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Reducing circuit depth with qubitwise diagonalization
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A variety of quantum algorithms employ Pauli operators as a convenient basis for studying the spectrum or
evolution of Hamiltonians or measuring multibody observables. One strategy to reduce circuit depth in such
algorithms involves simultaneous diagonalization of Pauli operators generating unitary evolution operators or
observables of interest. We propose an algorithm yielding quantum circuits with depths O(n log r) diagonalizing
n-qubit operators generated by r Pauli operators. Moreover, as our algorithm iteratively diagonalizes all operators
on at least one qubit per step, it is well suited to maintain low circuit depth even on hardware with limited qubit
connectivity. We observe that our algorithm performs favorably in producing quantum circuits diagonalizing
randomly generated Hamiltonians as well as molecular Hamiltonians with short depths and low two-qubit gate
counts.
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I. INTRODUCTION

Quantum simulations [1–7] are frequently cited as one
of the most promising classes of quantum algorithms to see
a practical quantum advantage [8], in an era where analog
quantum simulators and universal quantum computers are
becoming viable for many-body systems of size O(50). In the
case of qubit hardware, it is frequently convenient to decom-
pose one’s Hamiltonian into Pauli operators, also known as
“multiqubit Pauli matrices,” i.e., Pauli matrices on individual
qubits strung together [6]. In fact, this convenience carries
over to other algorithms implementing the action of a Hamil-
tonian on qubits, such as in a quantum Lanczos algorithm
suggested by Ref. [9]. Moreover, for a yet wider collection of
quantum algorithms, efficient measurement schemes must be
devised to estimate the value of physical observables with re-
spect to a given prepared state, even where direct simulation of
time evolution is not required, such as in variational quantum
eigensolvers [10] and quantum tomography [6,11–14]. Due to
the qubitwise nature of measuring prepared quantum states,
it is already natural to consider Pauli operators as a basis
for measurements of observables in these many algorithms
[6,10,11,13].

In practical implementations of such algorithms, one finds
that the number of Pauli operators involved, i.e., in decompos-
ing one’s Hamiltonian to be simulated or physical observables
to be measured, may grow polynomially or even exponentially
in system size. This growth can have troublesome conse-
quences for the circuit depth involved in such computations
[15]. In particular, one finds larger errors will be introduced
into computations due to the decoherence of qubits associated
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with two-qubit gates (with entangling power) in near-term
hardware.

As such, one would like to augment these algorithms
with strategies to minimize such costs. One such strategy
involves simultaneous diagonalization of commuting Pauli
operators [16], offering a reduction of the problem at hand
to only the diagonal Pauli basis (i.e., strings of identity
and Z Pauli matrices). Generally speaking, for measure-
ment schemes on universal quantum computers, one must
already perform a sort of diagonalization for each of the
Pauli operators generating an observable of interest (since
one typically measures in a Z basis as well), so the sug-
gestion of simultaneous diagonalization [17] is a natural
choice to reduce the number of measurements entailed. How-
ever, simultaneous diagonalization for measurements of Pauli
operators may entail two-qubit gates that would otherwise
be unnecessary in the state preparation or measurements of
individual Pauli operators. Therefore, it is additionally im-
portant to minimize the number of such gates involved in
simultaneous diagonalization to find the strategy advanta-
geous. Conveniently, such a strategy can be used in tandem
with other procedures to efficiently perform state tomog-
raphy, such as randomized measurement protocols, e.g., in
Ref. [18].

In what follows, we present a method to exactly and ef-
ficiently diagonalize a commuting set of Pauli operators. To
provide context, we give a brief introduction and review to
the mathematical language of stabilizer theory typically used
to solve this problem in Sec. II. We present our algorithm in
Sec. III and illustrate how it may be used to accommodate
quantum hardware with limited connectivity. Furthermore, we
provide estimates of worst-case circuit costs in Sec. IV. Ad-
ditionally, we benchmark the resource costs of our algorithm
in Sec. V by considering randomized sets of Pauli operators
as well as molecular Hamiltonians, again taking limited qubit
connectivity into account. Finally, we summarize our findings
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and discuss future avenues for exploring circuit costs with our
algorithm in Sec. VI.

II. REVIEW OF TABLEAU REPRESENTATION

Before we propose our algorithm, let us review language
frequently used to pose the problem of efficient diagonaliza-
tion of Pauli operators. Specifically, we briefly introduce here
the tableau representation of Pauli operators, in particular,
using the notation in Refs. [15,16]. We discuss the unitary
operations on these Pauli operators in Sec. II A and pose the
problem of diagonalization in Sec. II B.

Suppose we have N commuting Pauli operators acting
on n qubits, e.g., generating an evolution operator, U =
exp(i

∑N
i=1 ciPi ), or physical observables that we would like to

measure, {O = ∑N
i=1 ciPi}. The tableau corresponding to this

collection of Pauli operators P = {P1, . . . , PN } is composed
of three arrays: X , Z , and S . The arrays X and Z each have
dimensions N × n, while the S array is a column vector with
N rows. For a given Pauli operator Pi with relative phase factor
ci/|ci| = ±1, the entries of the three arrays are given by

X [i, j] =
{

0 if the jth digit of Pi is Z or I
1 otherwise ,

Z[i, j] =
{

0 if the jth digit of Pi is X or I
1 otherwise ,

S[i] =
{

0 if ci > 0
1 otherwise . (1)

For the remainder of the paper, we call the “tableau” of
our Pauli operators the N × 2n block matrix (X |Z ). Here, we
neglect the relative phases tracked by the vector S , as they
are not necessary for developing a scheme to diagonalize the
collection of commuting Pauli operators. Let us define the
following notation for elements of these arrays: Xi and Zi

(with “lowered” indices) denote the ith column vectors of X
and Z , respectively. In kind, “raised” indices X i and Z i will
denote the ith row vectors. Moreover, a row of the tableau
u = (X j,Z j ) ∈ F2n

2 is said to “encode” a Pauli operator P if
P = ⊗n

i=1 X ui Zun+i up to an overall phase.

