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Entanglement purification describes a primitive in quantum information processing, where several copies of
noisy quantum states are distilled into a few copies of nearly pure states of high quality via local operations and
classical communication. Especially in the multiparticle case, the task of entanglement purification is compli-
cated, as many inequivalent forms of pure state entanglement exist and purification protocols need to be tailored
for different target states. In this paper we present optimized protocols for the purification of hypergraph states,
which form a family of multiqubit states that are relevant from several perspectives. We start by reformulating an
existing purification protocol in a graphical language. This allows for systematical optimization and we present
improvements in three directions. First, one can optimize the sequences of the protocol with respect to the
ordering of the parties. Second, one can use adaptive schemes, where the measurement results obtained within
the protocol are used to modify the protocols. Finally, one can improve the protocol with respect to the efficiency,
requiring fewer copies of noisy states to reach a certain target state.
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I. INTRODUCTION

For many tasks in quantum information processing one
needs high-fidelity entangled states, but in practice most states
are noisy. Purification protocols address this problem and
provide a method to transform a certain number of copies of
a noisy state into a single copy with high fidelity. The first
protocols to purify Bell states were introduced by Bennett
et al. [1,2] and Deutsch et al. [3]. The concept was then further
developed for different entangled states, especially in the mul-
tiparticle setting. This includes protocols for the purification
of different kinds of states, such as graph states [4,5] or W
states [6] (see [7] for an overview). There are several ex-
amples for experimental realizations of purification protocols
[8–11].

When analyzing multiparticle entanglement, the exponen-
tially increasing dimension of the Hilbert space renders the
discussion of arbitrary states difficult. It is therefore a natural
strategy to consider specific families of states which enable a
simple description. Graph states [12] and hypergraph states
[13–15] form such families of multiqubit quantum states,
as they can be described by a graphical formalism. Besides
this, they found applications in various contexts, including
quantum error correction [16,17], measurement-based quan-
tum computation [18,19], Bell nonlocality [20–22], and state
verification and self-testing [23,24]. Consequently, their en-
tanglement properties were studied in various works [25,26].
Note that hypergraph states are a special case of the so-called
locally maximally entangled states [13].

Concerning entanglement purification, the only known pu-
rification protocol which is valid for hypergraph states is
formulated for locally maximally entangleable (LME) states
by Carle et al. [27]. In this paper we first ask how this proto-
col can be translated to the hypergraph formalism. Based on
this, we can then systematically develop improvements of the
protocol.

Our paper is organized as follows. In Sec. II we introduce
our notation and review hypergraph states. We also recall how
operations like CNOT gates and Pauli operators act graphically.
In Sec. III we reformulate the Carle–Kraus–Dür–de Vicente
(CKDdV) purification protocol in a graphical manner, pro-
viding a different language to understand it. Based on this,
we propose systematic extensions in Sec. IV, which naturally
arise from the graphical formalism. We first propose two ap-
proaches to make the protocol applicable to noisy states where
the original CKDdV protocol fails. Later we propose a method
requiring fewer copies of noisy states to reach a certain target
state. In Sec. V we extend the protocol to more qubits. We
summarize in Sec. VI.

II. HYPERGRAPH STATES

In this section we present a short introduction to the class
of hypergraph states and the description of transformations
between them. Readers familiar with the topic may skip to the
next section.

A. Definition of hypergraph states

A hypergraph H = (V, E ) is a set V of vertices and hyper-
edges e ∈ E connecting them. Contrary to a normal graph, the
edges in a hypergraph may connect more than two vertices;
examples of hypergraphs are given in Fig. 1.

Hypergraph states are multiqubit quantum states, where
the vertices and hyperedges of the hypergraph H = (V, E )
represent qubits and entangling gates, respectively. The state
|H〉, corresponding to a hypergraph H = (V, E ), is defined as

|H〉 =
∏
e∈E

Ce|+〉⊗|V | ≡ Uph|+〉⊗|V |, (1)

where Ce is a generalized controlled-Z gate, acting on qubits
in the edge e as Ce = 1e − 2|11 · · · 1〉〈11 · · · 1|e. If an edge
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FIG. 1. Examples of graphs and hypergraphs. (a) Fully con-
nected graph, which corresponds to the three-qubit GHZ state. In
the hypergraph state formalism one often draws edges by circles
(right) instead of lines as in the graph state formalism (left). (b) The
hypergraph state corresponding to the hypergraph is local unitary
equivalent to the state |H〉 = (|000〉 + |001〉 + |010〉 + |111〉)/2.

contains only a single vertex |e| = 1, then Ce reduces to the
Pauli Z operator, and for two-vertex edges Ce is just the stan-
dard two-qubit controlled-phase gate. A detailed discussion of
hypergraph state properties can be found in Refs. [25,28].

