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Wave-particle duality, as complementarity displayed in interferometry, has been investigated extensively from
both theoretical and experimental perspectives. In this work, we quantify coherence in multipath interference
via quantum Fisher information and illuminate its basic properties. We prove that any rational quantifier
of coherence satisfying monotonicity under incoherent operations is nonincreasing in the presence of path
detectors. This quantitatively implies that increase on the path information will lead to the loss of coherence
or interference (wave feature), which is consistent with wave-particle duality. Furthermore, we provide an
operational illustration of wave feature as quantum Fisher information of phase shift parameters encoded in
each interference path. By dividing the variance of a quantum state relative to a von Neumann measurement
into quantum uncertainty and classical uncertainty, we establish a coherence-predictability-correlations triality
relation, with coherence (wave feature) quantified by quantum Fisher information, predictability quantified by
purity of a classical probability distribution, and correlations quantified by classical uncertainty relative to the
von Neumann measurement determined by the interference paths. Finally, we make a comparison between this
triality relation and the wave-particle-mixedness triality relation in the literature.
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I. INTRODUCTION

Wave-particle duality, as a manifestation of Bohr’s comple-
mentarity, is one of the most intriguing features of quantum
mechanics [1,2]. Its quantitative study was initiated by
Wootters and Zurek [2]. Subsequently, lots of theoretical
and experimental researches on wave-particle duality have
emerged and a variety of complementarity relations have been
established. The key to quantitatively formulate wave-particle
duality is to find reasonable measures of the wave feature and
the particle feature. In two-path interference, the wave feature
is often quantified by the conventional fringe visibility [3].
In terms of this measure, a visibility-predictability duality
relation was established in Ref. [4], and some visibility-
distinguishability duality relations involving path detectors
were derived in Refs. [5–7].

However, some problems of the conventional fringe vis-
ibility in quantifying wave feature in multipath interference
were pointed out in Refs. [8–10] from both theoretical and
experimental aspects, and numerous efforts have been made
to find proper measures of the wave feature in multipath
interference. Some criteria for bona fide measures of visibil-
ity and predictability were proposed in Refs. [11,12], some
coherence-distinguishability duality relations involving the l1
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norm as a measure of the wave feature were established in
Refs. [13,14]. Later, several measures of coherence, such as
coherence in terms of the l1 norm, the l2 norm (Hilbert-
Schmidt norm), relative entropy, and Wigner-Yanase skew
information, have been employed to quantify the wave feature
in multipath interference, and various wave-particle duality
relations have been established [10,15–23].

Wave-particle duality has been further investigated and
discussed in more general settings. For example, the studies
on wave-particle duality relation have been extended from the
symmetric beam interference to asymmetric cases [24–26],
and from orthogonal pointers to nonorthogonal pointers and
even nondistinguishable pointers [27,28]. Experimental inves-
tigations of wave-particle duality relations have also received
much attention [29–35].

Most wave-particle duality relations are expressed in terms
of inequalities, which suffer from the problem that simulta-
neous increase or decrease of both the wave feature and the
particle feature may be possible. Indeed, such a phenomenon
has been observed under certain conditions as verified
experimentally in Ref. [32]. Thus it is desirable to com-
plete the conventional wave-particle duality (in the form of
inequalities) and obtain complete knowledge of complemen-
tarity. So far, some complete complementarity relations have
been established, in which correlations with other systems
play a vital role. For example, a visibility-predictability-
entanglement triality relation in two-path interference was
established in Ref. [36], with entanglement as a key entry
for completing the wave-particle duality. By noticing that
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entanglement connects distinguishability with predictability, a
coherence-predictability-entanglement triality relation in mul-
tipath interference was established in Ref. [37]. From the
viewpoint of uncertainty decomposition, several triality re-
lations involving quantum uncertainty, classical uncertainty,
and predictability were obtained in Ref. [38], with quantum
uncertainty quantified by coherence via Wigner-Yanase skew
information, the l1 norm, the l2 norm, and relative entropy.
Recently, an exact complementarity relation called the wave-
particle-mixedness relation was derived in Ref. [39], in which
the wave feature is measured by state uncertainty, the particle
feature is measured by path certainty, and mixedness is mea-
sured by linear entropy.

