parties increases, for a fixed integer k.
Thus, it is necessary to construct k-UDA states in a system
of more parties and higher local dimensions. In view of this,
we introduce several constructions of multipartite states based
on different composite types of tensor product. They were
originally proposed to construct GME states and have been
shown to be effective in constructing GME states [27]. These
constructions are operational because the tensor product of
two states can be physically realized. We formulate the def-
initions of three composite types of tensor product as follows.

Definition 3. Suppose that HA1 ⊗ · · · ⊗ HAm and HB1 ⊗
· · · ⊗ HBn are two multipartite Hilbert spaces and assume
m � n without loss of generality. Let ρ be an m-partite state
supported on the former Hilbert space and σ be an n-partite
state supported on the latter one. According to different com-
posite types, there are generally three types of tensor products
of ρ and σ .

(i) The first composite system is defined as

HA1 ⊗ · · · ⊗ HAm ⊗ HB1 ⊗ · · · ⊗ HBn , (1)

which is physically regarded as an (m + n)-partite system.
The composite state denoted by ρ ⊗ σ supported on the
Hilbert space in Eq. (1) is typically referred to as the tensor
product of ρ and σ .

(ii) The second composite system is defined as

m⊗
j=1

(HAj ⊗ HBj )
n⊗

j=m+1

HBj

:= H(AB)1 ⊗ · · · ⊗ H(AB)m ⊗ HBm+1 ⊗ · · · ⊗ HBn , (2)

which is physically regarded as an n-partite Hilbert space. The
composite state denoted by ρ ⊗K σ supported on the Hilbert
space in Eq. (2) is referred to as the Kronecker product of ρ

and σ .
(iii) The third composite system is defined as

�⊗
j=1

(HAj ⊗ HBj )
m⊗

j=�+1

HAj

n⊗
j=�+1

HBj

:= H(AB)1 ⊗ · · · ⊗ H(AB)� ⊗ HA�+1

× ⊗ · · · ⊗ HAm ⊗ HB�+1 ⊗ · · · ⊗ HBn ∀ � < m, (3)

which is physically regarded as an (m + n − �)-partite Hilbert
space. Assume the systems (AB)1, . . . , (AB)� as C1, . . . ,C�

for simplicity. Then we call the composite state denoted by
ρ ⊗Kc σ supported on the Hilbert space in Eq. (3) as the Kc

product of ρ and σ .
To better understand the three different composite types of

tensor product, we illustrate Definition 3 in Fig. 3. Each panel
in Fig. 3 corresponds to one composite type of tensor product
defined by Definition 3. In particular, in Fig. 3(c) we observe
that the proposed Kc product can expand the number of parties
and enlarge local dimensions simultaneously.
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FIG. 3. Different composite types of tensor product by Definition
3. (a) Typical tensor product corresponding to Definition 3(i). It
generates an (m + n)-partite system. (b) Kronecker product corre-
sponding to Definition 3(ii). It increases the local dimensions of the
first m subsystems. (c) Proposed Kc product corresponding to Defini-
tion 3(iii). It generates an (m + n − �)-partite system and increases
part of the local dimensions.

In the final part of this section we show that two essential
properties hold for arbitrary k-UDA states. First, it is known
that the uniqueness among all states is maintained for a local
unitary (LU) equivalence for pure k-UDA states. In Lemma
1 we show that this uniqueness is also maintained for a LU
equivalence for mixed k-UDA states. Second, we derive the
inclusion relation between the set of k-UDA states and that
of (k + 1)-UDA states in Lemma 2, in terms of arbitrary
states. Such generalizations are direct. One may refer to the
Appendix for detailed proofs of the two lemmas.

Lemma 1. If an n-partite (pure or mixed) state ρ is a k-UDA
state, then any state LU equivalent to ρ is also a k-UDA state.

Lemma 2. If ρ is a k-UDA state, then ρ is also a (k + 1)-
UDA state. However, the converse is generally incorrect.

Due to Lemma 1, we conclude that all the LU equivalents
of arbitrary k-UDA states remain k-UDA states. Thus, it is
helpful to apply local unitary operators on the density operator
before determining whether it is a k-UDA state. Lemma 2
implies that the set of k-UDA states is strictly included in the
set of (k + 1)-UDA states. We will use Lemma 2 to derive

Corollary 1 in the next section. Moreover, the marginals of
fewer parties are easier to measure in experiments. Thus,
from an experimental perspective, it is more valuable to know
the k-UDA states with the number of parties k as small as
possible.

III. ADDITIVITY OF UDA STATES FOR DIFFERENT
COMPOSITE TYPES OF TENSOR PRODUCT

In this section we propose the concept of additivity on k-
UDA states and study whether the additivity of k-UDA states
holds for different composite types of tensor product. For each
composite type defined in Definition 3, the additivity of two
k-UDA states holds if the corresponding product of them is
still a k-UDA state.