Similarly as for graph states, there is an alternative defini-
tion using so-called stabilizing operators. First, one can define
for each vertex i a stabilizer operator

Si = UphXiU
†
ph, (2)

where Xi denotes the first Pauli matrix acting on the ith qubit
and Uph denotes the collection of phase gates as in Eq. (1).
Note that here only the gates with i ∈ e matter. The stabilizing
operators are nonlocal Hermitian observables with eigenval-
ues ±1; they commute and generate an Abelian group, the
so-called stabilizer.

Then a hypergraph state may be defined as a common
eigenvector of all stabilizing operators Si. Here one has to fix
the eigenvalues of the Si. Often, the state defined in Eq. (1)
is called |H00···0〉, as it is a common eigenstate of the Si

with eigenvalue +1. By applying Pauli Z gates on the state,
one obtains states orthogonal to |H00···0〉, where some of the
eigenvalues are flipped to −1. By applying all possible combi-
nations of Z gates, one obtains a basis {|Hk〉 = Zk|H0〉}, where
k is a binary multi-index and Zk = ⊗

v∈V Zkv
v . In this notation,

it holds that Si|Hk〉 = (−1)ki |Hk〉. Hence, |Hk〉 is an eigenstate
of Si with eigenvalue (−1)ki . It is convenient to write arbitrary
states in the hypergraph basis

ρ =
∑
k,k′

ck,k′ |Hk〉〈Hk′ |. (3)

Later we will purify states in this form to the state |H0〉.

B. Operations on hypergraph states

Many operations on hypergraph states can be represented
in a graphical manner. In the following, we explain the effect
of applying Pauli gates X and Z , measuring in the correspond-
ing basis σx and σz, discuss how to represent the CNOT gate
graphically [29], and introduce the reduction operator Pv1,v2

FIG. 2. Example of a CNOT1,4 gate (with control qubit 1 and
target qubit 4) performed on a hypergraph state. Shown on the left
is a hypergraph with vertex set V = {1, . . . , 6} and edge set E =
{{1}, {1, 2, 3}, {3}, {4}, {4, 5, 6}} and on the right the hypergraph af-
ter applying the CNOT1,4 gate. A new edge {1, 5, 6} appears while
the edge {1} vanishes. The effect of applying the CNOT1,4 gate is
to introduce or delete edges from the set E4 = {{1}, {1, 5, 6}}. The
underlying rule is the following [29]: One takes the so-called ad-
jacency A(4) of the target qubit t = 4, where one first considers
all edges that contain t but then removes t from it. Here we have
A(4) = {{ }, {5, 6}}. Then E4 contains all edges which are unions of
edges from A(4) and the edge {1} of the control qubit c = 1.

which we will need later. Note that, in the following, for Pauli
matrices we use X and Z to denote the corresponding unitary
transformations and σx and σz to denote the measurements.
We only discuss transformations that are needed in the present
paper; an overview of other transformations can be found in
Ref. [28].

We have already mentioned the action of the unitary trans-
formation Zv on some qubit v. It adds the edge e = {v} to
the set of edges E , if it was not contained before, or removes
it otherwise. For example, applying Z2 and Z3 to the left
hypergraph state in Fig. 2 would add a circle at vertex 2 and
remove the one at vertex 3.

The unitary transformation Xv on a vertex v of a hyper-
graph state |H〉 corresponding to the hypergraph H = (V, E )
is given by

Xv|H〉 =
∏
e∈E

Ce

∏
e′∈A(v)

Ce′ |+〉⊗|V |, (4)

where A(v) is the adjacency of vertex v. This is a set of edges
defined as

A(v) = {e \ {v} | e ∈ E with v ∈ e}. (5)

In words, to build the adjacency A(v) one first takes the set of
edges that contain v and then removes v from them. Examples
of local transformations X are given in Fig. 3.

