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Partial information decomposition (PID) takes one step beyond Shannon’s theory in decomposing the informa-
tion two variables, A and B, possess about a third variable, T , into distinct parts: unique, shared (or redundant),
and synergistic information. Here we show how these concepts can be defined in a quantum setting. We apply
a quantum PID to scrambling in quantum many-body systems, for which a quantum-theoretic description has
been proven to be productive. Unique information in particular provides a finer description of scrambling than
does the so-called tri-information.
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I. INTRODUCTION

Partial information decomposition (PID) is a method for
disentangling the relations between multiple random variables
as encoded in their joint probability distribution. The method
was conceived in Ref. [1] and, in the simplest nontrivial
case of three variables [2], defines synergistic information,
unique information, and redundant information. One impor-
tant motivating example for desiring to go beyond Shannon’s
information theory is given in Ref. [3]. There two differ-
ent probability distributions P1 and P2 over three variables
with distinct underlying mechanisms which cannot be dis-
tinguished by any of the standard quantities defined within
Shannon’s theory were presented. Specifically, mutual infor-
mation between any combination of the three variables cannot
distinguish P1 from P2. Hence, linear combinations of mutual
information quantities, such as coinformation [4] (whose neg-
ative is known in the quantum context as tri-information), also
cannot distinguish P1 and P2. The PID, however, does dis-
tinguish them: all newly introduced quantities—synergistic,
unique, and shared information—differ for P1 and P2. (See
Sec. II for the details.)

Using its ability to make distinctions between different
probabilistic mechanisms, the PID has been applied to de-
scriptions and understanding of complex networks [5,6] and
neural networks in particular [7–10]. For an overview of its
uses, see [11]. Several different proposals for PID exist based
on different definitions of either unique information [12,13]
or redundant information [1,14–18] or synergistic information
[19,20]. The idea that a finer distinction between different
types of information is useful was around in neuroscience
[21–23] before the seminal work in Ref. [1].

Since all of Shannon’s classical concepts have been gen-
eralized to quantum settings and since such generalizations
have proven very fruitful [24–27], there ought to be a quantum
version of the PID (QPID) as well. We define our version in
Sec. III. As we will show in Sec. IV, the classical motivating
example distributions P1 and P2 can be quantized such that
standard quantum mutual information quantities (including
tri-information) do not distinguish the two corresponding pure

states |�1〉 and |�2〉. Just like the classical PID, the QPID is
not unique, but the version proposed here does clearly distin-
guish these two pure states. Moreover, when applying the PID
concepts to the issue of quantum scrambling [28] in quantum
many-body systems, the particular choice we make here gives
sensible numerical results, especially for the unique informa-
tion. There is good reason to expect unique information to
play a role in a quantum context. Whereas classical correla-
tions can be shared unrestrictedly, the no-cloning theorem (or
the monogamy of entanglement; see, e.g., Ref. [29]) prohibits
two systems from possessing the same maximal quantum
entanglement as a third system, thus typically forcing both
systems to possess some unique quantum information about
the third system. (See Sec. IV B for details.)

We start by summarizing some relevant aspects of the
classical PID.

II. PID FOR THREE VARIABLES

Consider two classical variables A and B correlated with a
third classical variable T that is the target of our inquiry. We
assume the joint probability distribution P(T , A, B) exists. We
may then define the Shannon entropy [30,31]

H (X ) = −
∑

T ,A,B

P(T , A, B) log2[P(X )], (1)

in which the symbol X may stand for any subset of the vari-
ables A, B, and T as well as for any conditional variable, such
as T |A. We use here logarithms in base 2, so information and
entropy will be given in units of bits.

The amount of information about T we can obtain from
variable A alone is given by the mutual information [30,31]

I (T ; A) = H (T ) − H (T |A) (2a)

= H (T ) + H (A) − H (T , A). (2b)

That is, according to the first line, information equals the
decrease in entropy when going from an initial distribution
P(T ) to a final probability distribution P(T |A). The second
line shows the mutual information thus defined is actually
symmetric between the two variables A and T .
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TABLE I. Probability distribution taken from Ref. [3] (the “tri-
adic” case). Each of the three variables can take on four values, 0,
1, 2, or 3. The information obtainable from P(T |A) is the same as
that obtainable from P(T |B). Namely, when A is even (odd), we can
conclude T is even (odd), but nothing more, and the same conclusion
about T follows from B.