In this work, we quantify coherence via quantum Fisher
information [40] and then employ this coherence to quantify
the wave feature in multipath interference. We explore its
basic properties and operational meaning in metrology and
further establish a coherence-predictability-correlations trial-
ity relation.

The remainder of the work is structured as follows. In
Sec. II, we employ coherence based on quantum Fisher infor-
mation as an interference visibility measure and illustrate its
operational implication in metrology. In Sec. III, we introduce
a quantifier of quantum correlations via coherence difference
and establish a coherence-predictability-correlations triality
relation. In Sec. IV, we make a comparison between the
triality relation established in this work and the wave-particle-
mixedness triality relation established in Ref. [39]. Finally, we
conclude with a summary in Sec. V.

II. MULTIPATH INTERFERENCE VIA QUANTUM
FISHER INFORMATION

In this section, we first recall the coherence measure via
quantum Fisher information and its basic properties. Then
we employ it to quantify the wave feature in multipath in-
terference and explore its operational implication in quantum
metrology.

A. Coherence via quantum Fisher information

For a quantum state ρ in an n-dimensional Hilbert space
H with {| j〉 : j = 1, 2, . . . , n} being an orthornormal basis
(computational basis, reference basis), a convenient measure
of coherence of ρ relative to {| j〉 : j = 1, 2, . . . , n} (equiv-
alently, the corresponding von Neumann measurement � =
{� j = | j〉〈 j| : j = 1, 2, . . . , n}) may be defined via quantum
Fisher information as [40–42]

F (ρ,�) =
∑

j

F (ρ, | j〉〈 j|), (1)

where

F (ρ, A) = 1
4 tr(ρL2)

is the quantum Fisher information of ρ (relative to the ob-
servable A), and L is the symmetric logarithmic derivative
determined by

i[ρ, A] = 1
2 (Lρ + ρL).

Equation (1) is a natural extension of the coherence quanti-
fier involving Wigner-Yanase skew information introduced in
Refs. [43,44].

F (ρ,�) has the following properties [41,42].
(i) 0 � F (ρ,�) � 1 − 1/n. F (ρ,�) = 0 if and only if

ρ is a diagonal state (incoherent state) in the reference ba-
sis {| j〉 : j = 1, 2, . . . , n}, i.e.,

∑
j � jρ� j = ρ. F (ρ,�) =

1 − 1/n if and only if ρ = |ψ〉〈ψ |, with |ψ〉 = ∑
j eiθ j | j〉/√n

being a maximally superposing (coherent) state. Here θ j are
any real constants.

(ii) F (UρU †,�) = F (ρ,U †�U ) for any unitary opera-
tor U .

(iii) F (ρ,�) is nonincreasing under any incoherent oper-
ation in the sense that

F (�(ρ),�) � F (ρ,�)

for any operation � mapping incoherent states to incoherent
states.

(iv) F (ρ,�) is convex in ρ in the sense that

F

( ∑
l

plρl ,�

)
�

∑
l

pl F (ρl ,�)

for any states ρl and numbers pl � 0,
∑

l pl = 1.
It is obvious that F (ρ,�) satisfies the criteria for a measure

of quantum uncertainty as postulated in Ref. [45]. Conse-
quently, F (ρ,�) can be naturally interpreted as quantifying
quantum uncertainty of the von Neumann measurement � in
the state ρ.

Let ρ = ∑
l λl |φl〉〈φl | be the spectral decomposition of ρ,

with λl being the eigenvalues and |φl〉 being the correspond-
ing normalized eigenvectors, and let � = {� j = | j〉〈 j| : j =
1, 2, . . . , n} be a von Neumann measurement, then by use of
a result in Ref. [46], F (ρ,�) can be evaluated as

F (ρ,�) =
∑
jll ′

(λl − λl ′ )2

2(λl + λl ′ )
|〈φl | j〉|2|〈φl ′ | j〉|2

= 1 −
∑
jll ′

2λlλl ′

λl + λl ′
|〈φl | j〉|2|〈φl ′ | j〉|2. (2)

In the next subsection, we use the coherence via quantum
Fisher information to quantify the wave feature in multipath
interference.