Let us discuss now the graphical description of some lo-
cal measurements on hypergraph states. In order to derive
the postmeasurement state after measuring vertex v, we can

FIG. 3. Application of X operators on qubits 3 and 2. We first
apply X3 on the left graph. The adjacency of qubit 3 is given by
A(3) = {{1, 2}}. This new edge is shown by the blue dashed line
in the middle graph. We then apply X2 to the middle graph. The
adjacency of qubit 2 is given by A(2) = {{1}, {1, 3}}. These new
edges are shown by the purple dotted lines in the right graph.
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FIG. 4. Application of the reduction projectors P3,6 and P2,5. The
projector merges two vertices and its corresponding edges to one. In
the first step, we merge vertices 3 and 6. In the second step we merge
vertices 2 and 5. This results in two times the same edge, the green
dashed edge {1, 5, 6} and the edge which was initially {1, 2, 3}, and
such double edges cancel out.

expand the state |H〉 at this vertex as

|H〉 = 1√
2

(
|0〉v|H0〉 ± 1√

2
|1〉v|H1〉

)
, (6)

where |H0〉 and |H1〉 are new hypergraph states with vertex
set V0 = V1 = V \ v and edge sets E0 = {e ∈ E | v /∈ e} and
E1 = E0 ∪ A(v) [28]. After measuring σz, we therefore get
either the state |H0〉 or the state |H1〉. Measuring σx leads to a
superposition of these two states and often the postmeasure-
ment state is then not a hypergraph state anymore. In our case,
we only measure σx on qubits which are separated from other
parts of the system, that is, where |H0〉 = |H1〉.

Applying a CNOTct gate on a hypergraph state H , where c is
the control and t the target, introduces or deletes hyperedges
of the set Et = {et ∪ c | et ∈ A(t )}. The new edge set after
applying the CNOTct gate is given by

E ′ = E
Et , (7)

where A
B = A ∪ B \ A ∩ B is the symmetric difference of
two sets. Since C2

e = 1, double edges cancel out. Therefore,
the CNOTct operation deletes edges which are in E and Et and
introduces edges which are only in Et . For example, in the
left part of Fig. 2, the neighborhood of vertex 4 is given by
N (4) = {{ }, {5, 6}} and therefore E4 = {{1}, {1, 5, 6}}.

Finally, another operator which will be important later is
the reduction operator Pv1,v2 , which maps two qubits to a
single qubit. In the computational basis, the reduction operator
is written as

Pv1,v2 = |0〉〈00| + |1〉〈11|. (8)

It merges two vertices v1 and v2 into one, which we call
v2. This action changes edges which contain v1 into edges
which contain v2 and deletes edges e and e′, with e �= e′ but
(e \ {v1}) = (e′ \ {v2}). The new edge set will therefore be

E ′ = ({e ∈ E |v1 /∈ e}
{ f ∪ {v2}| f ∈ A(v1)}).

An example is shown in Fig. 4.

III. THE CKDDV PURIFICATION PROTOCOL

In this section we discuss the only known protocol which
works for hypergraph states [27]; we will refer to it as the CK-
DdV protocol. Originally, it was formulated for more general
LME states. We first reformulate the purification protocol in a
graphical manner, which makes it intuitively understandable.
Based on this reformulation, we can then propose improve-
ments.

In the simplest case, the aim is to purify a three-qubit state
ρ to a pure hypergraph state, chosen to be the state |H0〉 =
C{123}|+〉⊗3. The state is distributed between three parties, Al-
ice, Bob, and Charlie. In the following, we explicitly describe
the subprotocol which reduces noise on Alice’s qubit. There
are equivalent subprotocols on Bob’s and Charlie’s qubits.
The protocol is performed on two copies of a state ρ. Alice
holds qubit a1 of the first state and qubit a2 of the second state,
and equivalently for Bob and Charlie.

The key idea of the protocol is to induce a transformation
on the basis elements of the form

|Hi, j,k〉|Hi′, j′,k′ 〉 → δi,i′ |Hi, j+ j′,k+k′ 〉, (9)

where δi,i′ denotes the Kronecker delta. This means that the
subprotocol compares the indices i and i′ on Alice’s qubits and
the state is discarded when i �= i′. This map drives a general
state as in Eq. (3) closer to the desired hypergraph state. In
detail, the subprotocol which implements this transition is
given by the following protocol.