We consider the additivity of k-UDA states for the fol-
lowing reasons. First, recall that the uniqueness by marginals
depends on a fraction of parties sharing the marginal reduc-
tions [12,19]. As the number of all parties of the global state
increases, only when the number of parties of the marginal
is large enough can the uniqueness be ensured. Therefore,
it is necessary to identify which states of a large number of
parties can be UDA states by their k-partite marginals for k
much smaller than the fraction of all parties. One direction is
to enlarge the number of parties of the global system while
fixing the number k. In this view, we adopt the method of
constructing GME states proposed in Ref. [27] to generate
k-UDA states in systems with a large number of parties.
Furthermore, from an experimental perspective, measuring
k-partite marginals for smaller k is more practical. It also leads
us to consider fixing the number of parties of the marginals.
Second, by Definition 3(i), we may expand the number of
parties and enlarge local dimensions simultaneously via the
proposed Kc product. Hence, this product provides a tool to
study the k-UDA states in the systems of distinct local dimen-
sions. In some problems related to the correlation between the
whole and parts, whether the local dimensions of a system are
the same will result in significant differences. For instance,
the existence of absolutely maximally entangled states and
k-uniform states in the systems of distinct local dimensions
is quite different from that in the systems of equal local
dimensions [29]. Third, since the Kc product is effective to
construct GME states from Ref. [27], it is possible to construct
multipartite k-UDA states with genuine entanglement by unit-
ing such a construction of GME states and the additivity of
k-UDA states. Due to the extensive use of GME states, it is
valuable to perform QST based on the genuinely entangled
k-UDA states. We will discuss the construction of genuinely
entangled k-UDA states in detail in Sec. IV.

Based on Definition 3, we specifically consider whether
three such composite states ρ ⊗ σ , ρ ⊗K σ , and ρ ⊗Kc σ are
still k-UDA states for two k-UDA states ρ and σ . We start by
assuming that one of ρ and σ is pure. Under this assumption,
we may explicitly formulate the expressions of the composite
states as follows, for each type of tensor product.

Lemma 3. (i) If the reduction of the system (A1, . . . , Am)
from the global state ρA1···AmE is a pure state, then the global
state is in the form

ρA1···AmE = |ψ〉〈ψ |A1···Am ⊗ σE .
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(ii) If the reduction of system (A1, . . . , Am) from an n-
partite state ρ(A1B1 )···(AmBm )Bm+1···Bn is a pure state, then the
n-partite global state is in the form

ρ(A1B1 )···(AmBm )Bm+1···Bn = |ψ〉〈ψ |A1···Am ⊗K γB1···Bn .

(iii) If the reduction of system (A1, . . . , Am) from an (m +
n − �)-partite state ρC1···C�A�+1···AmB�+1···Bn is a pure state, where
Cj = AjBj for 1 � j � � and � < min{m, n}, then the (m +
n − �)-partite global state is in the form

ρC1···C�A�+1···AmB�+1···Bn = |ψ〉〈ψ |A1···Am ⊗Kc δB1···Bn .

Proof. (i) Suppose that the global state has the following
decomposition:

ρA1···AmE =
∑

j

|x j〉〈x j |A1···AmE . (4)

Since the reduced state of the system (A1, . . . , Am) is pure, we
conclude that each |x j〉A1···AmE in Eq. (4) is a product vector in
the bipartition (A1 · · · Am)|E . Otherwise, the reduced state of
the system (A1, . . . , Am) is of rank greater than one. Thus, we
may assume

ρA1···AmE =
∑

j

|φ j〉〈φ j |A1···Am ⊗ |α j〉〈α j |E . (5)

By calculation, trE (ρA1···AmE ) = ∑
j a j |φ j〉〈φ j |A1···Am , where

a j = 〈α j |α j〉. This reduction is a pure state, and we may
assume trEρA1···AmE = |ψ〉〈ψ |A1···Am . This implies that each
|φ j〉 is proportional to |ψ〉. Then we conclude that ρA1···AmE =
|ψ〉〈ψ |A1···Am ⊗ σE .

(ii) The proof is similar to assertion (i). Suppose that the
global state has the decomposition

ρC1···CmBm+1···Bn =
∑

j

|y j〉〈y j |C1···CmBm+1···Bn , (6)

where Cj := AjBj for 1 � j � m. Since the reduced state of
the system (A1, . . . , Am) is a pure state whose rank is only one,
we conclude that each |y j〉 in Eq. (6) is a Kronecker product
of two vectors in systems (A1, . . . , Am) and (B1, . . . , Bn),
respectively. According to the similar discussion in (i), we
derive that

ρ(A1B1 )···(AmBm )Bm+1···Bn = |ψ〉〈ψ |A1···Am ⊗K γB1···Bn .