A. Clifford gates and the symplectic group

Since a diagonal Pauli operator may contain only factors I
and Z , the X array of diagonal Pauli operators is zero. Con-
sequently, diagonalization of Pauli operators may be viewed
as conjugation with unitary operators to reduce the X array
to zero. Specifically, since we seek to transform Pauli oper-
ators into other Pauli operators, these unitary operators are
Clifford gates, generated by the Hadamard (H), phase (S), and
controlled-NOT (CNOT) gates [19].

Now, let C be an arbitrary Clifford gate. Conjugating the
Pauli operators of P with C can equivalently be viewed as an
action transforming each column Xi and Zi. We denote this
action by functions fi and gi, written

Xi �→ X ′
i = fi(X1 . . .XN ,Z1 . . .ZN ), (2)

Zi �→ Z ′
i = gi(X1 . . .XN ,Z1 . . .ZN ), (3)

which we will show are necessarily linear:

fi(X ,Z ) =
n∑

j=1

a j
i X j + bj

i Z j, (4)

gi(X ,Z ) =
n∑

j=1

ã j
i X j + b̃ j

i Z j, (5)

where a j
i , bj

i , ã j
i , b̃ j

i ∈ {0, 1}, or, more compactly,

f (X ,Z ) = XA + ZB, (6)

g(X ,Z ) = X Ã + ZB̃, (7)

for A, B, Ã, B̃ ∈ Fn×n
2 . We give the matrices corresponding to

elementary Clifford gate conjugations here, derived from rules
presented in, e.g., Refs. [16,20]. First let ei be the unit column
vector with ith entry equal to 1. Then, we may summarize.

(1) For a Hadamard gate conjugation on qubit i, H(i),
we have corresponding matrices B = Ã = eie�

i and A = B̃ =
1n×n − B.

(2) For a phase gate conjugation on qubit i, S(i), we
have corresponding matrices A = B̃ = 1n×n, B = 0n×n, and
Ã = eie�

i .
(3) For a conjugation with CNOT(i, j) gates controlled by

qubit i and targeting qubit j, we have corresponding matrices
A = B̃� = 1n×n + eie�

j and B = Ã = 0n×n.
Since these gates generate the Clifford group, and all

compositions of linear functions are also linear, we conclude
that all Clifford elements are linear, i.e., are given by some
(A, B, Ã, B̃). For example, conjugation with S on qubits 1
and 2 corresponds to (1,0, e1e�

1 + e2e�
2 ,1), and conjugation

with H on qubit i followed by CNOT(i, j) corresponds to
(1 − eie�

i , eie�
i + eie�

j , eie�
i + eie�

j ,1 − eie�
i ).

Furthermore, we note that the overall matrices

C =
(

A Ã
B B̃

)
(8)

for operations H (i), S(i), and CNOT(i, j) each satisfy the iden-
tity

C�C� = � =
(

0n×n 1n×n

1n×n 0n×n

)
. (9)

Therefore, the same identity must immediately hold for all
compositions of these gates. Thus, we explicitly see the con-
nection of Clifford gates to the group of 2n × 2n symplectic
matrices on F2, Sp(2n,F2), as noted in Refs. [21–23].

B. Statement of the problem

Let n be the total number of qubits. Suppose we are given
a set of N commuting Pauli operators P = {P1, . . . , PN }. We
would like to produce a unitary circuit with which we will
conjugate the Pauli operators in this set in order to simul-
taneously diagonalize them. In the interest of simplifying
applications to quantum hardware, we would like to reduce
the overall circuit depth and the total number of two-qubit
gates involved as well as enhance flexibility of diagonalization
strategies to accommodate limited qubit connectivity.

It can be shown that such a set may be generated by at most
r � min(n, N ) Pauli operators. Let us call T = {t1, . . . , tr}
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a generating set of P if each element of P is a product of
elements of T . That is, for each P ∈ P , P = ∏r

i=1 tαi
i for some

αi ∈ {0, 1} up to an overall phase. In addition, if no element
of T can be expressed as a product of other elements of T , we
say that the elements of T are independent.

Now, let T be an independent generating set of P . T can
be obtained by first constructing the tableau of P and row
reducing the X and Z arrays. Importantly, a basis that diago-
nalizes T will also diagonalize P . Meanwhile, since T is an
independent set, it is more constrained than P is. Therefore,
we may reduce our problem to finding a hardware-efficient
diagonalization of T .

III. QUBITWISE DIAGONALIZATION ALGORITHM

In this section, we propose an algorithm for simultaneously
diagonalizing Pauli operators generating a desired set. First,
we outline the philosophy of the algorithm in Sec. III A. More
technically, we outline precisely the recursive steps of the
proposed algorithm in Sec. III B. In kind, we explain how one
can apply these steps in order to accommodate limited qubit
connectivity in Sec. III C.

A. Approach

Our approach to diagonalize T is to iteratively diagonalize
all Pauli operators one qubit at a time. In terms of the tableau
for T , (X |Z ), for some qubit i we solve the equation X ′

i =∑n
j=1 a j

i X j + bj
i Z j = 0 for factors a j

i and bj
i , which we will

show prescribes a sequence of Clifford gates with which we
conjugate the elements of T , rendering all operators diagonal
on i. In matrix form,

X ′
i =

(
X

∣∣∣∣ Z
) (

ai

bi

)
= 0, (10)

where ai denotes the column vector (a1
i , . . . , an

i )� and simi-
larly for bi. We may interpret this null vector as the constraint
that certain columns in X or Z must sum to a zero vector, i.e.,∑n

j=1 X ja
j
i + Z jb

j
i = 0.