Protocol 1 (CKDdV protocol).
(0) Alice, Bob, and Charlie share two copies of a state.
(i) Alice applies a local CNOTa1,a2 gate on her qubits.
(ii) Bob and Charlie apply local reduction operators Pv1,v2

on their qubits.
(iii) Alice measures qubits a1 in the σx basis. She keeps the

state if the outcome is +1 and discards it otherwise.
In Fig. 5 it is shown how the basis elements |H000〉|Hi00〉

transform.
In order to purify the full state, one needs to choose a

sequence of subprotocols in which these subprotocols are
applied on different parties. In Ref. [27], the sequence ABC-
CAB-BCA was favored, as it seems to perform better than just
repeating the sequence ABC. The reason is that the qubit of
Charlie becomes more noisy due to the backaction from the
subprotocols purifying Alice’s and Bob’s qubits.

IV. IMPROVING PROTOCOL PERFORMANCE

In order to purify towards one state of a certain fidelity,
one needs a number of input states, which depends expo-
nentially on the number of iterations, as in each run of the
protocol a certain fraction of states is discarded. Therefore,
it is of high interest to apply the subprotocols in a sequence
which works as efficiently as possible. As already pointed
out by Carle et al. [27], it depends on the input state whose
sequence is the most advantageous and it is not trivial to see
which sequence is optimal. Carle et al. decided to use the
sequence S = ABC-CAB-BCA in all their applications, since
it performs well in many cases. In the following, we will ask
whether the proposed sequence really is the best and how we
can potentially find better sequences.
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FIG. 5. The CKDdV protocol, as described in Protocol 1. The
transformation of the two basis elements |H000〉|H100〉 is shown. In
step (i) Alice performs a local CNOT1,4 gate. Then Bob and Charlie
apply local reduction operators P2,5 and P3,6, respectively. Double
edges cancel out, so the green dashed line and the former edge
{1, 2, 3} vanish. In step (iii) Alice measures qubit 1 in the σx basis. If
there is a single-qubit edge on vertex 1, such as the orange one in this
figure, her measurement outcome will be −1 and therefore the state
gets discarded. If one ignores all orange single-qubit edges in the
figure, this corresponds to the transformation of the basis elements
|H000〉|H000〉. In this case, Alice’s measurement outcome will be +1
and the remaining state |H000〉 is kept.

One should notice that in step (ii) of the protocol a large
fraction of states is discarded. The operator Pv1,v2 corresponds
to a positive map which maps two qubits that are in the
same state to one qubit and both qubits are discarded if they
are in different states. This can be seen as one outcome of
a measurement. In Sec. IV B we will ask whether one can
reduce the number of discarded states.

A. Improved and adaptive sequences

Consider a noisy three-qubit state ρ(p), where p is a noise
parameter for some noise model which should be purified to
the pure hypergraph state |H000〉〈H000|. Clearly, for a fixed
sequence S there is a maximal amount of noise until which
the state can still be purified and there is a regime where one
cannot purify it anymore.

Interestingly, for some parameter regimes where the
state cannot be purified, the purification protocol does
not converge towards a state with random noise but
towards a specific state which is a mixture of two
states: 1

2 (|H000〉〈H000| + |H001〉〈H001|), 1
2 (|H000〉〈H000| +

|H010〉〈H010|), or 1
2 (|H000〉〈H000| + |H100〉〈H100|). This

observation gives insight into how good the purification
works on different parties. The protocol eliminates noise on
two parties but fails on the third party. For example, if we
apply the sequence S = ABC, in the cases we tested, there is
a regime where the state does not get purified but converges
to 1

2 (|H000〉〈H000| + |H001〉〈H001|).
This is consistent with the explanation given in Ref. [27]

that the purification has a disadvantage on Charlie’s site. It
may be explained as follows. By performing the protocol
at one party, one aims to reduce noise on this party. As an

unwanted side effect, one increases noise on the other parties.
This happens because if there is noise on the first input state,
the local reduction operator will “copy” it to the second state
[see Eq. (9)]. So when choosing the sequence S = ABC, one
increases the noise on Charlie’s qubit two times before puri-
fying it the first time.