T , A, B Probability

0,0,0 1/8
0,2,2 1/8
2,0,2 1/8
2,2,0 1/8
1,1,1 1/8
1,3,3 1/8
3,1,3 1/8
3,3,1 1/8

An important motivation for extending Shannon’s theory
and going beyond mutual information is the following exam-
ple, taken from Ref. [3]. In Tables I and II we display two
different joint probability distributions for our three variables,
T , A, and B, each taking on four possible values. These two
distributions cannot be distinguished by any measures con-
structed from just the Shannon entropies of the above type.

For example, each has a joint entropy H (T , A, B) = 3, and
for each we have I (T ; A) = I (T ; B) = 1. Using more general
entropy functions, such as the Rényi entropy Hα for α � 0
[32], does not help either in distinguishing the two [3]. As cap-
tions of Tables I and II explain, there is a difference, however,
in what sort of information the individual variables A and B
carry about T . Even though the amounts are the same (1 bit),
in the first case the variables carry the same bit of information,
and in the second they carry different bits. In other words, in
the latter case, each variable carries some information that is
unique with respect to the other variable.

We thus wish to quantify how much information about
T from B is unique (relative to A, that is) and how much
information is unique to A (relative to B). In the context of

TABLE II. Probability distribution taken from Ref. [3] (the
“dyadic” case), which should be contrasted with the distribution from
Table I. Each of the three variables can take on four values, 0, 1,
2, or 3. The information obtainable from P(T |A) differs from that
obtainable from P(T |B). For example, from A = 0 we can conclude
that T = 0 or 1. From B = 0 we can conclude T = 0 or 2. There is a
crucial bit of information we get uniquely from A and another unique
bit we get from B. Together, they fix the value of T (in this example,
we conclude T = 0).

T , A, B Probability

0,0,0 1/8
0,2,1 1/8
1,0,2 1/8
1,2,3 1/8
2,1,0 1/8
2,3,1 1/8
3,1,2 1/8
3,3,3 1/8

the PID we frame this problem as follows. We try to write the
three known standard mutual information quantities I (T ; A),
I (T ; B), and I (T ; A, B) that concern information about T
as linear combinations of four new quantities (only one of
which is therefore linearly independent of the three standard
quantities). Two of these new quantities are meant to quantify
the two types of unique information; the other two then give
redundant and synergistic information as follows:

I (T ; A) = Iunq A\B + Ired A&B,

I (T ; B) = Iunq B\A + Ired A&B,

I (T ; A, B) = Iunq A\B + Iunq B\A + Ired A&B + Isyn A&B. (3)

Since we always consider information about the variable T ,
we suppress reference to it in the quantities appearing on the
right-hand side.

Since we have introduced four quantities but have only
three equations for them, one more constraint is needed to
define the PID. Disagreement has arisen in the literature over
what the fourth equation ought to be. Our view is that there
is, indeed, a freedom of choice and that distinct choices make
sense in different contexts. Here we will make a choice that
can be straightforwardly generalized to a quantum setting (but
there may well be other such choices [33]).

Here is one way to define unique information [20]. We
define for each pair of possible values a and b for the variables
A and B

Zab =
∑

t

P(t |a)1/2P(t |b)1/2, (4)

where the sum is over the values t that the variable T can
take. This is an overlap between two distribution functions, the
Bhattacharyya measure [34]. It lies between 0 (for orthogonal
distributions, which have no common support; this extreme
case cannot occur in our setting) and 1 (for identical distribu-
tions). The idea is that unique information exists only when
the conditional distributions P(t |a) and P(t |b) are different
for at least some possible values of a and b. We define the
non-negative quantity B1 by

B1 = −
∑

a

∑

b

P(a, b) log2(Zab), (5)

where

P(a, b) =
∑

t

P(t, a, b) (6)

is the joint distribution for a and b. An operational meaning
for B1 is given in Ref. [20] in terms of pooling probability
distributions [35–38]: given the two distributions P(t |a) and
P(t |b) for fixed a and b, we can generate a single distribution
over t by choosing