Equation (10) has a nonzero solution if the null space of
(X |Z ) is nontrivial. Since T is an independent set of commut-
ing Pauli operators, this tableau forms a matrix of rank r � n.
Also, (X |Z ) has at most n rows but 2n columns. Therefore,
this matrix must have a null space of dimension 2n − r � n,
and so such a vector (ai, bi ) exists. We can then obtain a
solution (ai, bi ) for example by applying Gauss-Jordan elimi-
nation on the matrix (X |Z ), as we will discuss more explicitly
in Sec. IV A.

In fact, since the operators considered here are independent
and commute, we have X j · Zk + Z j · X k = 0, implying that
examples of such vectors in the null space include the r
rows of (Z|X ) = (X |Z )�. More generally, we can see that
a vector u ∈ F2n

2 is an element of the null space if and only
if it encodes a Pauli operator that commutes with each Pauli
operator encoded by (Z|X ). [To see this fact, recall that a
vector is in the null space when (X |Z )u = 0, or equivalently
(Z|X )�u = 0. Writing out u = (v,w), where v,w ∈ Fn

2, it
follows that Zk · w + X k · v = 0, implying u commutes with
the Pauli operator encoded by the row k of the tableau (Z|X ),
for each k = 1, . . . , r.]In terms of classical coding theory [6],

we may view the tableau as a parity check matrix for a linear
code spanned by these null vectors as code words.

One can embed this null vector (ai, bi ) as the ith columns
of matrices A and B encoding an overall unitary operation that
renders all Pauli operators diagonal on qubit i. Importantly,
there is still plenty of freedom in the choices of Clifford
operations to specify Ã and B̃ as well as the other columns
of A and B. We exploit this freedom to prescribe the following
instructions, which generate a particular choice of such matri-
ces sending Xi �→ 0. Additionally, these degrees of freedom
as well as the choice of a suitable null vector can be further
exploited to make choices that maintain low circuit depth
given a particular quantum device where qubit connectivity
is not all to all. For completeness, we will also show how a
suitable null vector can be chosen efficiently.

In short: an element of the tableau’s null space indicates
columns of X and Z that are dependent and therefore may
be added to diagonalize operators along some qubit i at each
stage. As we detail below, these addition operations imply a
concrete list of simple one- and two-qubit gates on a diago-
nalizing circuit.

B. The algorithm

Now, we are ready to prescribe the instructions to perform
iteratively at each stage. Let α = 1, . . . , s � n be the stage
where n(α) digits are not yet diagonal for all Pauli operators.
Moreover, T (α) is the corresponding generating set of size
r (α) = |T (α)|. Stage α = 1 begins with the initial problem for
our algorithm, i.e., T (1) = T . At each stage α, we construct the
corresponding tableau (X (α)|Z (α) ). Then, we select a vector
(v(α),w(α) ) in the null space of (X (α)|Z (α) ). Choose a qubit i
such that v(α)i = 1 or w(α)i = 1. Pauli operators will be diag-
onalized on this qubit in two steps by the procedure below.

(1) The first step consists of applying single-qubit Clif-
ford gates to update each column j = 1, . . . , n(α): X (α)

j �→
X (α)′

j = v(α) jX (α)
j + w(α) jZ (α)

j , according to the rules re-
lating a and b to corresponding single-qubit Clifford gates
outlined in Sec. II A.

(a) If w(α) j = 0, then we simply apply the identity gate,
i.e., we need not do anything for this j.

(b) If v(α) j = 0 and w(α) j = 1, perform a conjugation with
the gate H ( j).

(c) If v(α) j = 1 and w(α) j = 1, perform a conjugation with
the gate S( j) followed by a conjugation with the gate H ( j).

At the end of this step, we have

X (α)′
j = v(α) jX (α)

j + w(α) jZ (α)
j (11)

with v(α) j = 1 or w(α) j = 1. This step essentially selects all of
the columns of X (α) and Z (α) that are involved in reducing the
column X (α)

i to zero and stores them in X (α)′.
(2) The final step is then to add all of these columns into

X (α)
i . We carry out this step using conjugations with CNOT

gates. In particular, for each j = 1, . . . , n(α), if v(α) j = 1 or
w(α) j = 1 and j �= i, perform a conjugation with CNOT( j, i).
At the end of this step, the columns X (α)′

j selected by having
coefficients v(α) j = 1 or w(α) j = 1 are added to the column
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X (α)′
i. We therefore obtain

X (α)′′
i =

n∑
j=1

v(α) jX (α)
j + w(α) jZ (α)

j = 0,

which is guaranteed to equal zero as desired since (v(α),w(α) )
is in the null space of (X (α)|Z (α) ); see Eq. (10) and the
discussion below it.

Thus concludes stage α. After we have diagonalized the
Pauli matrices acting on qubit i with unitary operations, the
Pauli operators acting on the remaining qubits must also com-
mute. Therefore, we can diagonalize the remaining qubits in
recursive stages.