How well the protocol performs on each party can be ana-
lyzed using the measurement statistics obtained in step (iii) of
the protocol. The probability to measure outcome +1 in step
(iii) on a qubit belonging to a certain party give insight into
how much noise the state on this party has. On the perfect tar-
get state, one does not detect any noise and therefore measures
outcome +1 with probability equal to one. If one applies the
protocol to the state 1

2 (|H000〉〈H000| + |H001〉〈H001|), however,
one obtains outcome +1 with a probability equal to one or
0.5, depending on which subprotocol was applied. If it was
the subprotocol where Alice’s or Bob’s qubits are measured
in step (iii), the probability is equal to one. If it was the sub-
protocol where Charlie’s qubit was measured, the probability
is 0.5. So, by evaluating the probabilities to measure outcome
+1 in step (iii) of the protocol, one can analyze the efficiency
of the sequence.

All in all, we use two approaches to find better sequences.
The first approach is to find an optimal sequence which allows
a high noise tolerance and will be applied later without further
observation of the statistics. The second approach uses two
sequences where we switch from one to the other depending
on the measurement outcomes during the process. The first
approach helps to find sequences which are more efficient also
for purification of states with a low noise level. The second
approach gives a method to purify states which would not be
purifiable otherwise.

We assume that we know how often we want to apply the
protocol and therefore how many copies of the initial state are
needed. We perform the first subprotocol on all copies and
get a certain fraction of output states. We then perform the
second subprotocol on all output states and so on. With this
procedure, we do multiple measurements on copies of states
such that we can approximate a probability from the frequency
of a certain outcome. We further assume that we repeat this
procedure several times, that is, we produce a certain number
of copies of input states, purify them, and start again from the
beginning. In each run, we can vary the sequence, using what
we have learned in the run before. We restrict ourselves to
sequences of length 9. The best sequence we find in this way
we call S1.

It is not known how the efficiency of the sequence depends
on the state. Therefore, even if the state is known, one needs to
sample which sequence works best. However, there are some
observations which can be used to find better sequences. We
notice that it is reasonable to consider permutations of A, B,
and C together. We further notice that the first party of the
triple experiences the largest impact. It is also a good strategy
to address the same party in two consecutive rounds, that is,
on the last position of one triple and on the first position of
the following triple. The sequence proposed by Carle et al.
fulfills all mentioned properties and is in principle a good
starting sequence. After gaining experience in how efficient
the sequence works for the given state, one can exchange a
few positions and evaluate its impact. In Tables I and IV we
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TABLE I. Sequences S1 and S2, approximate weight vectors �a,
and bounds b for states with three kinds of noise. For further expla-
nation see the text.

Parameter EWN(ρ, p) Edeph(ρ, p) Edepo(ρ, p)

S1 ABC-CBA-ABC ABC-CBA-CBA ABC-CAB-BCA
S2 BAB-CAB-ABA CCC-ACB-CBC BBB-BCB-BBB-BAB
�a (0.33,0.35,0.32) (0.35,0.43,0.21) (0.35, 0.34, 0.31)
b 0.35 0.39 0.44

see that the optimal sequences S1 we found for different states
support our observations. Every triple is a permutation of A,
B, and C. We see that except for one case, the first position
of one triple is equal to either the first or the last position
of the previous triple. However, it consumes many states to
find good sequences. Another strategy could be to estimate
the corresponding density matrix of the given state by local
tomography and find the optimal sequence by simulations on
the computer.

With the second approach, we give a way to purify states
which cannot be purified by sequence S1 because their ini-
tial fidelity is slightly beyond the threshold. We start using
sequence S1 and switch to sequence S2 depending on the mea-
surement outcomes of step (iii). Our switching condition is the
following: After each measurement of step (iii), we evaluate
the probability to measure −1 for the given party. Based on
the last three probabilities associated with the same party, we
make a decision to switch or not. For �x the vector of these three
probabilities, where x3 is the newest probability, we switch,
if the product of the vectors �a�x exceeds a bound b where �a
is a weight vector. In real applications we cannot evaluate
the probability. We suggest to count appearance of certain
outcomes and estimate the probability from the frequency.