(iii) Since the Kc product proposed in Definition 3(iii) is a
joint use of the tensor product and the Kronecker product, we
similarly derive assertion (iii) according to the discussion of
the first two assertions.

This completes the proof. �
By virtue of the essential expressions in Lemma 3, we can

show that two k-UDA states admit the additivity under each
type of tensor product in the case when one of the two initial
states is pure.

Theorem 1. Suppose that α and β are two k-UDA states of
systems (A1, . . . , Am) and (B1, . . . , Bn), respectively. If one
of α and β is pure, then (i) α ⊗ β is an (m + n)-partite k-
UDA state of the system (A1, . . . , Am, B1, . . . , Bn); (ii) α ⊗K

β is an �-partite k-UDA state of the system (C1, . . . ,C�),
where � = max{m, n} and Ci := (AiBi ) for i = 1, . . . , �; and
(iii) α ⊗Kc β is an (m + n − �)-partite k-UDA state of the
system (C1, . . . ,C�, A�+1, . . . , Am, B�+1, . . . , n), where � �
min{m, n} and Ci := (AiBi ) for i = 1, . . . , �.

Proof. First of all, we may assume that αA1···Am = |ψ〉〈ψ |
without loss of generality. Denote by A[m] the m-partite sys-
tem (A1, . . . , Am) and similarly by B[n] the n-partite system
(B1, . . . , Bn).

(i) Let ρA[m]B[n] = αA1···Am ⊗ βB1···Bn . Suppose that σA[m]B[n]

is an (m + n)-partite state of the system (A[m], B[n] ), which
shares all the same k-partite marginals as ρA[m]B[n] . Let σA[m] =
trB[n] (σA[m]B[n] ). We claim that σA[m] shares all the same k-partite
marginals as αA[m] for the following reason. According to
the assumption, we obtain that for any subset S ⊂ [m] with
|S| = k,

σAS := trASc (σA[m] ) = trASc [trB[n] (σA[m]B[n] )]≡ trASc B[n] (σA[m]B[n] )

= trASc B[n] (ρA[m]B[n] ) = trASc (αA[m] ) ≡ αASc . (7)

Recall that αA[m] is a k-UDA state. It follows from Eq. (7) that
σA[m] has to be equal to αA[m] .

Since αA[m] is pure, it follows from Lemma 3(i) that

σA[m]B[n] = |ψ〉〈ψ |A[m] ⊗ γB[n] . (8)

Similar to the discussion above, we also claim that γB[n] shares
all the same k-partite marginals as βB[n] . Since βB[n] is also a
k-UDA state, it follows that γB[n] has to be equal to βB[n] . It
follows from Eq. (8) that σA[m]B[n] is the tensor product of αA[m]

and βB[n] , which means σA[m]B[n] must be identical to ρA[m]B[n] .
Thus, by definition ρA[m]B[n] is uniquely determined by its k-
partite marginals.

(ii) The proof is similar to that of assertion (i). Without loss
of generality, we may assume m � n, i.e., n = � = max{m, n}.
Let ρC[n] = αA[m] ⊗K βB[n] , where the composite system Cj =
(AjBj ) for 1 � j � m and Cj = Bj for m + 1 � j � n for
simplicity. Denote by ρS the reduced state of the system
CS ∀S ⊂ [n]. Suppose that σC[n] is an n-partite state com-
patible with the marginal set {ρS | ∀S, |S| = k}. Let σA[m] =
trB[n] (σC[n] ). We claim that σA[m] shares all the same k-partite
marginals as αA[m] for the following reason. According to
the assumption, for any subset S̃ ⊂ [m] with |S̃| = k and its
complementary set S̃c = [m] − S̃ , we obtain that

σAS̃ := trAS̃c (σA[m] ) = trAS̃c [trB[n] (σC[n] )]

= trBS̃ [trCS̃cC[n\m] (σC[n] )] = trBS̃ [trCS̃cC[n\m] (ρC[n] )]

= trAS̃c [trB[n] (ρC[n] )] = trAS̃c (αA[m] ) ≡ αAS̃ , (9)

where [n\m] := [n] − [m] = {m + 1, . . . , n}. Recall that αA[m]

is a k-UDA state. It follows from Eq. (9) that σA[m] has to be
equal to αA[m] .