B. Interference via quantum Fisher information

Consider an n-path interference as depicted in Fig. 1.
The interference paths can be described by the von Neu-
mann measurement � = {� j = | j〉〈 j| : j = 1, 2, . . . , n}. Let
ρ be the state after the beam splitter. Various efforts have
been devoted to quantifying the wave feature of the state
ρ. Dürr suggested that any rational interference visibility
(wave feature) quantifier V (ρ|�) should satisfy the following
criteria [11].

(i) V (ρ|�) reaches its global minimum if the state ρ =
| j〉〈 j| for some j, and it reaches its global maximum if
ρ is a pure state satisfying ρ j j = 〈 j|ρ| j〉 = 1/n for j =
1, 2, . . . , n.

(ii) V (ρ|�) is invariant under permutations of the path la-
bels, i.e., V (ρ|P�P†) = V (ρ|�) for any permutation matrix
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FIG. 1. Schematic of n-path interference without path detectors.

P (relative to the orthonormal basis {| j〉 : j = 1, 2, . . . , n}),
and P�P† = {P| j〉〈 j|P† : j = 1, 2, . . . , n}.

(iii) V (ρ|�) is convex in ρ.
(iv) V (ρ|�) is a continuous function of the matrix ele-

ments of ρ.
From the general rationale of wave-particle duality, we

expect that any reasonable quantifier of wave feature in
multipath interference compatible with the complementary
principle should not increase when one adds path detectors
to the interference paths, which may acquire path information
and thus increase path distinguishability (particle feature).
This motivates us to suggest the following property for a
quantifier of the wave feature.

(v) V (ρ|�) does not increase under the addition of path
detectors.

Comparing the properties of F (ρ,�) with the criteria in
Ref. [11], it is easy to verify that F (ρ,�) satisfies the above
criteria (i)–(iv). In the following, we proceed to prove that
criteria (v) is also satisfied for F (ρ,�). For this purpose, we
first formulate multipath interference with path detectors.

Consider an n-path interference with a path detector Dj in
the interference path | j〉, j = 1, 2, . . . , n, as depicted in Fig. 2.
Let H be the n-dimensional Hilbert space of the system S

FIG. 2. Schematic of n-path interference with the path detector
Dj in path | j〉.

spanned by the orthonormal basis {| j〉 : j = 1, 2, . . . , n}. Let
HDj be the Hilbert space of the jth path detector Dj with
dimension d j , j = 1, 2, . . . , n. Let ρ be the initial state of the
system S and τ j be the initial state of the path detector Dj

associated with the path | j〉, j = 1, 2, . . . , n. Then the initial
state of the composite system SD1 · · · Dn is

ρSD = ρ ⊗ τD,

with τD = τ1 ⊗ τ2 ⊗ · · · ⊗ τn being the initial state of the n
path detectors D = D1D2 · · · Dn. We model the interaction be-
tween the system S and the path detectors D as the controlled
unitary operation

U =
∑

j

| j〉〈 j| ⊗ Uj,

with Uj = 11 ⊗ · · · ⊗ Vj ⊗ · · · ⊗ 1n, Vj being a unitary opera-
tor, and 1 j being the identity operator on HDj , j = 1, 2, . . . , n.

The state of the composite system SD after interaction
(with the path detectors) is

ρ̃SD = UρSDU † =
∑

jk

ρ jk| j〉〈k| ⊗ UjτDU †
k ,

and the reduced state of the system S is

ρ̃ = trD(ρ̃SD) =
∑

jk

ρ jktr(UjτDU †
k )| j〉〈k|,

with ρ jk = 〈 j|ρ|k〉, j, k = 1, 2, . . . , n.
Let {|αl〉 : l = 1, 2, . . . , d} be an orthonormal basis of

the Hilbert space HD1 ⊗ HD2 ⊗ · · · ⊗ HDn associated with
the n-path detectors with d = d1d2 · · · dn, and let τD =∑

m μm|ψm〉〈ψm| be the spectral decomposition of τD, with
μm being its eigenvalues and |ψm〉 being its normalized eigen-
vectors. In terms of the above preparations, the quantum
channel induced by the n-path detectors can be represented
as

ED(ρ) = ρ̃ =
∑
lm

ElmρE†
lm,

with the Kraus operators

Elm =
∑

j

√
μm〈αl |Uj |ψm〉| j〉〈 j|.

It is obvious that ED is an incoherent channel relative
to the von Neumann measurement � = {� j = | j〉〈 j| : j =
1, 2, . . . , n}, which maps incoherent states to incoherent
states. Based on this fact, we obtain the following result.

