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Robust quantum state transfer with topologically protected nodes
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Robust quantum state transfer (QST) is the foundation for information exchange among nodes in quantum
networks. In this paper, we propose a robust QST protocol that utilizes topological edge modes in the qubit chains
to encode (decode) quantum states (flying qubits). By employing qubits with tunable couplings, we construct
Su-Schrieffer-Heeger (SSH) chains as the nodes of a quantum network. The end qubit of each SSH chain is
dissipatively coupled to a chiral waveguide, and the dissipative strength is a constant. We refer to the SSH
chain with a dissipation channel at the end qubit as the non-Hermitian SSH chain. Comparing the symmetry
and energy spectra of the non-Hermitian SSH chain with those of the SSH chain, our analysis reveals that
the dissipative dynamics of the topological edge state in the non-Hermitian SSH chain are governed by its
imaginary spectra. The edge mode with the imaginary spectrum can be used to encode (decode) quantum states
(flying qubits), thereby enabling robust QST between two remote mirrored non-Hermitian SSH chains. Our
numerical simulations demonstrate that high-fidelity QST can be achieved even in the presence of coupling
errors. Furthermore, we extend our analysis to consider QST in imperfect chiral waveguides, providing insights
into the robustness of our protocol under realistic conditions. Our discussion is applicable to various quantum
platforms and holds significant implications for constructing large-scale quantum networks.
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I. INTRODUCTION

The quantum network is the cornerstone for large-scale
quantum information processing [1–3]. The quantum state
transfer (QST) between two nodes represents the basic unit
of a quantum network. Many constructive QST solutions have
been explored over the past few decades [4–14]. These pro-
tocols can be divided into two categories. The first type of
protocols encode the quantum state into a flying qubit using
a specialized dissipation function at the first node. Subse-
quently, the flying qubit is decoded back into a quantum
state by reversing the dissipation function at the second node
[15–20]. These protocols use chiral waveguides as channels,
which greatly facilitate QST over long distances. Unfor-
tunately, these protocols are sensitive to errors in tunable
parameters, and noise in the waveguide also affects the fi-
delity of the QST. The second type of protocols have been
developed to address these challenges by employing spin
chains and spin-wave engineering, resulting in high-fidelity
QST [21–23]. However, it is important to note that these
protocols currently have technical limitations that restrict their
applicability to short-distance QST. As a result, achieving
high-fidelity QST over long distances remains a challenge.

The inherent resistance to disorder in topology has gar-
nered significant attention [24–29], which has resulted in the
integration of the concept of topology into various quantum
platforms and research directions [26,30–34]. Topological
quantum computation can be achieved through the utilization
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of non-Abelian arbitrary braided operations, which is one of
the prominent approaches for realizing large-scale quantum
computers [35,36]. A topologically protected laser can also
be implemented using edge modes [37–39]. Furthermore, for
the second type of QST protocols, by constructing generalized
one-dimensional or two-dimensional topological systems, it is
possible to achieve short-distance robust QST for tunable pa-
rameters and defects [12,40–44]. However, the research field
of the first type of long-distance QST protected by topology
is still a blank.

Inspired by Ref. [12], we present here an experimen-
tally feasible protocol for robust long-distance QST utilizing
non-Hermitian Su-Schrieffer-Heeger (SSH) chains as nodes,
which encode (decode) quantum states (flying qubits) in topo-
logical edge modes. We first study the symmetry and dynamic
properties of non-Hermitian SSH chains. The imaginary spec-
trum changes with the evolution of the edge state from the
left edge mode to the right edge mode. In other words, the
effective dissipation strength of the edge state can be changed
by tuning the coupling parameters. Therefore we can encode
(decode) the quantum state (flying qubit) to the flying qubit
(quantum state) by adiabatic tuning of edge states, which
exhibits robustness in the presence of coupling errors. We sub-
sequently investigate QST between two non-Hermitian SSH
chains as nodes. This transfer is achieved by implementing
a time-reversal process, whereby the flying qubit encoded at
node 1 is decoded at node 2. Through numerical simulations,
we demonstrate the robustness of the QST protocol in the
presence of errors in tunable coupling parameters and fixed
dissipation strength. Imperfect chiral waveguides can also im-
pact the fidelity of QST. However, when the distance between
nodes is an integral multiple of the wavelength, high-fidelity
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n=1 n=2 n=N

FIG. 1. A non-Hermitian SSH chain, serving as a node in a
quantum network, has the capability to encode (decode) quantum
states (flying qubits) on its topological edge state.

