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The Rayleigh-Ritz variation principle is a proven way to find ground states and energies for bound quantum
systems in the Schrödinger picture. Advances in machine learning and neural networks make it possible to extend
it from an analytical search from a subspace of the complete Hilbert space to the a numerical search in the almost
complete Hilbert space. In this paper, we extend the Rayleigh-Ritz principle to Nelson’s stochastic mechanics
formulation of nonrelativistic quantum mechanics and propose an algorithm to find the osmotic velocities u(x),
which contain the information of a quantum systems in this picture. As a proof of concept, we calculated u(x)
for one-dimensional systems, the harmonic oscillator, the double well and the Pöschl-Teller potential. To obtain
exited states, we calculate ground states of supersymmetrical partner Hamiltonians for each of these potentials.
We will show that this method is more efficient than the stochastic optimal control algorithm that was the usual
method to obtain osmotic velocities without going back to the Schrödinger equation.
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I. INTRODUCTION

Variation principles are one of the key building blocks of
theoretical physics in all its areas. In nonrelativistic quantum
mechanics this role is played by the Rayleigh-Ritz variation
principle [1]. It tells us that, for a Hermitian operator Ĥ , the
lowest eigenvalue E0 of its spectrum, and the corresponding
eigenfunction ψ can be determined solving

E0 = min
ψ

〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 . (1)

The solution ψ to this variation problem solves the stationary
Schrödinger equation for the energy eigenvalue E0. It is well
known that the Schrödinger equation is exactly solvable only
for one- and two-particle problems and a few selected choices
of potential. Beyond those, the Rayleigh-Ritz variation prin-
ciple is a solid starting ground for approximations to both the
ground-state energy and the ground-state wave function. This
has been most highly developed for the solution of many parti-
cle problems, where the Rayleigh-Ritz principle underlies the
proof of the Hohenberg-Kohn theorem and the development
of density functional theory [2]. For not analytically solvable
problems, the Rayleigh-Ritz principle provides an approxi-
mation strategy where the optimal solution is not searched
for within the complete allowed Hilbert space, but only in
a subspace of wave functions which can be parameterized
by a few parameters [3] . With the rise of machine learning
techniques it has, however, become possible to move from an
analytical search in a restricted subspace to a numerical search
in the almost (limited only by the practical implementation of
the neural networks) complete Hilbert space [4,5].

In Nelson’s stochastic mechanics formulation of non-
relativistic quantum mechanics [6,7], variation principles
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again played a central role in the formulation of the the-
ory. Recently, a quantum Hamilton principle [8] could be
used to derive quantum Hamilton equations of motion which
can be used to solve a quantum problem without recourse
to the Schrödinger equation [9–14]. The quantum Hamilton
equations are coupled forward-backward stochastic differen-
tial equations which have to be solved numerically, and the
standard algorithms for this are far less efficient then our tools
for solving the Schrödinger equation. However, stochastic
mechanics provides an alternative approach to the Rayleigh-
Ritz principle as well. In stochastic mechanics all physical
observables are stochastic variables and so is the total energy
of the system. The expectation value of the stochastic variable
energy agrees with the quantum mechanical expectation value
of the energy operator and this can be used to formulate a
Rayleigh-Ritz variation principle for the stochastic energy.

In the next section we will give some background on
Nelson’s stochastic mechanics, formulate the variation prin-
ciple, and elucidate its relation to the standard version of the
Rayleigh-Ritz principle. Section III will present an algorithm
for solving this variation principle which is a machine-
learning-based genetic algorithm. In Sec. IV we will discuss
results for the ground state of selected one-dimensional
quantum problems, and Sec. V will present results for the
determination of excited states based on a supersymmetric
(SUSY) factorization of the corresponding Hamiltonians. Fi-
nally, Sec. VI will present some conclusions and an outlook.

II. THEORETICAL BACKGROUND

The equations of motion of stochastic mechanics can be
derived from a variation principle, the quantum Hamilton
principle, similar to what one does in classical analytical
mechanics. The general idea of this variation principle can be
found in [6,8,12], we will use the formulation put forward by
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Pavon [8]

J[v̂, û] = min
v

max
u

E

{ ∫
dt

[
1

2
m[v(x, t )

− iu(x, t )]2 − V (x, t )

]
+ �0

}
. (2)

Here v(x, t ) is the velocity of the probability current, u(x, t )
the so-called osmotic velocity, V (x, t ) the potential, and �0 a
starting condition. This complex variation principle is a short-
hand for two coupled variation principles which are encoded
in the real and imaginary parts of the integral. The real part
is a saddle-point action principle, the imaginary part a saddle-
point entropy production principle [8]. They are saddle-point
principles because the v player searches for a minimum while
the u player searches for a maximum. The optimum for these
jointly played games is the Nash equilibrium of this variation
principle. Both velocities are gradients of scalar fields

v(x, t ) = 1

m
∇S(x, t ), u(x, t ) = h̄

2m
∇ ln[ρ(x, t )], (3)

where S(x, t ) is the action and ρ(x, t ) the probability density
of x(t ).