After stage α is complete, we have n(α+1) � n(α) − 1. Note
n(α+1) is not necessarily n(α) − 1, as other qubits beside i may
have been diagonalized in the process. Proceeding to the next
stage, to obtain T (α+1), we exclude all the qubits that are acted
upon only by I or Z . Consequently, note that r (α+1) � r (α), as
the number of distinct generators may decrease after reducing
the number of qubits still in consideration. Then, we repeat
the above process for T (α+1). At a stage α = s where n(s) = 1,
r (s) = 1 and step 1 of the procedure above is sufficient to
diagonalize the qubit. Thus, the recursion indeed terminates.
The complete algorithm is summarized below in pseudocode.

Note that the example of a simple construction for step 2
above provides a circuit with depth linear with the number

Algorithm 1. Qubitwise diagonalization.

Input: A set of commuting Pauli operators acting on n qubits.
Output: A circuit simultaneously diagonalizing the set.

1: α ← 1
2: Discard all the qubits on which all Paulis are already diagonal.
3: n(α) ← Number of remaining qubits
4: if n(α) = 0 then
5: Exit � The diagonalization is complete.
6: end if
7: Find independent Pauli operators T (α) � See Sec. II B.

8: M(α) ← (X (α)|Z (α) ) � Tableau encoding of T (α)

9: Find the null space of M(α)

10: Select a vector (v, w) in the null space of M(α)

11: Select i such that vi = 1 or wi = 1 � qubit i on which all
Paulis will be diagonalized

12: for j = 1 to j = n(α) do
13: if v j = 0 AND w j = 1 then
14: Perform a conjugation with H ( j)
15: end if
16: if v j = 1 AND w j = 1 then
17: Perform a conjugation with S( j)
18: Perform a conjugation with H ( j)
19: end if
20: end for
21: for j = 1 to j = n(α) do
22: if (v j = 1 or w j = 1) AND i �= j then
23: Perform a conjugation with CNOT( j, i)
24: end if
25: end for
26: α ← α + 1
27: Go to Line 2.

of CNOT gates at each stage, assuming hardware on which
commuting CNOT gates that share qubits cannot be performed
in parallel. In Sec. IV B, we discuss another construction with
circuit depth that grows only logarithmically with the number
of CNOT gates at each stage. Via this latter construction we
achieve the O(n log r) overall circuit depth advertised.

C. Accommodating qubit connectivity

We now turn our attention to discussing how this algo-
rithm may be tailored to hardware with limited connectivity,
in the sense that we would like it to involve relatively few
SWAP gates. Suppose that the graph G = (V, E ) represents the
hardware connectivity. That is, a qubit qi is represented by
a vertex in V , and there is an edge (qi, q j ) ∈ E if qubits qi

and q j are directly connected on the hardware (i.e., permitting
a CNOT operation with either qubit as target or control and
without SWAP operations).1 Qualitatively, the strategy is to
exploit the degrees of freedom still allowed by the algorithm
described in the previous section, particularly in the choices of
the null vector and the order of additions in tableau columns
prescribed by this null vector. We elaborate on how these
choices can be related and how they can be made with limited
qubit connectivity in mind.

The first task is to choose a null space vector (v,w) that
is compatible with the qubit connectivity of a given quantum
device. However, we stress that the choice of this vector also
entails a list of qubits, for pairs of which (qi and q j) we add
corresponding column vectors of the tableau, via CNOT gates
(and potentially SWAP gates as well). We would like to choose
qubit pairs whose paths involve relatively few SWAP gates to
be realized. That is, for all i such that vi = 1 or wi = 1 and
j such that v j = 1 or w j = 1, we desire a relatively short
path between vertices qi and q j in the connectivity graph G.
As such, we can choose a null vector for which the qubits qi

and q j are relatively close to one another in G. Furthermore,
we give below an explanation of how, given an arbitrary null
space vector, we can choose pairs of qubits on which we will
perform CNOT gates, in order to further accommodate limited
connectivity.

Now given an arbitrarily chosen null vector, we can de-
scribe the problem of choosing how one adds columns as
per step 2 for this null vector. (We may assume that step 1
of the algorithm is already completed, as it involves only
one-qubit gates.) For step 2, let us denote the qubits where
(v,w) is nonzero as Q = {q1, q2, q3, . . .} and the columns
Xq with q ∈ Q to be added using CNOT gate conjugations.
In general, since the pairs (qi, q j ) ⊆ V may be disconnected
on the hardware in consideration, we would need to perform
appropriate conjugations with SWAP gates resulting in qi �→ q′

i
and q j �→ q′

j such that q′
i and q′

j are connected on the hardware
(i.e., share an edge in E ). This transformation can be accom-
plished along any path in G connecting qi and q j , and the

1One may also consider hardware with yet further limited con-
nectivity such that a gate CNOT(i, j) may be performed but not
CNOT( j, i). The remainder of this discussion below may be gen-
eralized to this case, however potentially requiring yet additional
resources to accommodate such limitations.
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number of SWAP gates depends on the length of the path. As
such, we seek to minimize the length of a path that traverses
all of the qubits q ∈ Q. Our minimization problem is similar
to the well-known traveling salesperson problem (TSP) [24].
However, in contrast with the TSP, which requires every node
be visited exactly once, our problem requires only the nodes
in Q be visited once. That is, a node not in Q may or may not
be visited at all. This minimization problem naturally maps
to the so-called shortest-path problem with specified nodes
(SPPSN)2 [25], where the specified nodes are the nodes in
Q. This problem has been extensively studied, and several
solutions are provided in, e.g., Refs. [25–28]. Indeed, solving
the SPPSN gives us a sequence of qubits {qσ1, qσ2, qσ3, . . .}
along which the number of SWAP gates is minimized when
performing step 2. Finally, we note that the choice of null
vector essentially dictates which SPPSN we must solve.