QST can still be achieved. Our results demonstrate that the
encoding (decoding) of the quantum state (flying qubit) is
protected by topology, specifically the finite band gap between
the bulk and edge states of the non-Hermitian SSH chain.
Thus we show that high-fidelity QST can still be achieved
even in the presence of relatively large coupling parameter
errors. This protocol can be implemented on qubit systems,
including optomechanical systems, trapped ions, and super-
conducting circuits.

This paper is organized as follows. In Sec. II, we introduce
the non-Hermitian SSH chains as the nodes of a quantum
network and study their symmetry, energy spectrum, and
dynamic properties. In Sec. III, we demonstrate the QST be-
tween two non-Hermitian SSH chains and conduct numerical
simulations to investigate the impact of coupling errors and
imperfect chiral waveguides on the fidelity of the transfer. In
Sec. IV, we summarize the results.

II. NON-HERMITIC SSH CHAINS

In our QST protocol, we employ the non-Hermitian SSH
chains as the nodes. Considering the equivalence of all nodes
in the quantum network, in Fig. 1 we only show node j.
The node is a non-Hermitian SSH chain composed of N + 1
A-type qubits and N B-type qubits, with the quantum state
dissipating into the waveguide through the end qubit. Both
the storage and reading of quantum states take place at the
first qubit. The Hamiltonian of node j is

Hj =
N∑

n=1

(
J j

1 σ+
Aj,n

σ−
Bj,n

+ J j
2 σ+

Aj,n+1
σ−

Bj,n
+ H.c.

)

+ iγ jσ
+
Aj,N+1

σ−
Aj,N+1

, (1)

where σ+
Aj,n

= |e〉Aj,n〈g| (σ+
Bj,n

= |e〉Bj,n〈g|) is the Pauli operator

of the nth A-type (B-type) qubit and J j
1 and J j

2 represent the in-
tracell (thin lines) and intercell (bold lines) coupling strengths,
respectively. The dissipative coupling strength between the

end qubit and the waveguide is γ j , which is a constant. The
first term of the Hamiltonian describes the standard SSH
chain, and the second term describes the gain or dissipation.

In the single-excitation subspace, the wave function of
node j can be written as

|ψ〉 j =
N+1∑
n=1

(α j,nσ
+
Aj,n

+ β j,nσ
+
Bj,n

)|G〉 j, (2)

where |G〉 j = |gg · · · g〉 j is the ground state and β j,N+1 = 0.
Next, we will proceed with a comprehensive analysis of

the edge states and dynamic characteristics exhibited by non-
Hermitian SSH chains.

A. Symmetry and the energy spectrum

Symmetries such as time-reversal symmetry (TRS),
particle-hole symmetry (PHS), and chiral symmetry (CS), are
crucial in the topological phases; they determine the classifi-
cation of topological phases. The standard SSH chains satisfy
chiral symmetry. We define T , P , and C = T P as the time-
reversal operator, the particle-hole operator, and the chiral
operator, respectively, where T and P are antiunitary and C
is unitary. In the case of discrete lattice points, the operators
T , P , and C act as T iT −1 = −i, PiP−1 = i, CiC−1 = −i. For
the non-Hermitian SSH chain presented in this paper, we can
obtain

T Hj,SSHT −1 = Hj,SSH, PHj,SSHP−1 = −Hj,SSH,

T Hj,PT −1 = −Hj,P, PHj,PP−1 = Hj,P,

CHj,SSHC−1 = −Hj,SSH, CHjC−1 = −Hj, (3)

where Hj,SSH is the Hamiltonian of the SSH chain and Hj,P =
iγ jσ

+
Aj,N+1

σ−
Aj,N+1

is the non-Hermitian term. The non-Hermitian
SSH chain satisfies chiral symmetry.

As shown in Fig. 2, we numerically simulate the energy
spectrum of the non-Hermitian SSH chain with open bound-
ary conditions, where N = 2, J j