A. Stationary case

In the following we will consider the stationary case only,
i.e., the quantum mechanical action is given by S(x, t ) = −Et ,
where E is the energy of the system and limit ourselves to
one-dimensional problems, which we will treat numerically
later on. The above variation principle then simplifies to

J[u0] = max
u

E

{∫ T

0
dt

[
− 1

2
mu2[x(t )] − V [x(t )]

]
+ S0

}
,

(4)

which is equivalent to

J[u0] = min
u

E

{
1

T

∫ T

0
dt

[
1

2
mu2[x(t )] + V [x(t )]

]
+ S0

}
,

(5)

by multiplication with −1/T . Here the E in front of the integral
stands for building the expectation value and S0 is a starting
condition. The function u0 obtained from this principle as the
osmotic velocity of the ground state is an optimal feedback
control. Using stochastic optimal control theory [9,15] to
determine this feedback control results in coupled forward-
backward stochastic differential equations

dx(t ) = u0[x(t )]dt +
√

h̄

m
dWf (t ),

t ∈ [0, T ], x(t = 0) = x0 (fixed), (6)

du0[x(t )] = 1

m
V ′(x(t ))dt +

√
h̄

m
u′

0[x(t )]dWb(t ), (7)

with x being the particle position, dWf ,b a forward or back-
ward in time Wiener process, and h̄/m the diffusion coefficient.
This is the stationary version of the quantum Hamilton equa-
tions which can be shown to be equivalent to the stationary
Schrödinger equation using Itô calculus for the differential
of the osmotic velocity [12,14]. The proof uses the fact that

the probability density of the process x is given by ρ(x) =
|ψ (x)|2.

The variation principle of Eq. (5) aims to find an osmotic
velocity such that the expectation value of the time-averaged
energy along a particle trajectory is minimized. The integrand
is the stochastic energy of the particle H (x) = 1/2mu2(x) +
V (x), which is a fluctuating quantity whose average is equal to
the quantum mechanical expectation value of the Hamiltonian
in the ground state. Using the ergodicity of the Brownian
diffusion in the ground state, this time-averaged energy is
equal to the ensemble-averaged energy and we can write

J[u0] = min
u

∫
dxρ(x)

[
1

2
mu2(x) + V (x)

]
. (8)

The quantum Hamilton principle used for the derivation of
the stationary quantum Hamilton equation is therefore equiv-
alent to a Rayleigh-Ritz principle for the quantum mechanical
ground state. The ground-state osmotic velocity u0 gives rise
to a ground-state density

ρ0 = exp

{
2m

h̄

∫ x

u0(x′)dx′
}
. (9)

B. Relation to the standard Rayleigh-Ritz principle

For a normalized wave function, the Rayleigh-Ritz princi-
ple of Eq. (1) can be written as

E0 = min
ψ

〈ψ |Ĥ |ψ〉,

and using the relation of the ground-state wave function to the
ground-state density ψ0 = √

ρ one obtains

E0 = min
ρ

∫
dx

√
ρ(x)

[
− h̄2

2m

d2

dx2
+ V (x)

]√
ρ(x)

= min
ρ

{ ∫
dx

[
1

2
mu2(x) + V (x)

]

− h̄2

2m

∫
dx

d2ρ

dx2
ρ(x)

}

= min
u

{ ∫
dx

[
1

2
mu2(x) + V (x)

]

− h̄2

4m

∫
dx

d2ρ

dx2
ρ(x)

}
, (10)

where we employed the one-to-one correspondence between
the density and the osmotic velocity. The first of these terms
is just the Rayleigh-Ritz principle for Nelson’s stochastic me-
chanics Eq. (8). The second term can be rewritten using

h̄2

4m

d2ρ

dx2
=

[
mu2 + h̄

2

du

dx

]
ρ, (11)

and

m

2
u2 + h̄

2

du

dx
= V − E . (12)