As explained above, modifications in step 2 of our algo-
rithm can allow for multiple avenues to reduce the SWAP gates
required. Not only can we draw upon efficient solutions to
the related generalization of a TSP [i.e., choose how to add
columns of X ′], but also we are afforded a choice of which
such problem we would like to solve [i.e., choose which
columns of X ′ to be added according to (v,w)]. In Sec. V C,
we demonstrate how this strategy can be adapted to hardware
with linear connectivity.

IV. ANALYSIS OF THE ALGORITHM

Here, we estimate the size of quantum circuits produced by
the algorithm presented in the previous section. In particular,
we focus on the overall circuit depth as well as the number of
CNOT gates entailed. First, we explain in Sec. IV A how these
qualities of the circuit are related to the null vectors introduced
in Sec. III A. With this understanding in hand, we then can
estimate the circuit depth (Sec. IV B) and total two-qubit gate
count (Sec. IV C) required to implement the diagonalization
circuits prescribed by our algorithm.

A. Preliminaries

Before we proceed, it is helpful to recall the perspective
that our algorithm essentially searches for X and Z columns
that are dependent and adds them to diagonalize along some
qubit i at each stage. This interpretation is useful in estimating
the cost.

Definition 1. The symplectic weight of a vector (v,w) ∈
F2n

2 is defined as

ω(v,w) = |{i | (vi,wi ) �= (0, 0)}|. (12)

In other words, the symplectic weight counts the number of
digits not equal to I in the corresponding Pauli operator (i.e.,
the operator’s Hamming weight). We will also find ω(v,w) of
null space vectors helpful in estimating the number of CNOT

gate conjugations.

2In other words, the problem is to find the shortest path passing
through a subset of vertices in a graph.

Lemma 1. Given a vector (v,w) in the null space of
(X (α)|Z (α) ), our algorithm prescribes ω(v,w) − 1 CNOT gate
conjugations to diagonalize one qubit.

Suppose qubit i is to be diagonalized using the vector
(v,w) through steps 1 and 2. By Definition 1, step 1 will up-
date ω(v,w) columns in X . Then, step 2 will use ω(v,w) − 1
CNOT conjugations, because there are ω(v,w) − 1 columns in
X to be added to column Xi.

Lemma 2. The number of CNOT gate conjugations required
to diagonalize a given qubit at stage α is at most r (α) if
n(α) > r (α), and at most r (α) − 1 if n(α) = r (α).

We first consider the case n(α) > r (α). At stage α, the rank
of (X (α)|Z (α) ) is r (α), implying that any collection of r (α) + 1
columns is a dependent set. Therefore, there exists a vector
(v,w) in the null space of (X (α)|Z (α) ) with weight ω(v,w) �
r (α) + 1. Consequently, using Lemma 1, we demand at most
r (α) CNOT gate conjugations at this stage.

For the case n(α) = r (α), we know ω(v,w) � r (α) for all
(v,w) in the null space, because there are only r (α) qubits.
Therefore, this case entails at most r (α) − 1 CNOT gate conju-
gations.

Finally, we stress that, in either case, such a null space
vector can be produced efficiently. For example, we can find
such a null space vector by finding a set of � r (α) + 1 columns
adding to zero. To demonstrate this bound, we first trans-
form the matrix (X (α)|Z (α) ) to its reduced row-echelon form
in polynomial complexity [29]. Then, up to a relabeling of
qubits, our tableau can be written in the so-called standard
form of a stabilizer code (see, e.g., Ref. [6]):

(1r(α)×r(α) Ar(α)×(n(α)−r(α) ) | Br(α)×n(α) ) (13)

where A and B are matrices over F2 with the indicated di-
mensions. In this form, any column of A or B is clearly
a linear combination of the columns of 1; the mth column
cm (r (α) < m � 2n) of the transformed tableau above can be
written as cm = ∑r(α)

i=1 ci
mei. In other words, any column of A

or B may be added with a subset of the columns of 1 to yield a
zero vector, and so a vector encoding this sum would be a suit-
able null vector to start our algorithm of Sec. III B. Explicitly,
the collection of these columns to be summed corresponds to
a null vector u ∈ F2n(α)

2 with ui = 1 and um = 1 only at i and m
for which ci

m = 1. In fact, one may choose the column c of A
or B with the lowest (Hamming) weight to reduce the weight
of the corresponding null vector ω(u) as well as the gate cost
that it entails (as per Lemma 1).

B. Circuit depth

Now, we will analyze the overall circuit depth of the al-
gorithm. Notably, on hardware where commuting CNOT gates
can be performed in parallel, as discussed in, e.g., Ref. [30],
we in fact already have constant depth at each stage via
the instructions provided in Sec. III B, yielding overall depth
O(n). Remarkably, accommodating more generic hardware,
we find that the circuit has depth O(n log r) in contrast with
the number of gates, which we will show is O(nr).

At each stage α, we note that step 1 produces a circuit
of depth at most two, because only single-qubit gates may
be performed on each qubit. Meanwhile, as we shall argue
below, the CNOT gates conjugations in step 2 can be performed
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Algorithm 2. Step 2 yielding logarithmic depth.

Input: A null space vector (v, w).
Output: A modified step (2) of the algorithm.

1: Q ← {q = 1, . . . , n(α) | vq = 1 or wq = 1}
2: while |Q| > 1 do
3: for j = 1 to j = 
|Q|/2� do
4: Perform a conjugation with CNOT(q2 j, q2 j−1)
5: end for
6: Q ← Q \ {q2 j | j = 1, . . . , 
|Q|/2�}
7: end while

with depth O(log r (α) ). Moreover, since there are at most n
recursive stages in the algorithm, the overall circuit has depth
O(n log r).