To see the efficiency of our methods, we consider different
noise models. We analyze the influence of global white noise
described by the channel

EWN(ρ, p) = pρ + 1 − p

2n
1, (10)

where n is the number of qubits. In this section, the number of
states is n = 3. We further analyze local noise channels given
by E (ρ, p) = ⊗n

i=1 E i(ρ, p), where E i is either the dephasing
channel

E i
deph(ρ, p) = pρ + 1 − p

2
(ρ + ZiρZi ) (11)

or the depolarizing channel

E i
depo(ρ, p) = pρ + 1 − p

4
(ρ + XiρXi + YiρYi + ZiρZi ).

(12)

The sequences, weight vectors, and bounds we found to
be optimal are given in Table I. To compare the approaches,
we give the noise thresholds found in Ref. [27], obtained by
our sequence S1, and obtained by the adaptive approach in
Table II. The sequences we found are also better in other
perspectives. If we apply the new sequences S1 nine rounds on
given input states, we see that the output states have a higher

TABLE II. Noise thresholds pmin reproduced from Ref. [27],
gained from our sequences S1 (see Table I), and for the adaptive
approach. In the case of Edepo(ρ, p) we found that the sequence from
Ref. [27] was already the best sequence of length 9. Therefore, there
is no improvement of pmin in this case.

pmin from
Parameter pmin from [27] pmin from S1 adaptive protocol

EWN(ρ, p) 0.6007 0.5878 0.5876
Edeph(ρ, p) 0.8013 0.7803 0.7747
Edepo(ρ, p) 0.8136 0.8136 0.8132

fidelity than after purifying the same state nine rounds using
the sequence given in Ref. [27].

B. Recycling discarded states

If one wishes to purify a state using the CKDdV protocol
one needs a high number of input states in order to obtain one
state of a certain fidelity. Let us count how many states we
need to have one state after applying the protocol once. In step
(0) of the protocol, one takes two input states. One does not
lose states by applying the CNOT gate in step (i). By applying
the reduction operator Pv1,v2 , approximately 1

2 of the pairs are
lost. Since this operator is applied on two parties in step (ii),
one needs approximately four pairs. In step (iii), one measures
outcome +1 with a probability less than or equal to 1. This
probability depends on the fidelity of the states and increases
with increasing fidelity. So, in total, approximately eight input
states are required to obtain one output state. To prepare a state
for which we need to apply the protocol m times, we need
more than 8m input states. To purify, for example, a state of
initial fidelity 0.93 to a state of fidelity of 0.994, we need three
steps. The required number of input states to obtain one output
state is roughly 8.73 ≈ 660. If we want to purify the same state
to a fidelity of 0.999, which we reach after six steps, we need
about 8.386 ≈ 346 000 input states to get one new state.

It is natural to try to use the available quantum states more
efficiently. In step (ii) of the CKDdV protocol, we perform
a projective measurement and consider only one outcome,
namely, Pv1,v2 , which we get with probability approximately
1
2 . We suggest to use the states which were discarded because
we measured something different than Pv1,v2 . The second re-
duction operator P⊥

v1,v2
is perpendicular to Pv1,v2 and defined

as

P⊥
v1,v2

= |0〉〈10| + |1〉〈01| = Pv1,v2 (Xv1 ⊗ 1v2 ). (13)

As Pv1,v2 , the operator P⊥
v1,v2

is a positive map. It maps two
qubits, which are in different states, to one qubit. This can be
seen as a different measurement outcome than Pv1,v2 , or one
may interpret the set {Pv1,v2 , P⊥

v1,v2
} as a quantum instrument.

In the original CKDdV protocol one keeps the state
only after measuring Pb1,b2 Pc1,c2 . There are three more pos-
sible measurement outcomes: Pb1,b2 P⊥

c1,c2
, P⊥

b1,b2
Pc1,c2 , and

P⊥
b1,b2

P⊥
c1,c2

. In the cases of measuring P⊥
v1,v2

on at least one
party, one obtains a postmeasurement state on which one can
apply some corrections to get a state which is similar to the
input state. One can collect these states and further purify
them.
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TABLE III. In Protocol 2, step (iii b), Alice measures her qubit
a1 in the Z basis. If her outcome is −1, Bob and Charlie have to
apply local corrections to their qubits. The local corrections depend
on their measurement outcomes from step (ii) and are given in this
table. The first case is shown in Fig. 6.