1 = J0(1 − cos θ ), and J j
1 =

J0(1 + cos θ ). Here, J0 = 5 MHz is the coupling constant. As
depicted in Fig. 2(a), the real spectrum of non-Hermitian SSH
chains remains the same as that of SSH chains (γ j = 0 MHz),
irrespective of whether they exhibit gain (γ j = 1 MHz) or
dissipative (γ j = −1 MHz) behavior. Figure 2(b) shows the
complex spectrum of the SSH chain (γ j = 0 MHz). Taking
the non-Hermitian term iγ j into account, we expect it to
have an impact on the energy spectrum of the SSH model.
In Fig. 2(c), there is a base energy in the full complex en-
ergy spectrum that does not contact other energy bands. This
indicates the existence of an edge state in the non-Hermitic
SSH chain with γ j = −1 MHz [45,46]. The presence of chiral
symmetry in the system imposes a requirement that the base
energy must lie on the imaginary axis (ReEj,0 = 0), accompa-
nied by the appearance of energy eigenvalue pairs (Ej,−E∗

j )
[46]. This requirement is strongly supported by the complex
energy spectrum analysis. It can be seen that within a period,
the imaginary energy will change from 0 to −1 and then from
−1 to 0 in Fig. 2(c), which is easy to understand. As is known
to all, the edge state is concentrated in the left end of the
SSH chain when −π/2 < θ < π/2 and in the right end when
π/2 < θ < 3π/2. The distribution of the edge state in the
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FIG. 2. Energy spectrum of a non-Hermitian SSH chain. (a) The
real spectrum of the non-Hermitian SSH chain (γ j = −1 MHz and
γ j = 1 MHz) almost coincides with the real spectrum of the SSH
chain (γ j = 0 MHz). (b) The complex spectrum of the SSH chain.
(c) and (d) For γ j = −1 MHz, the complex spectrum and the imagi-
nary spectrum of the non-Hermitian SSH chain, respectively. (e) and
(f) The complex spectrogram and imaginary spectrogram for γ j =
1 MHz, respectively. In [(b)–(f)], red triangles represent topological
edge states, and black squares represent bulk states.

non-Hermitian SSH chain exhibits a similarity to that in the
SSH chain. However, the presence of a dissipative channel at
the end qubit results in a relatively smaller effective dissipa-
tion strength (imaginary energy) for the left-end-concentrated
edge state. Conversely, when the edge state is concentrated
on the right end, the effective dissipation strength (imaginary
energy) becomes larger. In particular, at θ = 0 and θ = π ,
the imaginary energy of the edge state becomes 0 or iγ j ,
respectively. The energy spectrum of the non-Hermitian SSH
chain with gain is illustrated in Figs. 2(e) and 2(f). Comparing
Figs. 2(e) and 2(f) with Figs. 2(c) and 2(d), we find that the
situation is essentially the same for both gain and dissipation,
but the topological edge state always exhibits gain behavior.
Figure 2 illustrates that non-Hermitian SSH chains have topo-
logical edge states similar to those of SSH chains. Specifically,
the edge states in non-Hermitian SSH chains can exhibit gain
or dissipative behavior, and their strength is tunable.

B. Dynamics and robustness

In this section, we will analyze the dynamics of non-
Hermitian SSH chains and their robustness in the presence

of coupling errors. We set the coupling strengths J j
1 = J0(1 −

cos(ωt )) and J j
2 = J0(1 + cos(ωt )), where ω is the adjustment

frequency and t is time. The Hamiltonian Hj (t ) is time depen-
dent. Here we investigate the evolution of the wave function
under adiabatic changes in the Hamiltonian. The instanta-
neous eigenequation of node j can be written as

Hj (t )|Ej,n(t )〉 = Ej,n(t )|Ej,n(t )〉, (4)

where |Ej,n(t )〉 is the instantaneous eigenstate and Ej,n(t ) is
the instantaneous eigenenergy. Therefore the wave function at
any time can be written in the following form:

|ψ (t )〉 j =
∑

n

a j,n(t )e−i
∫ t

0 Ej,n(t ′ )dt ′ |Ej,n(t )〉. (5)

Substituting Eq. (5) into the Schrödinger equation, and con-
sidering the adiabatic condition, we can obtain

aj,n(t ) = e− ∫ t
0 〈Ej,n (t ′ )|∂t ′ |Ej,n(t ′ )〉dt ′

an(0). (6)

Our focus is on the edge eigenstate |Ej,0(t )〉 of the non-
Hermitian SSH chain. We require the initial state to be set
as the edge eigenstate. In this case, aj,0(0) = 1, and the time-
dependent wave function is

|ψ (t )〉 j = eiϕ j,1 e−iϕ j,2 |Ej,0(t )〉, (7)

where ϕ j,1 = i
∫ t

0 〈Ej,n(t ′)|∂t ′ |Ej,n(t ′)〉dt ′ is the adiabatic phase
and ϕ j,2 = ∫ t

0 Ej,n(t ′)dt ′ is the dynamic phase.
Next, we investigate the eigenenergy of the edge states. By

substituting Eq. (2) into the energy eigenequation correspond-
ing to the edge state, we can derive the following expression:

Ej,0α j,n = J j
1 β j,n + J2β j,n−1 (1 � n � N ), (8)

Ej,0α j,N+1 = J j
2 β j,N + iγ jα j,N+1, (9)

Ej,0β j,n = J j
1 α j,n + J j

2 α j,n+1 (1 � n � N ). (10)

Rewriting Eqs. (8)–(10), we can obtain

Ej,0|α j,n|2 = J j
1 β j,nα

∗
j,n + J j

2 β j,n−1α
∗
j,n (1 � n � N ),

(11)

Ej,0

∣∣α j,N+1

∣∣2 = J j
2 β j,Nα∗

j,N+1 + iγ j |α j,N+1|2, (12)

Ej,0

∣∣β j,n

∣∣2 = J j
1 α j,nβ

∗
j,n + J j

2 α j,n+1β
∗
j,n (1 � n � N ), (13)

where β j,0 = 0. In Sec. II A, we proved that the eigenenergy
Ej,0 of the edge state is purely imaginary. We sum both sides
of Eqs. (11)–(13) and get the energy expression for the edge
state as

Ej,0 = iγ j |α j,N+1|2. (14)

As expected, the edge state energy of a non-Hermitian SSH
chain is an imaginary number. Its magnitude is determined
by the product of the gain or dissipative strength γ j and the
density of states of the qubit where the dissipative channel
exists. When time t is relatively small, the edge state of the
non-Hermitian SSH chain is predominantly localized at the
left end. Consequently, the amplitude at the rightmost qubit is
very small, resulting in a relatively low eigenenergy. However,
as t increases, the edge state becomes localized at the right end
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of the chain. The amplitude at the rightmost qubit gradually
increases, leading to an increase in the eigenenergy. Indeed,
since the eigenenergy of the edge state is imaginary, it can be
referred to as the effective gain or dissipation strength of the
edge state. By substituting the eigenenergy of the edge state
into Eq. (7), we can obtain

ϕ j,2 =
∫ t

0
Ej,n(t ′)dt ′ =

∫ t

0
iγ j |α j,N+1|2dt ′. (15)

The dynamic phase ϕ j,2 can be viewed as a gain or dissipa-
tion factor, which is indirectly controlled by the couplings J j

1

and J j
2 . In addition, if the integration interval is [0, 2π/ω],

the adiabatic phase ϕ j,1 = i
∫ t

0 〈Ej,0(t ′)|∂t ′ |Ej,0(t ′)〉dt ′ is also
the topological phase of a non-Hermitian SSH chain, i.e.,
ϕ j,1 = π . Therefore, through the adiabatic tuning of coupling
parameters, the edge state of a non-Hermitian SSH chain
accumulates a phase factor and undergoes spontaneous gain
or dissipation.

The edge states of non-Hermitian SSH chains exhibit an-
tidisorder properties. The process of encoding quantum states
into flying qubits at nodes involves controlling the effective
dissipation strength to construct the desired shape of the flying
qubits

√
γ jα j,N+1. In our protocol, the effective dissipative

strength of the topological edge state is controlled through
the coupling parameters. Therefore any errors in encoding
(decoding) the quantum state (flying qubits) on the edge mode
are attributed to the tunable coupling strength between the
qubits, which can be described as the following Hamiltonian:

Ĥ j
error =

N∑
n

(
δJ j

1 σ+
Aj,n

σ−
Bj,n

+ δJ j
2 σ+

Bj,n
σ−

Aj,n+1

) + H.c., (16)

where δJ j
1/2 = gJ0δ

j
1/2,n, g is the imperfection strength, and

δ
j
1,n (δ j

2,n) ∈ [−0.5, 0.5] is the random number of the cou-
pling strength error between the nth B-type qubit and the nth
[(n + 1)th] A-type qubit on the non-Hermitian SSH chain at
node j.

In Fig. 3, we investigate the evolution of an initial state
|ψ (t = 0)〉 j = (|gg · · · g〉 j + |eg · · · g〉 j )/

√
2 under couplings

with errors and compare the resulting changes in the fly-
ing qubits, where J0 = 5 MHz, ω = 0.1 MHz, and γ j =
0.6 MHz. It is evident that when the coupling parameter er-
rors are not substantial, the shape of the flying qubit closely
resembles that of the flying qubit under ideal parameters.