Recall that step 1 modifies the columns involved in the
diagonalization according to Eq. (11), and step 2 adds these
X ′ columns. Without loss of generality, let us denote these
columns by X ′

1,X ′
2, . . . ,X ′

ω where ω is the weight of the
null space vector used for diagonalization. In step 2, we can
add these columns in pairs sequentially (as described earlier
in Sec. III B), or alternatively we may form disjoint pairs
to be added in parallel to the same end. That is, we can
perform CNOT(2 j, 2 j − 1) resulting in X ′

2 j−1 ← X ′
2 j−1 + X ′

2 j
for j ∈ {1, 2, . . . , 
ω/2�}. Note that all of these CNOT gates
amount to depth 1, since they each act on totally different
qubits. Now, we add these resulting columns X ′

1,X ′
3, . . . in

the same fashion. This process repeats until we are left with
only one X column, and each round of this pairwise addition
process is a circuit with depth 1. We summarize this procedure
in pseudocode in Algorithm 2, replacing lines 21–25 of the
instructions given in Algorithm 1.

Since each round of pairwise additions reduces the num-
ber of X columns to be added by about one half, there are
O(log2 ω) such rounds, each with depth 1. Using Lemma 2,
we can choose ω � r (α) + 1, and so each stage α involves a
circuit with depth O(log r (α) ).

C. CNOT gate count

Having analyzed the circuit depth, we now turn our atten-
tion to discussing the total number of CNOT gates.

Theorem 1. The number of CNOT gate conjugations re-
quired by the algorithm (Sec. III B) is at most n r − r(r+1)

2 .
To establish this bound, we will use Lemma 2 to count the

number of CNOT gate conjugations at each stage. The first
stage, α = 1, requires at most r (1) = r CNOT gate conjuga-
tions. For the subsequent stage, α = 2, if n(2) � r, the number
of independent generators at r (2) may remain r. Consequently,
for all stages α such that n(α) > r, the inequality r (α) � r
holds. There are at most (n − r) such stages, amounting to
at most (n − r)r CNOT gate conjugations. Once we reach a
stage s such that n(s) = r, the stage α = s + j has r (s+ j) �
n(s+ j) � r − j, because each stage diagonalizes on at least
one qubit. The number of CNOT gate conjugations in these
stages is therefore at most

∑r−1
j=0(r − j − 1) = r(r − 1)/2.

Putting both CNOT gate conjugation counts together, we obtain
n r − r(r + 1)/2.

This bound is also derived for a different algorithm in
Ref. [17]. Notably, in the limiting case r = n, this bound re-
duces to the known result n(n − 1)/2 (see, e.g., Refs. [16,31]).

It is important to note that our algorithm guarantees this
bound without further classical optimization. That is, one may
select any r (α) + 1 columns to form a dependent set at each
stage α, and this upper bound will hold. Now, we demonstrate
that we can achieve a lower estimate of CNOT cost by mini-
mizing the size of the dependent set of columns we select in
each stage, entailing a higher classical complexity cost.

Lemma 3. A qubit can be diagonalized at stage α with at
most 
 r(α)

2 � CNOT gate conjugations.
In exchange for a lower gate cost, one may accept a large

classical complexity by searching the entire null space for the
vector with the lowest symplectic weight by Lemma 1. Below,
we will use the properties of the null space of (X |Z ) at each
stage to establish a stricter lower bound on the number of
CNOT gates.

The rows of (Z (α)|X (α) ) span a r (α)-dimensional subspace
of the null space, due to the fact that the Pauli operators
represented by each row of (X (α)|Z (α) ) commute with one
another. Moreover, the Pauli operators in (Z (α)|X (α) ) may
be viewed as a [[n(α), k, d]] stabilizer code. The code maps
k = n(α) − r (α) logical qubits to n(α) physical qubits with the
capability of correcting at most (d − 1)/2 errors. Moreover,
we call S the stabilizer generated by the Pauli operators repre-
sented by the rows of (Z (α)|X (α) ). For a more general review,
see, e.g., Refs. [6,32].

Let C(S) be the centralizer of S, the Pauli operators that
commute with each element of S. For stabilizer codes, it
is known that the normalizer is identical to the centralizer
N (S) = C(S) [32]. In Sec. III A, we argued that a vector
u commutes with every element of (Z (α)|X (α) ), i.e., is an
element of N (S), if and only if it is in the null space of
(X (α)|Z (α) ). Therefore, the task of finding a null space vector
u of weight ω is equivalent to searching N (S) for a Pauli
operator of the desired weight. On the other hand, the quantum
Singleton bound [21,33,34] directly implies that there exists
a Pauli operator in N (S) with weight ω = d � 
r (α)/2� + 1.
Finally, invoking Lemma 1 concludes the proof.

Theorem 2. The number of CNOT gate conjugations re-
quired by the algorithm (Sec. III B) is at most n
 r

2� − 
 r
2�2.

To achieve this bound, at each stage α, we select the vector
with weight d � 
r (α)/2� + 1 promised by Lemma 3. Then,
we follow an argument similar to that of Theorem 1 to find
the total cost. That is, while n(α) � r, we use at most 
r/2�
CNOT gate conjugations. Since there are at most n − r + 1
of such stages, they amount to at most (n − r + 1)
r/2�
CNOT conjugations. After the stage s where n(s) = r, we use
at most 
(r − i)/2� for each subsequent stage s + i. These
stages amount to at most

∑r−1
i=1 
(r − i)/2� = 
r/2�
(r −

1)/2� CNOT conjugations. Putting both contributions together,
we obtain at most (n − r + 1)
r/2� + 
r/2�
(r − 1)/2�CNOT

conjugations, which gives us the bound claimed.
In the above argument, we have shown an equivalence

between finding the distance of a quantum stabilizer code
and reducing the CNOT count at one stage of our qubitwise
diagonalization to ∼r (α). Finding the distance of a code is
known to be NP-hard [35], and so we may expect to prac-
tically find the operator(s) of the normalizer N (S) with the
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lowest weight only for a relatively small number of qubits
(n � 30 on ordinary computers).