Ppool(t ) = P(t |a)1/2P(t |b)1/2/Zab, (7)

where Zab appears as a normalization factor. (This method of
pooling is called “logarithmic.”) For this pooled distribution
the average uncertainty about T is reduced relative to the
average entropy 1

2 [H (T |A) + H (T |B)] by an amount B1. B1

can thus be considered a “bonus” amount of information.
An alternative way to define a single distribution with

less uncertainty than this average amount is the trivial way
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of choosing whichever of P(t |a) and P(t |b) has the lowest
entropy on average (averaged over all values of a and b). For
that trivial choice the reduction in uncertainty (an alternative
“bonus”) would equal

B0 = 1
2 |H (T |A) − H (T |B)|. (8)

We then define unique information by using the larger of the
bonuses B1 and B0,

B := max(B0,B1), (9)

as

Iunq A\B + Iunq B\A = 2B. (10)

The individual unique information quantities then follow from
(3),

Iunq A\B = B + 1
2 [H (T |B) − H (T |A)],

Iunq B\A = B + 1
2 [H (T |A) − H (T |B)], (11)

which are both non-negative. We note that with these defini-
tions we can, indeed, clearly distinguish the two probability
distributions P1 and P2 from Tables I and II: we find B = 0 for
P1 (and hence zero unique information) but B = B1 = 1 (and
hence 1 bit of unique information for both A and B) for P2,
exactly agreeing with the intuition given in the captions.

We may view B as quantifying the asymmetry between
A and B with respect to their correlations with T . We may
also view B as the fourth independent quantity, in addition to
the three mutual information measures, that characterizes how
two variables may contain information about a third variable.

To conclude this section on the classical PID, let us note
that not all quantities named “information” in the decomposi-
tion (3) are differences between two entropies. In particular,
for the decomposition based on (11) and, similarly, for the
decomposition proposed in [12], the “redundant information”
actually is a difference between two information quantities.
As such, it was denoted by �Ired A&B in early works [22,23], as
well as in [20]. Being a difference between two (non-negative)
information quantities, �Ired A&B may take on negative values.
It follows directly from (3) that unique information is larger
than the mutual information in such a case. The same will then
be true of its quantum generalization.

III. FROM CLASSICAL TO QUANTUM INFORMATION

When trying to define quantum information quantities by
replacing classical variables by quantum systems, replacing
probability distributions by density operators ρ, and replacing
the Shannon entropy function by the von Neumann entropy
S(ρ) = −Trρ log2(ρ), one runs into two well-known sorts
of issues. First, different density operators do not commute
in general. Second, unlike in the classical case, whether we
perform measurements or not and, in addition, what measure-
ments we perform matter. Both issues are illustrated below.

Quantum information theory [24–27] has taught us how to
circumvent such difficulties and define meaningful quantities
that generalize classical quantities. Often, multiple general-
izations exist for a given classical quantity (with different
interpretations) for the reasons alluded to above. We will see
that here, too, multiple possibilities exist to generalize the PID

to a quantum version. For various reasons mentioned below,
we do focus here on one particular generalization.

A. Mutual information

Given the two equivalent ways [(2a) and (2b)] in which we
can define classical mutual information I (T ; A), there are two
ways to generalize mutual information to a quantum setting.
As is well known, these two generalizations are no longer
equivalent.

The first generalization is explicitly not symmetric between
the two variables: we assume that we perform a measurement
on system A and produce a density operator for system T
that depends on the measurement outcome. We can always
describe the measurement on A by a set of positive operator-
valued measure elements {�n} labeled by the outcome n.
Suppose the state of T changes to ρT |n if outcome n occurs;
this occurs with probability pn = Tr(ρT A�n). The average
von Neumann entropy of system T after the measurement is
then

S(T |A) =
∑

n

pnS(ρT |n). (12)

In terms of the reduced state for system T we define

J (T ; A) = S(ρT ) −
∑

n

pnS(ρT |n). (13)

This generalizes (2a). As is fairly standard, we used a different
symbol here, J , to denote this particular quantum version of
the mutual information [39]. J depends on what measurement
is performed on A. We may eliminate this dependence by max-
imizing J over all possible measurements. This optimization,
however, is computationally hard [40].