III. QUANTUM STATE TRANSFER

In this section, we will present a QST protocol using the
non-Hermitian SSH chains as quantum network nodes. Our
objective is to transfer any superposition state cg|g〉1 + ce|e〉1

located at node 1 to node 2:

(cg|G〉1 + ce|eg · · · g〉1)|G〉2 ⊗ |vac〉
→ |G〉1(cg|G〉2 + ce|eg · · · g〉2) ⊗ |vac〉, (17)

where |G〉1 = |gg · · · g〉1 and |G〉2 = |gg · · · g〉2 are the ground
states of node 1 and node 2, respectively. The QST protocol
is divided into three steps. We start by encoding the quantum
state at node 1 onto the flying qubit. This encoding process
occurs on the edge mode of the non-Hermitian SSH chain.

0.14

FIG. 3. The variation of the flight qubit under different coupling
parameter errors. The imperfection strengths are g = 0 (solid black
curve), g = 0.2 (dash-dotted blue curve), g = 0.5 (dashed red curve),
and g = 1.0 (dotted magenta curve). We conducted ten numerical
simulations for each value of imperfect strength and then calculated
the average.

Subsequently, the flying qubit propagates through the chiral
waveguide to node 2. Finally, at node 2, the flying qubit is
decoded to retrieve the quantum state using the edge mode.

Next, we will demonstrate the QST between two non-
Hermitian SSH chain nodes. Subsequently, we will analyze
the impact of coupling errors and imperfect chiral waveguides
on the fidelity of QST through numerical simulations.

A. Model

As shown in Fig. 4 , we present a QST protocol between
two nodes composed of non-Hermitian SSH chains. The two
nodes are interconnected by a chiral waveguide, facilitating
the transfer of quantum states between them. The system can
be described by the Hamiltonian Ĥ = ∑

j=1,2 Ĥj + ĤI , where
Ĥj represents the Hamiltonian of node j and ĤI represents the
dissipative coupling between the nodes and the waveguide.
The dissipative coupling strength γ j is a constant.

In the waveguide, the modes are continuous, but for our
analysis, we will consider the finite bandwidth B and the
linear dispersion relationship around the qubit frequency ωeg.
In addition, we also assume that the decay rate γ j is a constant
over the bandwidth B. The nodes are designed with a chiral
light-matter interface with coupling to right-moving modes
of the waveguide, and the interaction Hamiltonian can be
expressed as

ĤI = i
√

2γ1c†
R(t )σ−

A1,N+1
+ i

√
2γ2c†

R(t − τ )eiφRσ−
A2,N+1

− H.c.,

(18)

where τ denotes the time delay of the propagation be-
tween the two nodes and φR = ωegτ is the propagation
phase. Both τ and φR can be absorbed by redefining the
time and phase of node 2. The quantum noise opera-
tors cR(t ) = 1

2π

∫
B dωcR(ω)e−i(ω−ωeg)t satisfy [cR(t ), c†

R(t ′)] =
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n=1 n=2 n=N n=1n=N n=2

FIG. 4. QST between two nodes, where the chiral waveguide acts as a channel connecting the nodes. The non-Hermitian SSH chains act
as nodes to encode (decode) quantum states (flying qubits) via topological edge modes.

δ(t − t ′). Here, cR(ω) denotes the annihilation operators of the
waveguide of right-moving modes.

Assuming a composite system composed of nodes and chi-
ral waveguides, without additional dissipation channels, the
evolution of the composite system can be described by the
Schrödinger equation:

i
d

dt
|�(t )〉 = Ĥ (t )|�(t )〉, (19)

where |�(t )〉 is the wave function. Here, we only consider a
single excited subspace, and |n, T 〉 j represents the base vector
of the nth T -type (T = A, B) qubit of node j. The amplitude
at each qubit is α j,n = j 〈n, A|�〉 (β j,n = j 〈n, B|�〉), and ψ0 =
〈W |�〉 is the noise in the waveguide. The equations of motion
of the qubits are (h̄ = 1)

iα̇ j,n = J j
1 β j,n + J j

2 β j,n−1 (1 � n � N ), (20)

iβ̇ j,n = J j
1 αL,n + J j

2 α j,n+1 (1 � n � N ), (21)

iα̇1,N+1 = J1
2 β1,N − iγ1α1,N+1 − i

√
2γ1ψ0, (22)

iα̇2,N+1 = J2
1 β2,N − iγ2α2,N+1

−i
√

2γ2(ψ0 +
√

2γ1α1,N+1). (23)

We assume that there is no noise in the waveguide, i.e.,
ψ0 = 0, and the effective Hamiltonian corresponding to the
system is

Ĥeff =
∑
j=1,2

N∑
n=1

(
J j

1 σ+
Aj,n

σ−
Bj,n

+ J j
2 σ+

Bj,n
σ−

Aj,n+1
+ H.c.