Proposition 1. Any coherence measure Q satisfying the
monotonicity condition, i.e., Q(E (ρ),�) � Q(ρ,�) for any
incoherent channel E , is nonincreasing under the effect of
n-path detectors, i.e.,

Q(ED(ρ),�) � Q(ρ,�).

In particular, for the coherence measure via quantum Fisher
information, we have

F (ED(ρ),�) � F (ρ,�),

which shows that getting some knowledge of path informa-
tion about the particle will decrease the wave feature of the
particle. This is in line with Bohr’s complementary principle.
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FIG. 3. Schematic of n-path interference with the phase shift eiθ j

in path | j〉.

From the above discussions, we know that F (ρ,�) is a
valid interference visibility (wave feature) quantifier.

C. An operational implication of interference in metrology

In this section, we provide an illustration of F (ρ,�)
(wave feature via quantum Fisher information) in quantum
metrology.

Consider an n-path interference with a phase shift in each
interference path as depicted in Fig. 3. The interference path
can be described by the von Neumann measurement � =
{� j = | j〉〈 j| : j = 1, 2, . . . , n} with each path undergoing a
phase shift eiθ j . Let ρ be the state after the beam splitter. Then
the final state passing through the n paths is

ρθ = UθρU †
θ
, (3)

where

Uθ =
∑

j

eiθ j � j (4)

and θ = (θ1, θ2, . . . , θn) ∈ [0, 2π )n. Thus ρθ encodes the in-
formation of the parameters θ j . In order to explore the role
of the phase shift parameters in quantifying wave features
in multipath interference, it is desirable to first study the
quantum Fisher information matrix F = (Fjk ) of ρθ, which
is defined as [47]

Fjk = 1
8 tr(ρθ (LjLk + LkL j )),

where the symmetric logarithmic derivatives Lj are defined as
operator solutions to the equations

∂

∂θ j

ρθ = 1

2
(ρθLj + Ljρθ ), j = 1, 2, . . . , n.

Let ρ = ∑
l λl |φl〉〈φl | be the spectral decomposition of ρ,

with λl being the eigenvalues and |φl〉 being the corresponding
normalized eigenvectors. Direct calculations show that the
quantum Fisher information matrix of ρθ can be evaluated as
F = (Fjk ), with

Fjk = δ jk〈 j|ρ| j〉 −
∑

ll ′

2λlλl ′

λl + λl ′
Re(〈 j|φl〉〈φl |k〉〈k|φl ′ 〉〈φl ′ | j〉)

and δ jk being the Kronecker delta function. In particular, the
quantum Fisher information of ρθ for the parameter θ j is

Fj j = 〈 j|ρ| j〉 −
∑

ll ′

2λlλl ′

λl + λl ′
|〈φl | j〉|2|〈φl ′ | j〉|2 = F (ρ,� j )

for j = 1, 2, . . . , n, which implies that

F (ρ,�) =
∑

j

Fj j, (5)

i.e., the wave feature of ρ relative to the interference path � =
{� j = | j〉〈 j| : j = 1, 2, . . . , n}, as quantified by F (ρ,�),
coincides with the sum of the quantum Fisher information of
each phase shift parameter θ j encoded in the state ρθ . More-
over, F (ρ,�) provides a lower bound to the total variance of
unbiased estimation for the parameter θ = (θ1, θ2, . . . , θn), as
the following proposition shows.

Proposition 2. Let ρθ be defined by Eq. (3) and
θ̂ = (θ̂1, θ̂2, . . . , θ̂n) be an unbiased estimator of θ =
(θ1, θ2, . . . , θn). Then∑

j

Var(ρθ, θ̂ j ) � n2

F (ρ,�)
, (6)

with Var(ρθ, θ̂ j ) being the variance of the estimator θ̂ j , j =
1, 2, . . . , n.

Now we proceed to the proof of the above statement.
Let θ̂ = (θ̂1, θ̂2, . . . , θ̂n) be an unbiased estimation of θ =

(θ1, θ2, . . . , θn), then the covariance matrix Cov(ρθ, θ̂) of θ̂ in
the state ρθ satisfies the inequality [40,48]

Cov(ρθ, θ̂) � F−1,

which implies that the total variance of the estimation θ̂ is
bounded as [49]∑

j

Var(ρθ, θ̂ j ) � trF−1 �
∑

j

1

Fj j
.