The symbol I is used for the other quantum definition
of mutual information based on the symmetric classical
definition (2b). This alternative definition involves no mea-
surements and reads

I (T ; A) = S(ρT ) + S(ρA) − S(ρT A). (14)

This is the definition we will use here. We note the well-
known property that the mutual information between two
qubits can equal 2, namely, when their state is maximally
entangled, whereas the classical quantity can be at most 1.
This factor of 2 can be interpreted operationally via super-
dense coding [41], which demonstrates how one qubit of an
entangled pair can be used to transmit two classical bits of
information.

For the QPID, too, we wish to find expressions that do not
involve measurements using expression (4) as a classical start-
ing point. We thus need the quantum version of a conditional
state.

B. Quantum conditional states

Classically, we have the conditional probability distribu-
tion P(T |A) = P(T , A)/P(A). We cannot straightforwardly
find a quantum equivalent to this distribution because the
two operators ρT A and 1T ⊗ ρA do not necessarily commute.
Indeed, there cannot be a conditional state ρT |A such that we
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always have

S(ρT |A) = S(ρA) − S(ρT A) (15)

simply because the quantity on the right-hand side may be
negative. If it is negative, ρT A is entangled.

Nonetheless, we can define an operator that generalizes
P(T |A) = P(T , A)/P(A) and that has at least some properties
in common with a conditional probability distribution. Here
we choose to define the quantum conditional state as

ρT |A = (
1T ⊗ ρ

−1/2
A

)
ρT A

(
1T ⊗ ρ

−1/2
A

)
. (16)

This is an operator on the joint system T ⊗ A but fails to be
a density operator in that it may have eigenvalues larger than
1 (and hence its entropy may be negative). This operator can
be used to witness bipartite entanglement [42]. The symbol
ρ

−1/2
A here is defined straightforwardly with the support of

ρA and is set to zero on its kernel (thus corresponding to
the Moore-Penrose inverse). One useful perspective on this
quantum version of the conditional probability distribution
can be found in Refs. [43,44], where it is argued that this is the
proper quantum generalization from a Bayesian perspective.
References [43,44] also demonstrate the usefulness of the ∗
product, defined as

A ∗ B := B1/2AB1/2, (17)

such that ρT |A = ρT A ∗ (ρA)−1, where additional identity op-
erators have been suppressed.

An alternative definition of conditional states was proposed
in Refs. [45,46],

ρ ′
T |A = lim

n→∞
[
1T ⊗ (ρA)−1/(2n) ρ

1/n
T A (1T ⊗ ρA)−1/(2n)

]n
.

(18)

It can likewise be employed to detect negative conditional en-
tropy [47] and entanglement [48]. As a test of entanglement it
is weaker than that based on (16). This is one reason for using
the conditional operator as defined in (16) in our definition of
a QPID. The other reason is that the relation between ρT |A
and ρT A in (16) can be inverted straightforwardly (in fact, by
using the ∗ product) but (18) cannot. We thus use definition
(16).

IV. QUANTUM PID

We wish to define quantum versions of Zab as given in (4)
and of B1 as given in (5). We choose here

ZAB = 1
2 TrT

(
ρ

1/4
T |Aρ

1/2
T |Bρ

1/4
T |A + ρ

1/4
T |Bρ

1/2
T |Aρ

1/4
T |B

)
. (19)

Here, of course, identities on A and B have to be inserted
in the definitions of ρT |B and ρT |A, respectively, to produce
operators on A ⊗ B ⊗ T . In terms of the ∗ product we may
rewrite this as

ZAB = 1
2 TrT

(
ρ

1/2
T |B ∗ ρ

1/2
T |A + ρ

1/2
T |A ∗ ρ

1/2
T |B

)
. (20)

The operator ZAB is then used to define

BQ1 = −TrAB[ρAB log2(ZAB)] (21)

by analogy to the classical quantity B1. The analog of B0 is
then

BQ0 = 1
2 |I (T ; A) − I (T ; B)|, (22)

and we replace (9) by

BQ = max(BQ0,BQ1). (23)

[In the Appendix we numerically compare these two pooling
methods for typical quantum states of three qubits and of
three qutrits, with the result that typically (but not always),
the more complicated logarithmic pooling method (yielding
BQ1) is superior to the trivial method (yielding BQ0).]