With this, the second term is given by∫
dx

[
1

2
mu2(x) + V (x) − E

]
ρ(x), (13)
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which is exactly zero in the ground state. So the standard form
of the Rayleigh-Ritz principle for the ground state of a quan-
tum system is equivalent to the form derived from stochastic
mechanics. However, we learned, in addition, that the standard
from contains a term which actually does not contribute to
the ground-state energy because it has to vanish in the ground
state. This observation can be used for the formulation of a
numerical approach presented in the next section

III. ALGORITHM

We propose now an algorithm that combines genetic algo-
rithms with neural networks, which parametrize the osmotic
velocity, with fitness functions from the Nelson picture. The
inspiration was [16], where a similar one-phase algorithm
was used to calculate optimal thermodynamic cycles under
different restrictions and [4], where the stochastic gradient
descends, deep learning and a class of variational problems
were used to solve the Poisson equation.

A. Genetic algorithms

Genetic algorithms are a class of optimization algorithms
that are inspired by evolution [17,18]. One has to initialize a
population of individual solutions first. Those are evaluated by
calculating their fitness using a scalar fitness function, which
either has to be maximized or minimized. Then survivors are
selected either randomly, with a calculated surviving probabil-
ity depending on the individuals fitness, or deterministically,
ergo a fixed number of best-performing individuals survive
to the next generation. To repopulate the population, there
exist two main methods of variation: crossover and mutation.
Crossover takes, most of the time, two survivors and takes
their genomes, their parametrization, and combines them to
two new individuals. Mutation takes the genomes of one indi-
vidual and changes some parameters either by replacing them
with a completely new number or by adding or subtracting a
random number obeying some distribution, e.g., a Gaussian or
Cauchy distribution. The survivors and the new individuals are
the population of the next generation and the cycle of selection
and repopulation with genome variation continues until some
convergence or abort criterion is fulfilled.

Genetic algorithms have the advantage over gradient-based
methods [19] that they rarely, if at all, can get stuck in some
local extrema of the fitness landscape. They are also easy to
program and to understand.

B. Neural networks

Neural networks, which are used in almost all areas of sci-
ence today, are of interest here because of their use as almost
universal function approximation tool. For our purposes, only
the forward path of a neural network is of interest. The normal
way by back-propagation and stochastic gradient descent is
substituted by the genetic algorithm.

A neural network is built from layers of neurons. Each one
takes the output from each neuron of the previous layer and
performs a weighted sum, which then is put into an activation

function φ (which typically has a sigmoidal form)

o j = φ

(∑
i

wi joi + bi j

)
(14)

form the input to the output layer.
For our algorithm, a four-layer neural network was used

with n hidden neurons per hidden layer and one-neuron input
and output layers and with tanh as activation function between
every layer, except the second hidden layer and the output
layer, where no activation function was used.

C. Setup of the algorithm

The algorithm has two phases which differ in the used
fitness functions. The first one uses Eq. (10) to determine E0

and a first estimate for u0,

f1 =
∫ (m

2
u2 + V

)
ρdx +

∣∣∣∣∣ h̄2

4m

∫
ρ ′′dx∫
ρdx

∣∣∣∣∣ −→ E0, (15)

and the second [20] uses Eq. (12) and E0 from the first phase
to improve the estimate for u0

f2 = m

2
u2 + h̄

2

∂

∂x
u − V + E0 −→ 0. (16)

It is advantageous to use two phases because of the properties
of the two fitness functions. In f1 both terms contain the
probability density ρ. Because of this, the osmotic velocity
is well approximated where ρ is large, but relatively poorly
approximated where ρ is very small.

f2 has the problem that E0 is not a priori known but the
advantage that ρ does not appear. In fact, with E0 given,
Eq. (12) is the Riccati equation for the ground state of the
problem, which is equivalent to the stationary Schrödinger
equation.

Having both phases in the algorithm cancels the problems
of each individual fitness function. Having only one phase
results in the activation function [here tanh(x)]determining
the results in the area with small probability density (see
thrsubplot in Fig. 3). We employed Gaussian mutation which
works by randomly picking biases and weights from a neural
network and adding a N (0, 1)-distributed random number
multiplied by a learning rate, lr. The selection of survivors
in each generation is done by checking for the minima of
f1 and f2, respectively, in each phase. This is repeated until
convergence, which is reached by having no improvement in
the survivors for ten generations.