Equivalently, this problem may be restated as minimizing

min
{b1+···+b2n−r�z}

ω

(
2n−r∑
i=1

biN
i

)
, (14)

where Ni are vectors encoding the independent generators of
N (S), each bi = 0 or 1, and the sum between biNi vectors is
Boolean (i.e., XOR) and the sum over bi is decimal. Here, we
must take z = 2n − r to search the entirety of N (S) for the
lowest-weight solution. Nevertheless, a search through linear
combinations of fixed sizes � z is still polynomial in n and
still produces a vector of weight at least as low as that obtained
from choosing among Ni.

On the other hand, it is crucial to note that there is a
“greediness” to optimizing the (symplectic) weight of our null
vector at each stage of our algorithm, as opposed to optimizing
the choice for a circuit depth overall. In the sense, completely
optimizing at this stage might not always produce the overall
lowest circuit depth after diagonalizing over all qubits of our
operators. In the following section, we will discuss further
comparisons between circuit depths obtained with null vec-
tors chosen via Gaussian elimination sans optimization (see
Lemma 2 and its discussion below) and those chosen via
complete optimization at each stage.

V. EXAMPLES

In this section, we evaluate the performance of our al-
gorithm for a variety of example applications. In particular,
we use a proposed method of randomized benchmarking [16]
to assess the circuit cost resulting from our algorithm under
various circumstances in Sec. V A. Secondly, in Sec. V B, we
assess the algorithm’s performance in diagonalizing molecu-
lar Hamiltonians. Finally, we provide an example molecular
Hamiltonian for which our algorithm accommodates limited
qubit connectivity relatively well in Sec. V C.

A. Random sets of commuting Pauli operators

In this subsection, we apply our diagonalization algorithm
to sets of commuting Pauli operators generated randomly.
We use the algorithm constructed in Ref. [16] to generate a
sample of 100 distinct sets, each containing n Pauli operators
acting on n qubits. In our implementation, we use both the
classically efficient algorithm outlined below Lemma 2 (“no
optimization”) to select a null space vector of weight � r and
an exhaustive search through the null space to select the vector
of lowest weight (“complete optimization”). For each value of
n, we report the average number of CNOT conjugations needed
over the 100 sets. The error bars in our results are given by
the square root of the sample variance. We also superimpose
our results to the lowest results obtained in Ref. [16] in
Fig. 1.

In particular, we can see that there is a marked reduction
in the quantum circuit cost when searching for a low-weight
null vector to prescribe each stage of our algorithm, at least
for totally randomized sets of Pauli operators. In other words,
here we see a tradeoff, between classical complexity of

FIG. 1. The number of CNOT conjugations involved in diago-
nalizing n commuting Pauli operators acting on n qubits via our
qubitwise diagonalization strategy, averaged over 100 sets generated
randomly. Each uncertainty bar is the square root of the sample
variance of the 100 sets. We compare gate counts found with and
without minimizing the circuit depth, iteratively at each stage of
our algorithm (see discussion following Theorem 2). In addition,
the magenta (right) bars are in each case the smallest gate counts
obtained in Ref. [16], via the “greedy-2” algorithm.

producing a low-weight null vector and resulting the quantum
circuit complexity. Particularly, for r  n, this classical com-
plexity may become highly prohibitive since the null space
is of dimension 2n − r, in which case the no optimization
case conveniently produces a vector of (low) weight at most
r anyhow. For the rest of this section, to assess the costs on a
quantum computer of our algorithm while keeping classical
complexity low, we limit our algorithm to no optimization
(i.e., selecting null vectors via the procedure outlined under
Lemma 2).

Now, we illustrate how our number of CNOT gates also
depends on r, the number of independent generators of a set
of commuting Paulis. We first fix n, the number of qubits,
and again consider randomly generated sets of r independent
commuting Pauli operators. To obtain a set with only r � n
operators, we randomly select n − r operators to delete from
the set. Then, we construct diagonalization quantum circuits
and report the resulting number of CNOT gates. Figure 2 shows
the results for n = 10. As expected per our discussion in
Sec. IV C, we find that, for fixed n, gate count follows a
quadratic trend in r as f (r) = −ar2 + br (up to a constant
shift) for a, b > 0.

B. Molecular Hamiltonians

Having assessed the algorithm’s performance in diagonal-
izing commuting Hamiltonians generated randomly, we will
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FIG. 2. The number of CNOT conjugations obtained in diago-
nalizing a set of r independent commuting Pauli operators acting
on n = 15 qubits using the procedure outlined below Lemma 2
(no optimization). The data points are averages over 100 randomly
generated sets. The uncertainty bars displayed are the square roots of
the variances.

now consider its performance for a collection of molecular
Hamiltonians as more practical examples. In particular, we
consider one ionic compound HeH+ as well as the molecules
LiH, BeH2, NH3, and BH3.

The Hamiltonians as linear combinations of Pauli opera-
tors are obtained from Pennylane [36] Quantum Chemistry
datasets. For each of these species, we use the STO-3G basis,
and the optimal bond length given in the dataset. Given a
Hamiltonian, before diagonalization we must divide the Pauli
operators into sets of mutually commuting operators. As in
Refs. [15,16,37], this problem can be reduced to a graph-
coloring problem, and we use the independent set strategy in
NETWORKX [38] to color the graph.