We define (non-negative) unique information by analogy to
(11),

Iunq A\B = BQ + 1
2 [I (T ; A) − I (T ; B)],

Iunq B\A = BQ + 1
2 [I (T ; B) − I (T ; A)]. (24)

Note that we might alternatively use

Z ′
AB = 1

2 TrT
(
ρ

1/2
T |Aρ

1/2
T |B + ρ

1/2
T |Bρ

1/2
T |A

)
, (25)

which does not use the ∗ product and thus lacks some of its
nice properties. This alternative expression is used for some
numerical examples in the next two sections to show that
certain features found there are insensitive to this choice.

Finally, note that the definition of BQ, like that of quantum
mutual information, is invariant under local unitary trans-
formations of the form U = UT ⊗ UA ⊗ UB. All information
measures introduced here are therefore invariant under local
unitaries as well.

A. Motivating example

Let us consider two pure [49] states corresponding to the
classical distributions from Tables I and II, defined by taking
equal superpositions of the eight possible three-party terms
appearing there, and let us denote the two states by |�1〉
and |�2〉, respectively. We first note that the quantum mutual
entropies do not distinguish these two states. For example, for
both states we have S(X ) + S(T ) − S(T , X ) = 2 for X = A
and for X = B, and S(A, B) + S(T ) − S(T , A, B) = 4. But
the quantity BQ is clearly different for these two states: it
equals 2 for |�2〉 and 0 for |�1〉. [The same values are found
for the alternative definition based on (25).] Thus, the quantity
BQ straightforwardly generalizes the classical quantity B in
this particular case. The quantity BQ can be twice as large as
the corresponding classical quantity B, just as the quantum
mutual information can be twice as large as the classical
mutual information. This indicates BQ contains both classical
and quantum unique information.

B. Scrambling

The three-variable PID can be applied straightforwardly
to the Hayden-Preskill model of a black hole as a processor
of quantum information [28]. In their setup, adapted to our
notation, T is a reference system that is initially maximally
entangled with a specific small subsystem of A ⊗ B. That sub-
system is thrown into a black hole, and the information (i.e.,
the entanglement with T ) is then scrambled among all degrees
of freedom of the full system A ⊗ B. System B then is emitted
by the black hole as Hawking radiation, and Bob, who collects
all that radiation, tries to recover the entanglement with T .
The part that remains inside the black hole corresponds to
system A.
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FIG. 1. Result of applying a random unitary to system AB, start-
ing with a maximally entangled state between T and AB. Keeping
the product of Hilbert space dimensions DA and DB fixed and equal
to 900 [we could view this system as consisting of two qubits, two
qutrits, and two five-dimensional systems (ququints)], we plot unique
information for A (solid black upper curve) and for B (solid red
lower curve), as well as the mutual information I (T ; A) (dashed
green upper curve) and I (T ; B) (dashed magenta lower curve), all
as a function of log2(DA/DB )/2. The latter can be interpreted as
the effective number of qubits that are still part of system A and
not yet part of system B, counted from the starting point with equal
dimensions DA = DB = 30.

In our numerical example we choose the reference system
T to have Hilbert space dimension DT = 4 and then choose
a pure final state for T AB such that T is (still) maximally
entangled with AB. Specifically, we write

|�〉 = 1√
DT

DT∑

n=1

|n〉T |�n〉AB, (26)

where {|�n〉AB} for n = 1, . . . , DT are random orthogonal
unit vectors on AB. This final state mimics the result of the
scrambling of quantum information, which is initially located
in a small subsystem of AB, spreading throughout the entire
system AB (as in [28]). In the usual setup [28] AB consists of
qubits, and one studies how the information quantities I (T ; A)
and I (T ; B) change when qubits are moved from A to B. The
ratio DA/DB can change only by factors of 4 in that case.
Here we wish to have a more fine-grained description, and we
allow qutrits and ququints (D = 5) as well, thus making more
values for the ratio DA/DB possible. We use DAB = 900 =
(2 × 3 × 5)2 in Fig. 1.