Measurement Local correction
outcomes Bob Charlie

Pb1,b2 P⊥
c1,c2

Z 1

P⊥
b1,b2

Pc1,c2 1 Z

P⊥
b1,b2

P⊥
c1,c2

Z Z

So one can write down a modified protocol of the CKDdV
protocol. Here we give the subprotocol which reduces noise
on Alice’s qubits. The subprotocols for Bob and Charlie work
equivalently.

Protocol 2 (improved CKDdV protocol).
(0) Alice, Bob, and Charlie share two copies of a state.
(i) Alice applies a local CNOTa1,a2 gate on her qubits.
(ii) Bob and Charlie perform a measurement on their qubits

and measure the local reduction operators Pv1,v2 and P⊥
v1,v2

.
If the measurement outcome for Bob and Charlie is Pv1,v2 ,
continue with step (iii a); otherwise continue with (iii b).

(iii a) After Bob and Charlie both measure Pv1,v2 , Alice
measures qubits a1 in the σx basis. She keeps the state if the
outcome is +1 and discards it otherwise.

(iii b) After measuring P⊥
v1,v2

on at least one pair of Bob’s
and Charlie’s qubits, Alice measures her qubit a1 in the σz ba-
sis. If she measure +1, she keeps the state as it is. Otherwise,
Bob and Charlie apply some local unitaries, which depend on
the combinations of measurement outcomes in step (ii) and
are given in Table III.

The key idea is that output states from step (iii b) can be
collected and further purified. In the case of measuring P⊥

v1,v2

on at least one party, the protocol gives us a transition

|Hi, j,k〉|Hi′, j′,k′ 〉 → |Hi′, j+ j′,k+k′ 〉. (14)

The resulting state has in general a lower fidelity than the input
state. This is caused by the same reason of “copying” noise,
as discussed before. Since in the considered case the protocol
does not reduce noise, the fidelity drops.

An example for Protocol 2 is shown in Fig. 6, where we
assume the case that Bob measures P2,5 and Charlie measures
P⊥

3,6. In this case, the local correction after measuring outcome
−1 is applying a unitary Z5 at qubit 5.

Given a certain number of input states which we want to
purify to a target fidelity, we obtain more output states of the
desired fidelity if we follow Protocol 2 instead of the original
CKDdV protocol. The effect in the cases we tested turned
out however to be small. As input states we chose the state
|H000〉〈H000| mixed with white noise. We first applied Protocol
1 three times, that is, once on each party, and computed the
fidelity F3 of the output states. Then we applied Protocol 2 on
the same input states and compared how many more output
states of fidelity greater than or equal to F3 we get. In Fig. 7
we show how much the number of output states increases by
using Protocol 2, depending on the fidelity F0 of the input
states. In the chosen cases, we get approximately 0.4% more

FIG. 6. Modified Protocol 2 for the same initial states as shown
in Fig. 5 for the case to measure Pb1,b2 P⊥

c1,c2
in step (ii). Alice per-

forms a σ (1)
z measurement on her qubit 1 of the state in the second

row. If she gets outcome +1 in step (iii b), the resulting state is the
same as the initial state (qubits 4–6). If she gets outcome −1, Bob’s
qubit 5 has a decoration, which he needs to correct. After Bob applies
a local Z5 unitary on qubit 5, again the resulting state is the same as
the initial state (qubits 4–6). Note that this is only the case if there is
no noise on qubits 2 and 3, as shown in this figure. In general, one
obtains the state given in Eq. (14).

FIG. 7. Effect of using Protocol 2 instead of the original CKDdV
protocol. The input states are given by EWN(|H0〉〈H0|, p). We first
apply Protocol 1 three times and compute the fidelity F3 of the
output states. Then we apply Protocol 2 on the same input states
and compare how many more output states of fidelity greater than
or equal to F3 we get. The increase of output states by using Protocol
2 is shown, depending on the fidelity F0 of the input states.
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FIG. 8. Linear 3-colorable and 3-regular hypergraph states with
four, five, and six qubits. The colors are denoted by A, B, and C. Note
that two qubits which have the same color, for example, qubits 1 and
4, still belong to different parties. Since we are restricted to local
operations, we can only perform operations on qubits of the same
party, which in general is not on qubits of the same color.

output states from using Protocol 2 instead of the CKDdV
protocol.