Since σA[m] ≡ αA[m] = |ψ〉〈ψ | is pure, it follows from
Lemma 3(ii) that

σC[n] = |ψ〉〈ψ |A[m] ⊗K γB[n] . (10)

Similar to the discussion above, we claim that γB[n] shares
all the same k-partite marginals as βB[n] . Since βB[n] is also
a k-UDA state, we obtain that γB[n] = βB[n] . It follows from
Eq. (10) that σC[n] has to be the Kronecker product of αA[m] and
βB[n] , which means σC[n] must be identical to ρC[n] . Thus, by def-
inition ρC[n] is uniquely determined by its k-partite marginals.

(iii) For any � � min{m, n} let

ρC[�]A[m\�]B[n\�] = α[m] ⊗Kc β[n],
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where the composite system Cj = AjBj for 1 � j � �,
[m\�] := [m] − [�], and [n\�] := [n] − [�]. Suppose that
σC[�]A[m\�]B[n\�] is an (m + n − �)-partite state compatible with
all the k-partite marginals from ρC[�]A[m\�]B[n\�] . Let σA[m] =
trB[n] (σC[�]A[m\�]B[n\�] ). We claim that σA[m] shares all the same
k-partite marginals as αA[m] for the following reason. One can
verify that for any subset S ⊂ [m] with |S| = k,

σAS := trASc (σA[m] ) = trASc [trB[n] (σC[�]A[m\�]B[n\�] )]

= trCT ASc−T B[n]−T (σC[�]A[m\�]B[n\�] ) = trBT c (σCT c AS−T c ),
(11)

where T = Sc ∩ [�] and T c is the complementary set
of T in [�]. Since |T c| + |S − T c| = |S| = k, it implies
that σCT c AS−T c is a k-partite marginal of the (m + n − �)-
partite state σC[�]A[m\�]B[n\�] . According to the assumption that
σC[�]A[m\�]B[n\�] shares all the same k-partite marginals as ρ, it
follows from Eq. (11) that

σAS = trBT c (ρCT c AS−T c ) = αAS ∀ |S| = k. (12)

Recall that αA[m] is a k-UDA state. It follows from Eq. (12) that
σA[m] has to be equal to αA[m] .

Since αA[m] = |ψ〉〈ψ | is pure, it follows from Lemma 3(iii)
that

σC[�]A[m\�]B[n\�] = |ψ〉〈ψ |A[m] ⊗Kc δB[n] . (13)

Similar to the above discussion, we claim that δB[n] shares all
the same k-partite marginals as βB[n] . Since βB[n] is also a k-
UDA state, we obtain that δB[n] = βB[n] , and σC[�]A[m\�]B[n\�] must
be identical to ρC[�]A[m\�]B[n\�] from Eq. (13). Thus, by definition
ρC[�]A[m\�]B[n\�] is uniquely determined by its k-partite marginals.

This completes the proof. �
Based on Theorem 1 and its proof, we obtain two direct

corollaries as follows. First, recall that the k-UDA states are
typically defined on pure states. Therefore, Theorem 1 reveals
that the additivity of k-UDA states corresponding to each
type of tensor product holds for the typical definition, i.e.,
Definition 1. Second, according to the proof, we observe that
the composite states α ⊗ β, α ⊗K β, and α ⊗Kc β can be com-
pletely determined by only a part of its k-partite marginals.
Take α ⊗ β in Theorem 1(i) as an example. It follows from
Eqs. (7) and (8) that the composite state α ⊗ β can be fixed,
as long as the k-partite marginals of systems AS and BT
can uniquely determine the two parts α and β, respectively.
This implies that the k-partite marginals of systems (ASBT )
are redundant, for S ⊂ [m], T ⊂ [n], and |S| + |T | = k. We
obtain similar conclusions for Theorems 1(i) and 1(ii).

Moreover, in Theorem 1 the two initial states α and β are
both k-UDA states. Here, by virtue of Lemma 2, we extend
Theorem 1 to the case when α and β are k1-UDA and k2-UDA
states, respectively, for different k1 and k2.

Corollary 1. Suppose α is a k1-UDA state of the sys-
tem (A1, . . . , Am) and β is a k2-UDA state of the system
(B1, . . . , Bn). Let k = max{k1, k2}. If one of α and β

is a pure state, then (i) α ⊗ β is an (m + n)-partite k-
UDA state of the system (A1, , Am, B1, . . . , Bn); (ii) α ⊗K

β is an �-partite k-UDA state of the system (C1, . . . ,C�),
where � = max{m, n} and Ci := AiBi for i = 1, . . . , �; and
(iii) α ⊗Kc β is an (m + n − �)-partite k-UDA state of the

system (C1, . . . ,C�, A�+1, . . . , Am, B�+1, . . . , n), where � �
min{m, n} and Ci := (AiBi ) for i = 1, . . . , �.