After convergence, the final osmotic velocity is used with
Eq. (10) to obtain the final ground-state energy E0. This is
done to gain consistency, i.e., that the final u(x) fits to the final
E0. It has to be mentioned that the difference between this
final value and the one obtained after phase one is of the order
of the relative error (Table I), which is expected considering
Eq. (16) can be interpreted as varying the osmotic velocity to
make it fit better to the E0 obtained in phase one.

D. Discussion of hyperparameters and parameters

This algorithm contains a set of hyperparameters (to be
differentiated from the weights and biases of the neural
network, which typically are called the parameters of the
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TABLE I. Correct and calculated ground-state energies for the
three potentials with relative error in reduced units.

Potential Correct E0 Calculated E0 Relative error

HO 0.5 0.50007 0.014%
PT −4.5 −4.49939 0.0135%
DW 1.10342 [10] 1.10337 0.00453%

network), which can be adjusted to optimize the algorithm.
Generally the learning rate should be small and the pop-
ulation size should be rather high because, if chosen too
small, the algorithm converges too quickly to find a sat-
isfying approximation. In practice, a learning rate of lr =
0.001 was found useful. Larger values resulted in large de-
viations in the energy error, mean absolute error (MAE)
�MAE = 1

N

∑N
i=1 |xi − x̂i| and root mean square error (RMSE)

�RMSE = 1
N

√∑N
i=1(xi − x̂i )2 with respect to the reference

curves. With the other hyperparameters fixed, a decrease of
magnitude in the learning rate resulted in a decrease of mag-
nitude in the MAE and RMSE (Fig. 1). The population size
should not be smaller than 100. Larger populations improve
the results, but an increase in order of magnitude did not have
the same improvement in the errors (Fig. 1). The 25% survivor
rate was chosen because an increase did not result in a increase
in accuracy, but lowering the rate did result in lower accuracy.
So, at least for these problems, 25% were optimal.

Regarding the architecture, two hidden layers were suffi-
cient for these problems with no significant improvement with
a third hidden layer added to the architecture.

For the number of neurons n, experience showed that for
the harmonic oscillator and the Pöschl-Teller potential n = 7
was adequate. For the double-well potential n = 25 was used.

IV. RESULTS FOR THE GROUND STATE

To test the algorithm we used the harmonic oscillator,
the symmetric Pöschl-Teller potential, and the double-well
potential

VHO(x) = ω2m

2
x2, (17)

VPT(x) = − h̄2

2mx2
0

l (l + 1)

cosh(x/x0)2
, (18)

VDW(x) = V0

x4
0

(
x2 − x2

0

)2
, (19)

respectively, with l being the number of bound states in the
Pöschl-Teller potential, V0 being the height of the barrier,
and x0 being the locations of the minima of the double well
(see Fig. 2). For the numerical implementation, dimensionless
units were used for the the harmonic oscillator and the Pöschl-
Teller potential. For the double well V0 = 2 and x0 = 1.5 were
used.

The harmonic oscillator is the standard problem in physics.
In quantum mechanics, the harmonic oscillator is exactly
solvable with equidistant energy values

En = h̄ω
(
n + 1

2

)
, n = 0, 1, 2, . . . , (20)
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FIG. 1. RMSE and MAE change for the different potentials for
increase in learning rate (top) and population size (bottom).
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FIG. 2. The harmonic oscillator and the Pöschl-Teller potential
in reduced units and the quartic double-well potential.
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which makes it a good problem to test numerical methods
against. In reduced units, the osmotic velocity for the har-
monic oscillator is

uHO(x) = −x. (21)

The symmetrical Pöschl-Teller potential, used to describe
two-atom systems, is also analytically solvable [21]. The wave
functions are the Legendre polynomials Pμ

l [tanh(x)] with l
being the number of bound states and μ being the index of
the bound state [22]. The energy spectrum is given by

Eμ
PT = − h̄2μ2

2m
μ = 1, 2, . . . , l − 1, l. (22)

Using Eq. (3) with ρ(x) = 	(x)2 = Pμ

l [tanh(x)]2 the refer-
ence osmotic velocity for this potential was calculated.

The quartic double-well potential is only numerically solv-
able. Another property of it is that the gradient descent
methods fail in solving it, making it a good potential to
test other kinds of algorithms. The reference was created by
solving the Schrödinger equation using the Numerov method
[23,24] and again using Eq. (3) to obtain the osmotic velocity
from the wave function.