A similar idea of reusing states which get discarded in most
protocols was proposed in Ref. [26]. Zhou et al. considered
Bell states and reused states from the last step of the protocol,
which is equivalent to step (iii) in the CKDdV protocol.

V. GENERALIZATION TO MORE QUBITS

The methods described here can also be applied to states
with more qubits and different arrangement of edges. We
restrict our attention to hypergraphs which are k-regular and
k-colorable. A hypergraph is k-regular if all edges e ∈ E have
order k and it is k-colorable if it is possible to color vertices
of a hypergraph using k colors such that no two vertices
of the same color share a common edge. For example, the
hypergraph states shown in Figs. 2 and 8 are 3-colorable and
3-regular. In this section we discuss purification protocols
to hypergraph states of more than three qubits which are
3-colorable and 3-regular. In the following, we will denote the
colors by A, B, and C.

The protocols can be generalized by letting all parties hold-
ing qubits of color A do what was described for Alice before.
In the same way, parties holding a qubit of color B or C do
what was described for Bob or Charlie, respectively. For an
explicit formulation of the generalized protocol, see Ref. [27].

We analyzed linear 3-colorable states with up to six
qubits under the influence of global white noise, dephas-
ing, and depolarization. Specifically, the states to which we
want to purify are U123U234|+〉⊗4, U123U234U345|+〉⊗5, and
U123U234U345U456|+〉⊗6, as shown in Fig. 8. We compare the
noise threshold pmin for the sequence proposed in Ref. [27]
with new sequences S1, found using methods described in
Sec. IV A.

Our results are shown in Table IV. One sees that in the case
of white noise for more qubits, the differences in the noise
threshold pmin become more significant. Therefore, especially
in these cases it is more relevant to find good sequences. For
the tested states with dephasing and depolarization noise, the
noise threshold is constant or varies slightly, respectively.

TABLE IV. Noise thresholds pmin for the sequence SCKDdV pro-
posed in Ref. [27] and new sequences S1. The index of the state
gives the number of qubits. In the case of Edepo(ρ3, p) we found
that the sequence from Ref. [27] was already the best sequence of
length 9. Therefore, there is no improvement of pmin. When we found
(nontrivially) different sequences of the same length, we marked
them with an asterisk.

pmin from pmin

Parameter SCKDdV from S1 Sequence S1

EWN(ρ3, p) 0.6007 0.5878 ABC-CBA-ABC
EWN(ρ4, p) 0.4633 0.4396 ABC-ACB-BCA
EWN(ρ5, p) 0.3901 0.3486 ABC-ABC-CBA
EWN(ρ6, p) 0.3341 0.3017 ABC-ACB-BAC*
Edeph(ρ3, p) 0.8013 0.7803 ABC-CBA-CBA
Edeph(ρ4, p) 0.8014 0.7803 ABC-CBA-CBA*
Edeph(ρ5, p) 0.8014 0.7803 ABC-CBA-CBA*
Edeph(ρ6, p) 0.8014 0.7803 ABC-CBA-CBA*
Edepo(ρ3, p) 0.8137 0.8136 ABC-CAB-BCA
Edepo(ρ4, p) 0.8306 0.8122 BAC-CBA-CAB
Edepo(ρ5, p) 0.8358 0.8128 ACB-BCA-CBA
Edepo(ρ6, p) 0.8144 0.8121 ABC-CBA-CAB

VI. CONCLUSION AND OUTLOOK

In this paper we discussed protocols for entanglement
purification of hypergraph states. First, we reformulated the
CKDdV protocol in a graphical language. This offers an al-
ternative way to understand the protocol and, furthermore, it
allows one to search for systematic extensions. Consequently,
we introduced several improvements of the original protocol.
These improvements are based on different sequences, adap-
tive schemes, and methods to recycle some of the unused
states. While these modifications are conceptually interesting
and can indeed improve the performance in various examples,
the amount of improvement in realistic examples seems rather
modest.

The problem of finding efficient sequences is also relevant
for purification protocols for other states and was raised, for
example, in Ref. [4] in the context of 2-colorable graph states.
The methods developed here can be applied to this case, but
also to all purification protocols which follow the concept
introduced by Bennett et al. [1].

A further open question is how the effects of our methods
scale with the number of qubits. Another open question is
whether Protocol 2 can be further improved so that the effect
becomes more significant.
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