By the inequality

n
1
x1

+ 1
x2

+ · · · + 1
xn

� x1 + x2 + · · · + xn

n

for any positive numbers x j , we further obtain

∑
j

Var(ρθ, θ̂ j ) � n2∑
j Fj j

= n2

F (ρ,�)
.

III. COHERENCE-PREDICTABILITY-CORRELATIONS
COMPLEMENTARITY

The wave-particle duality states that the wave feature and
the particle feature are mutually exclusive. Quantitative stud-
ies of wave-particle duality relations have attracted much
interest. By completing the wave-particle duality relations
which are often expressed in terms of inequalities, several
triality relations have been established from different per-
spectives, such as the predictability-coherence-entanglement
complementary relation, the wave-particle-mixedness com-
plementary relation, and so on [39].

In this section, by exploiting the coherence difference
as a measure of correlations, we establish a new triality
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relation, i.e., coherence-predictability-correlations comple-
mentary relation, which provides an operational interpretation
of correlations in completing wave-particle duality.

Let ρ be a state and |�〉〈�| be a purified state of ρ with an
auxiliary system a, i.e., tra|�〉〈�| = ρ. A useful way to detect
certain correlations encoded in |�〉〈�| has been proposed in
Refs. [50,51] via the coherence difference induced by local
channels. Following this line, a measure of correlations in
|�〉〈�| detected by the local von Neumann measurement � =
{� j = | j〉〈 j| : j = 1, 2, . . . , n} can be defined via quantum
Fisher information as

C(ρ,�) = F (|�〉〈�|,� ⊗ 1a) − F (ρ,�), (7)

with � ⊗ 1a = {| j〉〈 j| ⊗ 1a : j = 1, 2, . . . , n} being a Lüders
measurement and 1a being the identity operator on the auxil-
iary system a. It turns out that

C(ρ,�) = V (ρ,�) − F (ρ,�), (8)

where

V (ρ,�) =
∑

j

V (ρ,� j ) = 1 −
∑

j

〈 j|ρ| j〉2 (9)

is the variance of ρ relative to the von Neumann measurement
�, which quantifies the total uncertainty of � in ρ [52], and
V (ρ, X ) = trρX 2

0 is the variance of ρ relative to the observ-
able X , with X0 = X − trρX . This follows from the facts

V (|�〉〈�|, X ⊗ 1a) = V (ρ, X ),

V (|�〉〈�|, X ⊗ 1a) = F (|�〉〈�|, X ⊗ 1a),

for any observable X .
It is easy to verify that C(ρ,�) satisfies the following

properties.
(i) 0 � C(ρ,�) � V (ρ,�), and C(ρ,�) = 0 if ρ is a

pure state, C(ρ,�) = V (ρ,�) if and only if [ρ,� j] =
ρ� j − � jρ = 0 for any j = 1, 2, . . . , n, or equivalently,∑

j � jρ� j = ρ.

(ii) C(ρ,�) is concave in ρ.
Compared with the properties of measures of classical

and quantum uncertainties postulated in Ref. [45], we know
that C(ρ,�) and F (ρ,�) quantify the classical and quantum
uncertainties of � in ρ, respectively. Thus, the classical uncer-
tainty of � in ρ is essentially the correlations in the purified
state, as detected locally by �.

In the following, we employ the quantifier of correlations
C(ρ,�) to complete wave-particle duality and thus also pro-
vide an operational interpretation of C(ρ,�).

For a state ρ and the von Neumann measurement � =
{� j = | j〉〈 j| : j = 1, 2, . . . , n} associated with the n in-
terference paths, the probability distribution induced by
the von Neumann measurement � is {p j = 〈 j|ρ| j〉 : j =
1, 2, . . . , n}, which indicates the path information of particle.
By employing the purity of this probability distribution [39]

P(ρ,�) =
n∑

j=1

〈 j|ρ| j〉2 (10)

as a measure of path predictability (particle feature), we obtain
the following coherence-predictability-correlations comple-
mentary relation.

FIG. 4. Coherence-predictability-correlations triality as a resolu-
tion of unity.