Next we consider the case when the two initial states are
both mixed k-UDA states. We provide a characterization of
the states that are compatible with all k-partite marginals of
the composite state for different types of tensor product. Since
the Kc product is a combination of the tensor product and the
Kronecker product by applying the Kronecker product on a
part of the subsystems, we will consider the two fundamental
products for simplicity.

Lemma 4. Suppose that ρ and σ are both n-partite k-UDA
states supported on the Hilbert spaces HA1 ⊗ · · · ⊗ HAn and
HB1 ⊗ · · · ⊗ HBn , respectively. Then (i) the states compatible
with all k-partite marginals of ρ ⊗ σ admit an expansion as
ρ ⊗ σ + χ , where the correlation matrix χA[n]B[n] has to be
trace zero, and satisfy the conditions that (a) the reductions
χA[n] and χB[n] are both zero and (b) any k-partite reduction of
χA[n]B[n] is zero and (ii) the states compatible with all k-partite
marginals of ρ ⊗K σ admit an expansion as ρ ⊗K σ + γ ,
where the n-partite correlation matrix γ(AB)[n] has to be trace
zero, and satisfy that (a) the reductions γA[n] and γB[n] are both
zero and (b) any k-partite reduction of γ(AB)[n] is zero.

Proof. (i) Assume that α is a 2n-partite state supported on
the corresponding Hilbert space, which shares all the same
k-partite marginals as ρ ⊗ σ . It follows that

αAS := trASc [trB[n] (α)] ≡ trASc [trB[n] (ρ ⊗ σ )] = ρAS ,

αBS := trBSc [trA[n] (α)] ≡ trBSc [trA[n] (ρ ⊗ σ )] = σBS (14)

for any subset S ⊂ [n] with |S| = k. Specifically, the two
sets of marginals {αAS | ∀ |S| = k} and {ρAS | ∀ |S| = k} are
identical and the two sets of marginals {αBS | ∀ |S| = k} and
{σBS | ∀ |S| = k} are identical. Since ρ and σ are both k-UDA
states, it implies that the set of marginals {αAS | ∀ |S| = k}
is only compatible with the n-partite state ρ and the set of
marginals {αBS | ∀ |S| = k} is only compatible with the n-
partite state σ . This means that

αA1,...,An := trB1,...,Bn (α) = ρ, αB1,...,Bn := trA1,...,An (α) = σ.

(15)
Then we may regard α as a bipartite state of the system
(A[n], B[n] ) whose two reduced density matrices are exactly
ρ and σ , respectively. Thus, the generic expansion of α is
ρ ⊗ σ + χ , where the correlation matrix χ has to be trace zero
and satisfies that χA[n] = χB[n] = 0 [28]. Moreover, since α is
compatible with all k-partite marginals of ρ ⊗ σ , it requires
that any k-partite reduction of χ is zero.

(ii) Assume that α is an n-partite state supported on the cor-
responding Hilbert space, which shares all the same k-partite
marginals as ρ ⊗K σ . It follows that

α(AB)S := tr(AB)Sc (α) ≡ tr(AB)Sc (ρ ⊗K σ ) (16)

for any subset S ⊂ [n] with |S| = k. It then follows that

αAS := trBS (α(AB)S ) ≡ trBS [tr(AB)Sc (ρ ⊗K σ )] = ρAS ,

αBS := trAS (α(AB)S ) ≡ trAS [tr(AB)Sc (ρ ⊗K σ )] = σBS (17)

for any subset S ⊂ [n] with |S| = k. Since both ρ

and σ are k-UDA states, it implies that the set of
marginals {αAS | ∀ |S| = k} is only compatible with the
n-partite state ρ and the set of marginals {αBS | ∀ |S| = k} is
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only compatible with the n-partite state σ . This means that

αA1,...,An := trB1,...,Bn (α) = ρ, αB1,...,Bn := trA1,...,An (α) = σ.

(18)
Then we similarly obtain the generic expansion of α as ρ ⊗K

σ + γ , where the correlation matrix γ has to be trace zero
and satisfies that γA[n] = γB[n] = 0. Moreover, since α shares all
the same k-partite marginals as ρ ⊗K σ , it implies that any k-
partite marginal of γ is zero, i.e., γ(AB)S = 0 for any |S| = k.