We see in Fig. 1 that the information about T is equally
distributed among A and B when they have the same dimen-
sion (as it should be). The green curve gives I (T ; A), which
quickly approaches the maximum information (4 bits) avail-
able in systems A and B together as the dimension of system A
becomes larger than half the total size. Two points illustrated
in Fig. 1 are worth mentioning. First, when the sizes of A
and B are the same, more than half of the information each
system possesses is unique. Second, once just one qubit has
moved from one system to the other (so that the ratio of their
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FIG. 2. Same as Fig. 1, but using DAB = (2 × 3 × 7)2 = 1764.

dimensions is 4), almost all information possessed by either
system is unique.

Note that the unique information in the smaller subsystem
tends to decrease with decreasing size, except around the point
where the ratio of two Hilbert space dimensions is almost
4 (i.e., starting from equal dimensions, we have moved one
qubit from one system to the other). At that point, swapping
a qubit and a qutrit from A for a ququint from B slightly
decreases the unique information in B even though its dimen-
sion increases. For the larger subsystem the amount of unique
information always increases with increasing dimension, but
there is an inflection point clearly visible in the black curve
when the ratio of the dimensions is 4. We checked this behav-
ior for a dimension of DAB = 1764 (see Fig. 2), with the same
result. All these conclusions hold as well for the alternative
measure based on (25), as shown in Fig. 3.

0 0.5 1 1.5 2 2.5 3 3.5 4
log2(DA/DB)/2

0

0.5

1

1.5

2

2.5

3

3.5

4

in
fo

rm
at

io
n 

(b
it)

FIG. 3. Same as Fig. 1, but using the alternative expression (25)
for Z ′

AB.
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FIG. 4. Mutual information I (T ; A) (stars) and unique informa-
tion Iunq A\B (circles) plotted as a function of mA = 1, . . . , N for a total
of N = 100 qubits. The target system is one qubit, system A consists
of mA qubits, and system B consists of N − mA qubits. Here s = 0.85
and p = q = 1/2.

C. Emerging classicality

One outstanding problem of quantum mechanics is ex-
plaining how a classical world emerges from a quantum
world. A slightly more manageable version of this problem
is explaining how classical information arises out of quantum
information. In this context, the main point of quantum Dar-
winism [39,50–53] is that classicality (of a system) emerges
from quantum mechanics by having many copies of the same
information (about that system) spread out over the envi-
ronment. Here we consider this same problem in terms of
unique information. Let us thus reanalyze an example from
Ref. [52]. System T is one qubit, system A consists of mA

qubits, and system B consists of mB qubits. The initial state
of T is taken to be |ψ〉T = √

p|0〉 + √
q|1〉, with p + q = 1.

Each of the N := mA + mB qubits starts in state |0〉 and then
interacts with T by a unitary two-qubit interaction, described
as a Controlled-MAYBE (C-MAYBE) in Ref. [52]. This inter-
action transforms the initial state to a final state of the form

|�〉T ,A,B = √
p|0〉 ⊗ |0〉⊗mA ⊗ |0〉⊗mB

+√
q|1〉 ⊗ |r〉⊗mA ⊗ |r〉⊗mB , (27)

where |r〉 is a slightly rotated state,

|r〉 = s|0〉 +
√

1 − s2|1〉, (28)

where s is a real number fairly close to 1. In this way, each
qubit of the environment encodes some partial information
about the state of qubit T , while all environment qubits taken
together contain almost the maximum of 2 bits of quantum
mutual information. This simple intuition is quantified in
Fig. 1 of Ref. [52] and also in Fig. 4. In both figures there
is a clear “classical” plateau visible for which the mA qubits
contain about 1 bit of classical information about qubit T .
That is, the quantum mutual information equals about 1 bit
for a large range of values of mA. Using our measure for
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FIG. 5. For 1000 randomly chosen mixed states of three qubits,
BQ1 vs BQ0, with the red solid line indicating BQ1 = BQ0. For a bit
more than 11% of the states BQ1 fails to be larger than BQ0.