Proposition 3. For a state ρ and the von Neumann measure-
ment � induced by the interference paths, we have

F (ρ,�) + P(ρ,�) + C(ρ,�) = 1. (11)

Proposition 3 follows readily from Eqs. (8)–(10).
This triality relation is illuminated in Fig. 4.

IV. COMPARISON

In this section, we make a comparison between the
triality relation established in this work and the wave-particle-
mixedness triality relation established in Ref. [39].

Let ρ be a state and � = {� j = | j〉〈 j| : j = 1, 2, . . . , n}
be a von Neumann measurement. The coherence of ρ relative
to � via the Hilbert-Schmidt norm is defined as [13]

CHS(ρ,�) = ‖ρ − �(ρ)‖2 =
∑
j 	=k

|〈 j|ρ|k〉|2, (12)

with ‖A‖2 = trA†A being the squared Hilbert-Schmidt norm
of operator A.

Due to the simple structure and important implication of
the Hilbert-Schmidt norm, the coherence via Hilbert-Schmidt
norm has been employed to quantify interference visibil-
ity [11,38,53]. For the convenience of subsequent comparison,
it is desirable to explore the connections between the co-
herence via quantum Fisher information and that via the
Hilbert-Schmidt norm. In fact, the coherence via the Hilbert-
Schmidt norm provides a tight lower bound to the coherence
via quantum Fisher information, as summarized in the follow-
ing result.

Proposition 4. For a state ρ and a von Neumann measure-
ment � = {� j = | j〉〈 j| : j = 1, 2, . . . , n}, we have

CHS(ρ,�) � F (ρ,�).

The equality holds if and only if ρ satisfies one of the follow-
ing conditions:

(a) ρ is a pure state.
(b) ρ = τ ⊕ 0n−2 with τ an invertible state over the space

spanned by some {| j1〉, | j2〉} ⊆ {| j〉 : j = 1, 2, . . . , n}.
(c) ρ is an incoherent state, i.e., a diagonal matrix relative

to the orthonormal basis {| j〉 : j = 1, 2, . . . , n}.
This shows that the coherence via quantum Fisher informa-

tion and that via the Hilbert-Schmidt norm are the same for all
pure states, all qubit states, and all incoherent states. We give
the proof of Proposition 4 in the Appendix.

Now we consider a simple case for which CHS(ρ,�) <

F (ρ,�). Consider the block-diagonal state ρ = p1ρ1 ⊕ p2ρ2

in the orthonormal basis {| j〉 : j = 1, 2, . . . , n} related to
� with ρ1 and ρ2 being states on subspaces H1 and H2,
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respectively, and p1, p2 � 0 satisfying p1 + p2 = 1, then we
have

CHS(p1ρ1 ⊕ p2ρ2,�) = p2
1CHS(ρ1,�) + p2

2CHS(ρ2,�),

F (p1ρ1 ⊕ p2ρ2,�) = p1F (ρ1,�) + p2F (ρ2,�),

where the ρl on the right side of each equality means the
corresponding embedded state on the Hilbert space Hl , l = 1
and 2. Based on the above result, for the three-dimensional
state

ρ = 1

12

⎛
⎝5 1 0

1 5 0
0 0 2

⎞
⎠,

we have

CHS(ρ,�) = 1
72 < 1

60 = F (ρ,�).

In the following, we derive a simple relation between co-
herence via quantum Fisher information and that via the l1
norm by combining two existing results. It is known that

I (ρ,�) � 2

n − 1
Cl1 (ρ,�)

for any invertible state ρ, with [13,43]

I (ρ,�) = 1

2

∑
j

‖[
√

ρ, | j〉〈 j|]‖2 = 1 −
∑

j

〈 j|√ρ| j〉2,

Cl1 (ρ,�) =
∑
j 	=k

|〈 j|ρ|k〉|,

respectively. Here [X,Y ] = XY − Y X is the commutator be-
tween operators X and Y. By the relation

I (ρ,�) � F (ρ,�) � 2I (ρ,�),

derived in Ref. [46], we further obtain

CHS(ρ,�) � F (ρ,�) � 4

n − 1
Cl1 (ρ,�)

for any invertible state ρ > 0.
The following wave-particle-mixedness triality relation

W (ρ,�) + P(ρ,�) + M(ρ) = 1 (13)

was established in Ref. [39]. Here the measure of the wave
feature W (ρ,�) is quantified by the uncertainty of the state ρ

(relative to the von Neumann measurement �) via variance,
i.e.,

W (ρ,�) =
∑

j

V (| j〉〈 j|, ρ) =
∑
j 	=k

|〈 j|ρ|k〉|2. (14)

Comparing Eqs. (12) and (14), one has

W (ρ,�) = CHS(ρ,�).