The accuracy of the curves (e.g., Fig. 3) of the osmotic
velocities fit very well with the errors, MAE and RMSE,
which are of the order 10−4 to 10−5, respectively, for the right
choice of hyperparameters (Fig. 1).

The probability densities (Fig. 4) are approximated using
Eq. (9).

The correct energies for the different potentials with these
parameters can be seen in Table I. The calculated energies
agree well with the correct energies with very small relative
errors.

With respect to the numerical solution of the stochastic dif-
ferential equations obtained using stochastic optimal control
theory (STOC), one can also see an improvement regarding
time efficiency. The STOC algorithm is quite slow, even for
simple potentials with a few hours of calculation time. Here,
for the Pöschl-Teller and the harmonic oscillator potentials,
equally well-converged results were obtained in 15 to 20
minutes.

V. EXITED STATES

As shown in [25], the SUSY partner Hamiltonians can be
derived to be given by

Ĥn = T + V0 −
n−1∑
i=0

∂

∂x
ui. (23)

The ground-state energy of the first partner Hamiltonian has
the energy of the first exited state of the original Hamilto-
nian, the ground state of the second partner Hamiltonian has
the same energy as the second excited state of the original
Hamiltonian, and so on. At each stage we have to solve the
Rayleigh-Ritz principle for the respective Hamiltonian to ob-
tain the corresponding ground-state osmotic velocity of the
nth partner Hamiltonian.

This has to be done because the “normal” exited states
have corresponding osmotic velocities with singularities in
them. In Schrödinger quantum mechanics, the exited states

−4 −3 −2 −1 0 1 2 3 4

x
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−2

0

2

4

u
(x

)

−2.5 0.0 2.5

x

−2.5

0.0

2.5

u
(x

)

−4 −3 −2 −1 0 1 2 3 4

x

−6
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4

6

u
(x

)

−4 −3 −2 −1 0 1 2 3 4

x

−6

−4

−2

0
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4

6

u
(x

)

(a)

(b)

(c)

FIG. 3. Osmotic velocities of the harmonic oscillator (top),
Pöschl-Teller (middle), and double-well (bottom) potential. All fig-
ures use reduced units. Visually, there is no difference between the
references (connected red dots) and the solutions of the algorithm
(continuous blue lines).

wave functions have nodes. There the probability distribution
becomes zero and because of Eq. (3), there are singularities in
the osmotic velocity. Because the ground states of the SUSY
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FIG. 4. Probability densities of the harmonic oscillator (top),
Pöschl-Teller (middle), and double-well (bottom) potential . All fig-
ures use reduced units. No visible difference between the references
(connected red dots) and the calculations from the newly calculated
osmotic velocities (continuous blue) Eq. (9) exists.

partner Hamiltonians are nodeless, they are used to obtain the
exited states.

For a broad region of coordinate space, the algorithm can
approximate the ground states for the partner Hamiltonians
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FIG. 5. Osmotic velocities for the first four exited states and the
ground state of the harmonic oscillator, separated by �E (for vis-
ibility) (top) and corresponding probability densities (bottom) (GA
N indicates the result of the genetic algorithm for the ground state
N = 0 and the N th exited state). One can observe the growing error
in the osmotic velocity from excitation to excitation. This has only
very small influence on the error in the corresponding probability
densities.

satisfactorily. The numerical uncertainties for the higher-order
exited states arise from the sum of the (numerical) derivatives
of the osmotic velocities. These propagate smaller errors to
the next iteration of the algorithm, which increases the error
from state to state. This happens independent from the hyper-
parameters used in the algorithm.

The harmonic oscillator is a good potential, where this can
be observed, because the Hamiltonian only changes by a con-
stant −∇u(x) = −∇(−x) = 1 = �E between exited states,
with the osmotic velocity being left unchanged. In Fig. 5
one can see the growing error in the osmotic velocity very
well. But the error in the corresponding probability densities
(unchanged from state to state) is very small. This error can
also be seen in (Fig. 6) as the slight rightwards drift of the
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FIG. 6. Densities for the first four exited states and the ground
state for the double well (top) and the first two exited states and the
ground state of the Pöschl-Teller potential (bottom). One can observe
that the error of the numerical calculation of the divergence in (23)
propagates and grows with each excitation resulting in a slight shift
of the symmetry axis of the densities (should by at x = 0).

center of the probability densities of the higher exited states,
which should be at x = 0 because of the symmetry of the
potential.