This completes the proof. �
By observation of Lemma 4, the correlation matrices χ and

γ are essential to characterize the states which are compatible
with the marginals of ρ ⊗ σ and ρ ⊗K σ , respectively. It is
directly observed from Lemma 4 that ρ ⊗ σ and ρ ⊗K σ are
k-UDA states if and only if the corresponding correlation
matrices χ and γ under the constraints must be zero matri-
ces. Hence, to determine the uniqueness, it is necessary to
further study the existence of the two correlation matrices
with required conditions. We specifically analyze the neces-
sary condition that any k-partite reduction is zero for both
multipartite correlation matrices χ and γ in Lemma 4. We
find that this condition cannot restrict a multipartite Hermitian
matrix of zero trace to be zero. For example, the following is
a Hermitian matrix of zero trace acting on C2 ⊗ C2, each of
whose single-body marginals is zero:

⎛
⎜⎜⎝

m1 m2 m3 m4

m∗
2 −m1 m5 −m3

m∗
3 m∗

5 −m1 −m2

m∗
4 −m∗

3 −m∗
2 m1

⎞
⎟⎟⎠ (19)

for some real m1 and complex m2, m3, m4, m5. This Hermitian
matrix is nonzero if one of m1, . . . , m5 are nonzero. Next we
show the general result on multipartite Hermitian matrices of
zero trace.

Lemma 5. There exist infinitely many nonzero multipartite
Hermitian matrices of zero trace whose k-partite reductions
are all zero.

The proof of Lemma 5 is in the Appendix. The proof also
shows a way to construct infinitely many nonzero multipartite
Hermitian matrices of zero trace whose k-partite reductions
are all zero. Lemma 5 indicates that there could be nonzero
correlation matrices χ and γ satisfying the conditions given in
Lemma 4 such that ρ ⊗ σ + χ and ρ ⊗K σ + γ are positive
semidefinite. Therefore, we conjecture there is generally no
additivity when the two initial states are both mixed k-UDA
states, for different composite types of tensor product.

IV. CONSTRUCTION OF UDA STATES WITH GENUINE
MULTIPARTITE ENTANGLEMENT

The GME states are resourceful and have been widely used
in various quantum information processing tasks. Thus, it is
valuable to perform QST of GME states from an experimental
perspective. In this view, it is necessary to consider the unique-
ness issue for the GME states. It is also connected to detecting
multipartite entanglement. Note that graph states are entan-
gled pure states that exhibit complex structures of genuine
multipartite entanglement. In Ref. [30] the authors considered
detecting graph-state entanglement by measuring two-particle
correlations only and concluded that this is impossible. For

FIG. 4. Process of constructing genuinely entangled k-UDA
states of a large number of parties. From Proposition 1, the output
state of two genuinely entangled k-UDA states (one of which should
be pure) via the Kronecker product or the Kc product is still a k-UDA
state and genuinely entangled. By repeating the composition of a
pure genuinely entangled k-UDA state and the output state, the num-
ber of parties and local dimensions can be continuously increased.

this reason, in this section we specifically study the 2-UDA
states with genuine multipartite entanglement in systems with
a large number of parties and high local dimensions. In other
words, for such states, genuine multipartite entanglement can
be detected by measuring two-particle correlations only.

Inspired by the additivity of k-UDA states derived in The-
orem 1 and the construction of GME states in Refs. [27,31],
we find that it is effective to construct genuinely entangled
k-UDA states via the Kronecker product and the Kc product
given in Definitions 3(ii) and 3(iii), respectively. One can
verify that the Kronecker product of two GME states is also
genuinely entangled. For the Kc product, we have shown that
if the range of one of the two initial states is not spanned
by biproduct vectors, then the output state via the Kc product
must be a GME state supported on the corresponding Hilbert
space [27]. As a special but important case, the range of pure
GME states cannot be spanned by biproduct vectors. Hence,
if one of the two input states is a pure GME state, then the
output state via the Kc product must be genuinely entangled by
the above statement. Then combining such a construction with
the additivity of k-UDA states, we derive an effective way to
construct genuinely entangled k-UDA states as follows.

Proposition 1. Suppose that α and β are two k-UDA
states of systems (A1, . . . , Am) and (B1, . . . , Bn), respectively,
and they are both genuinely entangled. If one of α and β

is pure, then (i) α ⊗K β is an �-partite genuinely entangled
k-UDA state, where � = max{m, n}, and (ii) α ⊗Kc β is an
(m + n − �)-partite genuinely entangled k-UDA state for any
� < min{m, n}.

From Proposition 1 we can generate genuinely entangled
k-UDA states in the systems of more parties and higher local
dimensions using two genuinely entangled k-UDA states. By
repeating the composite process, the number of parties and
local dimensions can be continuously increased. We illustrate
the construction process given by Proposition 1 in Fig. 4.

Next we propose a class of GME states which are 2-UDA
states by virtue of Proposition 1. According to the construc-
tion process illustrated by Fig. 4, it is fundamental to discover
two genuinely entangled 2-UDA states as the initial states.
First, it is known that only three-qubit generalized GHZ states
and their local unitary equivalents cannot be uniquely deter-
mined by the two-qubit marginal reductions [23]. Further, it
was shown in Ref. [32] that there are exactly two locally
inequivalent classes of genuinely entangled pure three-qubit
states, namely, the class of GHZ type states and the class of
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W -type states. Hence, the three-qubit W -type states are both
genuinely entangled and 2-UDA states. Second, there is a
mixed tripartite state constructed in Ref. [28] which is both
genuinely entangled and a 2-UDA state. Based on the facts
above, we propose the following class of states.