Table I shows the results of diagonalization of each of these
Hamiltonians. In each case, we observe that both the average

number of CNOT gate conjugations and the circuit depth tend
to be near once or twice the number of independent operators
generating each set (r � n). However, it is worth noting that
different choices of strategies to form commuting sets of Pauli
operators (while using the same diagonalization algorithm)
may allow for higher or lower average gate counts or depths
per set.

Empirically we find that, for these more physically typical
Hamiltonian models rather than randomized sets, in fact a
lower circuit complexity is obtained from no optimization
rather than complete optimization. From these cases, we may
reasonably suspect that, in general, relatively local and sym-
metrical Hamiltonians modeling physical systems are more
amenable to this simple classical procedure for producing
circuit instructions than arbitrarily nonlocal and asymmetrical
Hamiltonians of randomized benchmarking.

C. Linear qubit connectivity

Further, we demonstrate the strategy presented in Sec. III C
assuming a hardware with linear connectivity. As a proof
of principle, we use the H4 chain Hamiltonian derived in
Ref. [31]. This Hamiltonian was obtained by setting the in-
teratomic distance � = 1.0 Å and using the STO-3G basis.
The Hamiltonian is then mapped to eight-qubit Pauli operators
using the Bravyi-Kitaev transformation [39]. To compare, we
use the same division of the Hamiltonian into ten collections
of commuting Pauli operators.

First, we consider the set of 20 Pauli operators shown in
Fig. [15] of Ref. [31]. There, the authors derived a circuit
with 13 H gates, 18 CNOT gates, 21 CZ gates, and 66 SWAP

gates assuming a hardware with linear connectivity. Via our
algorithm of Sec. III, we can produce a simpler circuit, with
only seven H gates, five CNOT gates, and 11 SWAP gates. Fig-
ures 3(a) and 3(b) show the diagonalization circuit assuming
fully connected hardware and linearly connected hardware,
respectively.

The nine remaining sets of commuting Pauli operators are
much simpler than the one discussed above. In the previous
literature, the authors were able to derive simple circuits,
notably with no SWAP gates and at most two two-qubit gates.
Our algorithm produces similar results diagonalizing the Pauli
operators in each set with no SWAP gates and at most two
two-qubit gates per set.

TABLE I. Results of qubitwise diagonalization of molecular Hamiltonians. Throughout the diagonalization, the null space vector at each
stage is chosen using the (classically efficient) algorithm described below Lemma 2. In each row, n and N are the number of qubits and the
total number of Pauli operators in each Hamiltonian, respectively. κ is the number of sets of commuting Pauli operators, while r is the average
number of independent generators per commuting set. The columns CNOT and Depth list the average numbers of CNOT gate conjugations and
the average quantum circuit depths obtained, respectively, with averages taken over the different sets of commuting Pauli operators in the
Hamiltonian. Finally CNOT SD and Depth SD are the standard deviations of the corresponding columns.

Molecule n N κ r CNOT CNOT SD Depth Depth SD

HeH+ 4 26 3 4.00 2.00 1.63 3.33 3.40
LiH 12 630 25 9.00 7.44 3.42 11.12 4.34
BeH2 14 665 19 11.16 9.00 3.28 11.68 4.22
NH3 16 2296 80 13.10 21.44 8.34 22.49 7.44
BH3 16 2496 97 12.01 18.21 6.36 21.26 6.64
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(a) (b)

FIG. 3. Diagonalization circuits of a large commuting sub-Hamiltonian of a H4 chain, derived in Fig. 15 of Ref. [31]. We assume a device
(a) with full qubit connectivity and (b) with linear qubit connectivity. In the latter case, we apply the methods of Sec. III C, involving extra
SWAP gates in order to implement more local two-qubit operations. We use the no optimization strategy to find a null space vector throughout
the diagonalization.

VI. CONCLUSIONS

This paper introduces an algorithm to simultaneously di-
agonalize Pauli operators, whose combinations are frequently
used to compute observables as well as unitary operations
such as in quantum simulation algorithms. Due to the iterative
nature of the algorithm, in which we seek to diagonalize all
operators over one qubit at a time, we find this algorithm is
additionally convenient in adaptations to quantum hardware
on which qubit connectivity is very limited. Moreover, we
are able to see from analytic arguments that the scaling for
depths of the resulting circuits prescribed by our algorithm
is exceptionally low, scaling linearly in the total number of
qubits and logarithmically in the number of independent gen-
erators of the operators. In kind, we can analytically count the
total number of two-qubit gates to be competitive with other
recent constructive diagonalization algorithms.

In this paper, we have further demonstrated that the circuits
we produce maintain short circuit depth and low two-qubit
gate count in example Hamiltonians such as random Her-
mitian operators and those describing molecular systems. It
remains to be demonstrated whether the circuit depth obtained
here can be substantially improved or is in fact optimal. Like-
wise, we have seen that there are choices in our algorithm that
can be exploited to further accommodate limited connectivity,

though making the optimal such choice may be formulated
as a generalized TSP. Therefore, further work can be done to
optimize these choices based upon the particular hardware in
consideration. Nevertheless, we expect that the framework for
diagonalization suggested by our algorithm will enable future
work to accommodate such hardware.

Additionally, let us point out that algorithms that form the
clusters of commuting operators to be diagonalized must be
designed in parallel with these diagonalization algorithms to
produce the simplest circuits possible overall. As such, devel-
opments in forming commuting clusters of operators would
similarly assist in the effort to efficiently diagonalize such
clusters overall as well.
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