VI. CONCLUSION

We showed that the Hamilton principle of stochastic me-
chanics for a stationary state is equivalent to the Ritz variation
principle of standard quantum mechanics. One can determine
the ground-state probability (or, equivalently, the osmotic
ground-state velocity of stochastic mechanics) by minimizing
the expectation value of a stochastic Hamiltonian. We showed
how to apply this to the ground state, and using the SUSY fac-
torization of one-dimensional quantum problems, the excited
states of one-dimensional systems. For this we introduced

a machine learning algorithm within a genetic optimization
approach.

The algorithm offers an efficient way to numerically solve
for the ground state of quantum problems. The resulting
ground-state probability density can easily be determined over
many orders of magnitude. With respect to its application
within stochastic mechanics, it offers a much more efficient
way to numerically solve for the ground state than what is
possible via solution of the coupled forward-backward SDE
derived from optimal control theory. We checked for accuracy
and efficiency of the algorithm as a function of its free param-
eters and suggested an optimal compromise.

While we restricted our analysis to one-dimensional prob-
lems, an extension to two- or three-dimensional problems
seems possible based on the simulation efficiency found so
far. However, as with many machine learning applications,
our approach faces the curse of dimensionality, making the
possibility to extend it to many-particle physics problems
questionable [at least working with the Riccati equation,
i.e., the stationary Schrödinger equation of Eq. (12)]. These
systems can be much more efficiently handled by methods
based on discrete variable representations of the Schrödinger
equation.

APPENDIX A: WORKFLOW OF THE ALGORITHM

The first algorithm works as follows.
(1) Initialize 100 NNs using uniform distribution

([−1, 1]).
(2) Repeat until the energy does not decrease for ten

generations:
(a) calculate f1 for each NN;
(b) pick the 25 best NNs, discard the rest;
(c) create 75 new NNs by copying randomly from the

pool of survivors and mutate these copies with Gaussian
mutation.
Thus one obtains a population of well-performing neural

networks and the ground-state energy. The second phase is
needed to get good results in the areas with small ρ(x). Thus
the second phase is as follows.

(1) Pick the survivors of phase 1 and repopulate.
(2) Repeat until the term f2 does not decrease for ten

generations:
(a) calculate f2 for each NN;
(b) pick the 25 best NNs, discard the rest;
(c) create 75 new NNs by copying randomly from the

pool of survivors and mutate these copies with Gaussian
mutation.
This has to be completed to get good results for u(x).

APPENDIX B: UNITS

For the implementation, dimensionless units were used for
the harmonic oscillator and the Pöschl-Teller potential derived
from

EHO = m

2
u(x)2 + mω2

2
x2, (B1)

E

h̄ω
= 1

2

m

h̄ω
u(x)2 + 1

2

mω

h̄
x2, (B2)
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FIG. 7. Relative error of the probability densities from the cor-
responding references of the harmonic oscillator (blue continuous
line), double well (green dotted line), and the Pöschl-Teller potential
(orange dashed line). One can observe generally small deviations
from the references.

resulting for the harmonic oscillator√
mω

h̄
x −→ x,

√
m

h̄ω
u −→ u,

EHO

h̄ω
−→ EHO, (B3)

and

EPT = m

2
u(x)2 − h̄2

2mx2
0

l (l + 1)

cosh(x/x0)2
, (B4)

2mx2
0

h̄2 EPT = 1

2

2m2x2
0

h̄2 u(x)2 − l (l + 1)

cosh(x/x0)2
, (B5)

resulting for the Pöschl-Teller potential

x

x0
−→ x,

√
2mx0

h̄
u −→ u,

2mx2
0EPT

h̄2 −→ EPT. (B6)

For the double well

V0 = 2, x0 = 1.5 (B7)

was used.

APPENDIX C: ERRORS

To aid in the visibility of the difference between the result
of the algorithm and the references, we plotted the relative
error of the probability densities

�(x) = ρ(x) − ρref(x)

ρref(x)
, (C1)

respectively (see Fig. 7). The error of the probability density
is larger the further away we go from x = 0. The downward
spikes are due to tanh activation function only sparsely hitting
the references.

APPENDIX D: HARD- AND SOFTWARE
IMPLEMENTATION

The algorithm was programed with PYTHON 3.8 with
the packages NUMPY and COPY for calculations and TIME,
DATETIME, MATPLOTLIB, MULTIPROCESSING, and COPY for
evaluations. The program was run on a Intel Core i7-10700
CPU @ 2.90GHz × 16 on a Ubuntu 20.04.5 LTS 64 bit sys-
tem using PyCharm Community Edition.
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