Example 1. The standard unique form of three-qubit-W
type states was derived in Ref. [33] as

|ψW 〉 = √
a|001〉 +

√
b|010〉 + √

c|100〉 +
√

d|000〉, (20)

where a, b, c > 0 and d ≡ 1 − (a + b + c) � 0. It is also
known from Ref. [33] that |ψW 〉 is genuinely entangled and
cannot be converted to the generalized GHZ states by invert-
ible local operators and thus 2-UDA states.

Moreover, the following mixed states supported on
HB1B2B3

∼= Cd+1 ⊗ Cd+1 ⊗ Cd+1 are genuinely entangled
and can be uniquely determined by their bipartite marginals
[28]:

βB1B2B3 = p1σB1B2B3 +
d∑

m=2

pm|mmm〉〈mmm|. (21)

Here p1 > 0, pm � 0, and

σB1B2B3 = 2
3 |ξ 〉〈ξ | + 1

3 |111〉〈111| (22)

via |ξ 〉 = 1
2 |010〉 + 1

2 |110〉 + 1√
2
|001〉.

Let α1
A1A2A3

and α2
A1A2A3

be two three-qubit W -type states
and βB1B2B3 be a state given by Eq. (21). It follows from
Proposition 1 that α1

A1A2A3
⊗K α2

A1A2A3
and α1

A1A2A3
⊗Kc α2

A1A2A3

are pure genuinely entangled 2-UDA states and α1
A1A2A3

⊗K

βB1B2B3 and α1
A1A2A3

⊗Kc βB1B2B3 are mixed genuinely entangled
2-UDA states. By repeating the composite process, we gener-
ate a class of genuinely entangled 2-UDA states from a three-
qubit W -type state and a tripartite state given by Eq. (21).

Due to the uniqueness, the genuine multipartite entangle-
ment in the states given by Example 1 can be detected by
measuring two-particle correlations only, which is experimen-
tally realizable. Note that the authors in Ref. [34] provided a
construction of pure states which are genuinely entangled and
2-UDA states in the systems of any number of parties greater
than 4. Differently, Proposition 1 also works for constructing
mixed states that have the desired properties.

V. CONCLUSION

The pure states that can be completely determined by their
marginals are essential to the efficient QST. In this paper we
generalized the definition of k-UDA states to the context of
arbitrary (whether pure or mixed) states, motivated by the ef-
ficient QST of low-rank states. Similar to pure k-UDA states,
we have shown that for mixed k-UDA states, the UDA prop-
erty is also maintained for a LU equivalence and “k-UDA”
also implies “(k + 1)-UDA.” Due to the demand for k-UDA
states with a large number of parties with a small number k,
we considered the additivity of k-UDA states via three dif-
ferent composite types of tensor product. Two k-UDA states
admit the additivity under each type of tensor product if the
composite state for the corresponding product is still a k-UDA
state. We have shown that for each type of tensor product,
the additivity holds when one of the two initial k-UDA states
is pure. Specifically, this implies that the additivity holds for

the typical definition of pure states. We also proposed specific
conditions to verify the additivity of two mixed k-UDA states.
However, we conjectured there is generally no additivity for
two mixed k-UDA states. Since one of the three composite
types, namely, the Kc product, was adopted to construct GME
states, we derived an operational and effective method to
construct k-UDA states with genuine entanglement in systems
with a large number of parties, by uniting the construction of
GME states and the additivity of k-UDA states. Using this
method, we constructed a class of concrete GME states which
are uniquely determined by two-particle correlations only.

Future work is to reveal more interesting properties of
mixed k-UDA states and study the detection of genuine mul-
tipartite entanglement based on mixed UDA states. Another
interesting direction is to investigate the relation between the
existence of mixed k-UDA states and the proportion of the
rank to the whole dimension of the global system. This pro-
portion cannot be high according to the discussion in Ref. [35]
on the ranks of the global states compatible with a given set
of marginal reductions. Nevertheless, the lack of a nontrivial
upper bound on the ranks of possible k-UDA states needs
further clarification.
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APPENDIX: PROOFS OF USEFUL LEMMAS