The measure of the particle feature P(ρ,�) is quantified by
the path certainty in the state ρ, i.e.,

P(ρ,�) = 1 −
∑

j

V (ρ, | j〉〈 j|) =
∑

j

|〈 j|ρ| j〉|2. (15)

The measure of mixedness M(ρ) of the state ρ is quantified
by the linear entropy, i.e.,

M(ρ) = 1 − trρ2. (16)

Since the entropy of a state can be interpreted as the cor-
relations in the corresponding purified state, the above triality
relation can also be regarded as the coherence-predictability-
correlations complementary relation.

By Proposition 4 and the complementary relations (11)
and (13), we know that

F (ρ,�) � CHS(ρ,�), C(ρ,�) � M(ρ).

In particular, when ρ is a qubit state or a pure state, we have

F (ρ,�) = CHS(ρ,�), C(ρ,�) = M(ρ),

i.e., the two complementary relations coincide for these cases.
For the three-dimensional state

ρ = 1

12

⎛
⎝5 1 0

1 5 0
0 0 2

⎞
⎠,

we have

CHS(ρ,�) = 1
72 , P(ρ,�) = 3

8 , M(ρ) = 11
18 ,

and

F (ρ,�) = 1
60 , P(ρ,�) = 3

8 , C(ρ,�) = 73
120 .

In the following, we further compare these complementary
relations for the two-qubit Werner states and investigate the
behavior of each information quantity relative to the state
parameter. Consider the two-qubit Werner states

w = 1 − μ

4
1 ⊗ 1 + μ|�−〉〈�−|,

with −1/3 � μ � 1 and |�−〉 = (|01〉 − |10〉)/
√

2.

For the von Neumann measurement � =
{|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|}, we have

F (w,�) = μ2

1 + μ
, P(w,�) = 1 + μ2

4
,

C(w,�) = 3 + 3μ − 5μ2 − μ3

4(1 + μ)
, CHS(w,�) = μ2

2
,

M(w) = 3

4
(1 − μ2),

with −1/3 � μ � 1, respectively. It is interesting to compare
the above information quantities, as depicted in Fig. 5.

From Fig. 5, we find the following facts. First, the coher-
ence via quantum Fisher information is strictly larger than that
via the Hilbert-Schmidt norm except for the maximally mixed
state and the singlet state. Second, coherence via quantum
Fisher information and the Hilbert-Schmidt norm, as well
as path predictability, are decreasing with the parameter μ ∈
[−1/3, 0] and increasing with the parameter μ ∈ (0, 1]. The
quantifier of correlations in the purified state of w detected
by the von Neumann measurement � and the mixedness of
w are both increasing with the parameter μ ∈ [−1/3, 0] and
decreasing with the parameter μ ∈ (0, 1].

V. SUMMARY

We have investigated the coherence in multipath inter-
ference via quantum Fisher information and have proven
that Hilbert-Schmidt norm coherence provides a tight lower
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FIG. 5. Behaviors of F (w, �), P(w,�), Q(w,�), CHS(w,�),
and M(w) with the parameter μ.

bound for coherence via quantum Fisher information with
the equality holding for pure states, rank-2 states under the
corresponding reference basis, and incoherent states. We have
revealed basic properties of the coherence quantifier and have
shown that it is nonincreasing under the action of path detec-
tors. Moreover, we have provided an operational illustration of
the wave feature as quantum Fisher information of the phase
shift parameters encoded in the interference paths.

In terms of the decomposition of variance into classi-
cal and quantum parts, and by use of coherence based on
quantum Fisher information, we have derived a coherence-
predictability-correlations complementary relation. This com-
plementary relation can alternatively be interpreted as pro-
viding an operational interpretation of the quantifier of
correlations defined via coherence difference. We have com-
pared the triality relation derived in this work and the triality
relation established in Ref. [39] for two-qubit Werner states.