Iunq A\B, we also see that that information is not unique to A.
Indeed, the remaining mB = N − mA qubits contain more or
less the same (classical) information. It is only for either a
small number of qubits A or a large number of qubits A (close
to N) that we see nonclassical behavior. For mA close to N the
mutual information is larger than 1 and thus contains quantum
information in addition to the 1 bit of classical information,
and we also see that that information is unique to A: both
the mutual information and the unique information approach
a value of 2 (and attain it for mA = N).

We recall that the bonus B quantifies the asymmetry be-
tween A and B with respect to their correlations with T . For
mA 	 mB that asymmetry is clearly large. This explains why
the unique information in A is nonzero even when mA is small.
It may even be (slightly) larger than the mutual information
I (T ; A), which, as mentioned at the end of Sec. II, can occur
for classical probability distributions as well. In Fig. 4 this
occurs only when A consists of just one qubit.

V. DISCUSSION AND CONCLUSION

We introduced a quantum version of the partial informa-
tion decomposition, which defines synergistic, redundant, and
unique information and which has proven to be a useful
extension of Shannon’s information theory. It allows one to
distinguish correlations and entanglement between quantum
systems that cannot be distinguished by standard versions of
quantum mutual entropy. We applied the concept to quantum
scrambling and quantified the idea that, roughly speaking, the
no-cloning theorem forces there to be unique information.
We saw this specifically in the Hayden-Preskill model of a
black hole. We defined unique information in terms of a non-
negative quantity BQ [given by Eq. (21)] which is zero iff
there is no unique information. The quantity BQ also measures
the lack of symmetry between two systems with respect to
their entanglement with a third reference system. That is,
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FIG. 6. For 1000 randomly chosen pure states of three qubits,
BQ1 vs BQ0, with the red solid line indicating BQ1 = BQ0. For
slightly less than 1% of the states BQ1 (just!) fails to be larger than
BQ0.

symmetry reduces unique information. We note that, likewise,
symmetry reduces scrambling [54,55].

We end by suggesting three possible further applications.
First, the point of quantum Darwinism is that classicality
emerges from quantum mechanics when many copies of the
same information exist in the environment [39,50,51,53]. One
can quantify this notion in terms of unique information (or,
rather, the lack of it) as an alternative to the standard analysis
in terms of quantum discord [which is the difference between
the (quantum) quantities I and J , as defined in Sec. III A].
Some preliminary results in this direction were given in
Sec. IV C.

Second, a powerful way to analyze and characterize
quantum chaos and, more generally, how quantum infor-
mation propagates in quantum many-body systems is in
terms of out-of-time-order correlators (OTOCs) [52,56–
59]. These are observable quantities, but certain informa-
tion measures, specifically Rényi entropies, can be mea-
sured as well [60,61]. Such information measures often
appear as bounds on OTOCs. Thus, Rényi entropy ver-
sions of the quantities defined here may be useful in this
context.

Third, given that the classical PID has been applied to
understanding classical neural networks and given that ideas
about scrambling can be applied to understanding or de-
scribing quantum neural networks [62–64], it seems that the
quantum version of the PID could be fruitfully employed to
understand quantum neural networks as well.

APPENDIX

We mention here some numerical results for random states
(both pure and mixed) of three qubits and three qutrits. The
point is to see how often BQ1 > BQ0, that is, how often the
nontrivial logarithmic pooling method beats the trivial method
of choosing the lowest-entropy distribution.

For three-qubit states ρT AB we do find occasionally that the
logarithmic pooling method is worse than simply choosing the
lower- entropy distribution. This is true for a small fraction
(11.4% from a sample of 105) of random mixed states and
also for a smaller fraction of random pure states (0.83% from
a sample of 105). See Figs. 5 and 6 for typical results for
samples of size 1000.

For random three-qutrit states ρT AB we found numerically
that the logarithmic pooling method almost always is superior
to the simple method of choosing the lower-entropy distribu-
tion. Even for mixed states none of the sample of 105 states
had BQ0 > BQ1.
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