Proof of Lemma 1. We prove it by contradiction. Suppose
that ρ is an n-partite k-UDA state. Next assume that σ is
another n-partite state which is LU equivalent to ρ but not
a k-UDA state. It follows that σ = (U1 ⊗ · · · ⊗ Un)ρ(U1 ⊗
· · · ⊗ Un)† for some unitary operators U1, . . . ,Un. Due to the
assumption, we conclude by definition that there exists an
n-partite state α ( �=σ ) all of whose k-partite marginals are
the same as σ . Let α̃ = (U1 ⊗ · · · ⊗ Un)†α(U1 ⊗ · · · ⊗ Un). It
is obvious that α̃ �= ρ. However, one can verify that for any
subset S ⊂ [n] with |S| = k,

α̃S := trSc (α̃)

= trSc [(U1 ⊗ · · · ⊗ Un)†α(U1 ⊗ · · · ⊗ Un)]

=
⎛
⎝⊗

j∈S
Uj

⎞
⎠

†

trSc (α)

⎛
⎝⊗

j∈S
Uj

⎞
⎠

=
⎛
⎝⊗

j∈S
Uj

⎞
⎠

†

trSc (σ )

⎛
⎝⊗

j∈S
Uj

⎞
⎠

= trSc [(U1 ⊗ · · · ⊗ Un)†σ (U1 ⊗ · · · ⊗ Un)]

= trSc (ρ) = ρS . (A1)
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This implies that α̃ shares all the same k-partite marginals as
ρ, and we obtain a contradiction. Thus, we conclude that every
state that is LU equivalent to ρ is also a k-UDA state. This
completes the proof. �

Proof of Lemma 2. We prove it by contradiction. Assume
that ρ is an n-partite state which is a k-UDA state but not
a (k + 1)-UDA state. Due to the assumption, this implies by
definition that there is a state σ ( �=ρ) having all the same (k +
1)-partite marginals as ρ, that is, ρS = σS for any subset S ⊂
[n] with |S| = k + 1. Further, any k-partite marginal can be
generated from some (k + 1)-partite marginal by tracing one
more subsystem. It follows that

tr j∈S (ρS ) = tr j∈S (σS ) ∀S. (A2)

According to Eq. (A2), we conclude that σ also has all the
same k-partite marginals as ρ. This contradicts the assumption
that ρ is a k-UDA state, and thus ρ has to be a (k + 1)-UDA
state. For the converse, one can verify it is incorrect by the
following example. It is known that generic three-qubit pure
states are 2-UDA states [10] but cannot be fixed by their
single-body marginals. This completes the proof. �

Proof of Lemma 5. Suppose that χ is an n-partite Hermitian
matrix of zero trace acting on the Hilbert space HA1 ⊗ · · · ⊗
HAn and each k-partite reduction of χ is zero. We formulate
the matrix form of χ as

χ =
∑

i1,...,in
j1,..., jn

m i1,...,in
j1,..., jn

|i1, . . . , in〉〈 j1, . . . , jn|, (A3)

where both {|i�〉 : |0〉, . . . , |d� − 1〉} and {| j�〉 :
|0〉, . . . , |d� − 1〉} are the computational basis of the lth
subspace HA�

for any l = 1, . . . , n. Also the matrix elements
satisfy that mi1,...,in

j1,..., jn
= m∗

j1,..., jn
i1,...,in

because χ is Hermitian. For

any subset S ⊂ [n] with |S| = k, the k-partite reduction χAS
can be calculated as

χAS := trASc (χ )

=
∑

i1,...,in
j1,..., jn

〈 jSc |iSc〉mi1,...,in
j1,..., jn

α
s1,...,sk
i j

=
∑

is1 ,...,isk

js1 ,..., jsk

⎛
⎝ ∑

iSc = jSc

m i1,...,in
j1,..., jn

⎞
⎠α

s1,...,sk
i j , (A4)

where α
s1,...,sk
i j = |is1 , . . . , isk 〉〈 js1 , . . . , jsk |, s1, . . . , sk ∈ S ,

and iSc denotes a tuple (it1, . . . , itn−k ) for t1, . . . , tn−k ∈ Sc

and similarly for jSc . Due to the assumption that χAS = 0 for
any subset S , from Eq. (A4) we obtain that for any subset S ,
each sum

∑
iSc = jSc m i1,...,in

j1,..., jn

is zero. This requirement cannot

restrict Hermitian χ to be a zero matrix. For example, the
following is such a nonzero Hermitian matrix:

χ =
∑

i� �= j� ∀ �

(
c i1,...,in

j1,..., jn

|i1, . . . , in〉〈 j1, . . . , jn|

+ c∗
i1,...,in
j1,..., jn

| j1, . . . , jn〉〈i1, . . . , in|
)
. (A5)

One can verify that each (n − 1)-partite reduction of the
Hermitian χ in Eq. (A5) is zero, and thus each k-
partite reduction is zero for any k < n. This completes
the proof. �
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