We remark that the corresponding results can be extended
to the coherence measure via metric-adjusted skew informa-
tion, which includes quantum Fisher information based on
the symmetric logarithmic derivative as a special case. In
addition, compared with single particle interference, multipar-
ticles can enhance interference effects and play a vital role in
various quantum phenomena and applications. It is desirable
to further investigate the implications of coherence and corre-
lations in multipath interference for the multiparticle systems
via quantum Fisher information and explore their applications
in quantum metrology.
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APPENDIX

Here we present the detailed proof of Proposition 4.

Let ρ = ∑
k λk|φk〉〈φk| be the spectral decomposition of ρ,

with {|φk〉 : k = 1, 2, . . . , n} being an orthonormal basis, then

trρ2 =
∑
jkl

λ2
k + λ2

l

2
|〈φk| j〉|2|〈φl | j〉|2

and ∑
j

〈 j|ρ| j〉2 =
∑
jkl

λkλl |〈φk| j〉|2|〈φl | j〉|2.

Thus,

F (ρ,�) − CHS(ρ,�)

=
∑
jkl

(λk − λl )2

2(λk + λl )
|〈φk| j〉|2|〈φl | j〉|2 − trρ2 +

∑
j

〈 j|ρ| j〉2

=
∑
jkl

(
(λk − λl )2

2(λk + λl )
− λ2

k + λ2
l

2
+ λkλl

)
|〈φk| j〉|2|〈φl | j〉|2

=
∑
jkl

(λk − λl )2(1 − λk − λl )

2(λk + λl )
|〈φk| j〉|2|〈φl | j〉|2 � 0

and F (ρ,�) = CHS(ρ,�) if and only if, for any j, k, or l ,

(λk − λl )
2(1 − λk − λl )|〈φk| j〉|2|〈φl | j〉|2 = 0. (A1)

This equation can be exhaustively analyzed as follows.
Case 1. Suppose that ρ is a pure state, then ρ has only one

nonzero eigenvalue 1, and thus Eq. (A1) is satisfied.
Case 2. Suppose that ρ is a state of rank 2 with λ1 and λ2

being two nonzero eigenvalues. If 0 is not an eigenvalue of
ρ, i.e., ρ is a qubit, then Eq. (A1) is satisfied. If λ3 = · · · =
λn = 0 is an eigenvalue of ρ, then Eq. (A1) is equivalent to

|〈φk| j〉|2|〈φl | j〉|2 = 0

for all k = 3, . . . , n, l = 1 and 2, and any j. This means
that the support over the basis {| j〉 : j = 1, 2, . . . , n} of any
eigenvector associated with nonzero eigenvalues is orthogonal
to that of any eigenvector associated with a zero eigenvalue.
Thus, the state ρ satisfying Eq. (A1) has the form ρ = τ ⊕
0n−2.

Case 3. Suppose that ρ is a state of rank more than 2.
Let λ1, λ2, . . . , λt be all different eigenvalues of ρ with mul-
tiplicity n1, n2, . . . , nt , respectively, and |φ1〉, |φ2〉, . . . , |φt 〉
be the corresponding eigenvectors, then

∑t
k=1 λknk = 1 and

(λk − λl )2(1 − λk − λl ) > 0 for any k 	= l ∈ {1, 2, . . . , t}. In
this case, the condition (A1) can be rewritten as

|〈φk| j〉|2|〈φl | j〉|2 = 0

for any k 	= l = 1, 2, . . . , t and any j, which shows that the
supports of eigenvectors associated with different eigenvalues
are pairwise orthogonal. Thus any state satisfying Eq. (A1) is
of the form

ρ = λ1γ1 ⊕ λ2γ2 ⊕ · · · ⊕ λtγt

with respect to the orthonormal basis {| j〉 : j = 1, 2, . . . , n}.
Here γk ⊕ 0n−nk is the sum of all eigenprojectors associated
with the eigenvalue λk . Therefore, γk ⊕ 0n−nk must be the
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projection
∑nk

l=1 |kl〉〈kl | with {kl : l = 1, 2, . . . , nk} being a
subset of {1, 2, . . . , n}, which further implies that ρ is a

diagonal matrix relative to the basis {| j〉 : j = 1, 2, . . . , n},
i.e., ρ is an incoherent state.
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