)

− iγ1σ
+
A1,N+1

σ−
A1,N+1

− iγ2σ
+
A2,N+1

σ−
A2,N+1

− 2i
√

γ1γ2σ
+
A2,N+1

σ−
A1,N+1

. (24)

According to the effective Hamiltonian, we write the cor-
responding wave function of the effective system as

|�0(t )〉 =
∑
j=1,2

N+1∑
n=1

(α j,nσ
+
Aj,n

+ β j,nσ
+
Bj,n

)|G〉, (25)

where |G〉 = |G〉1|G〉2 = |gg · · · g〉1|gg · · · g〉2 is the ground
state.

In order to achieve ideal QST, it is crucial to ensure that the
effective system remains closed, meaning that no information
leaks into the environment:

d

dt
〈�0(t )|�0(t )〉 = i〈�0(t )|(Ĥ†

eff − Ĥeff )|�0(t )〉
= 0. (26)

Substituting Eqs. (24) and (25) into Eq. (26), we get the
following relationship:

−2γ1|α1,N+1|2 − 2γ2|α2,N+1|2 − 4
√

γ1γ2α
∗
2,N+1α1,N+1 = 0.

(27)

Since the first two terms of the equation are real numbers, we
can rewrite Eq. (27) as

−2|√γ1α1,N+1 + √
γ1α2,N+1|2 = 0. (28)

That is to say,

α1,N+1 = −ηα2,N+1

(
η =

√
γ2

γ1

)
. (29)

This is the dark-state condition for ideal QST.
We then verify that the ideal QST is performed on the

topological edge mode of two non-Hermitian SSH chains.
By considering the energy eigenequation corresponding to the
edge mode of the effective system, we can obtain

E1,0|α1,n|2 = J1β1,nα
∗
1,n + J2β1,n−1α

∗
1,n (1 � n � N ),

(30)

E1,0|α1,N+1|2 = J2β1,Nα∗
1,N+1 − iγ |α1,N+1|2, (31)

E1,0|β1,n|2 = J1α1,nβ
∗
1,n + J2α1,n+1β

∗
1,n (1 � n � N ),

(32)

E2, 0|α2,n|2 = J1β2,nα
∗
2,n + J2β2,n−1α

∗
2,n (1 � n � N ),

(33)

E2,0|α2,N+1|2 = J2β2,Nα∗
2,N+1 − iγ2|α2,N+1|2

− 2i
√

γ1γ2α1,N+1α
∗
2,N+1, (34)
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FIG. 5. The QST between two nodes. (a) The coupling parame-
ters of the two nodes are in a time-reversal relationship with each
other. The amplitude change of the first qubit on node 2 and the
first qubit on node 1 also exhibits time inversion. (b) The coupling
parameters of the two nodes are independent. The amplitude of the
first qubit on node 1 gradually decreases to 0, while the amplitude of
the first qubit on node 2 gradually increases to 1.

E2,0|β2,n|2 = J1α2,nβ
∗
2,n + J2α2,n+1β

∗
2,n (1 � n � N ), (35)

where E1,0 and E2,0 are the eigenenergies at node 1 and node
2, respectively. In order to achieve an ideal QST, Eq. (29) must
be satisfied. Substituting this condition into Eq. (34), we find
that

E2|α2,N+1|2 = J2β2,Nα∗
2,N+1 + iγ2|α2,N+1|2. (36)

According to what we proved in the previous section,
Eqs. (29)–(36) indicate that in order to achieve ideal QST,
the quantum state must evolve on the edge states of the two
non-Hermitian SSH chains.

By tuning coupling strengths, we can encode the quantum
state at node 1 onto the flying qubit. Conversely, if we reverse
the time, the flying qubit will be decoded, transferring the
quantum state back to node 1. To achieve ideal QST, we as-
sume that the process of decoding the flying qubit at node 2 is
equivalent to time-reversing the process of encoding the quan-
tum state at node 1. This assumption relies on the symmetry of
the flying qubit’s shape. Additionally, we obtain the coupling
parameters of node 2 by performing time inversion on the
coupling parameters of node 1. Returning to the setup of
Fig. 4, we employ two non-Hermitian SSH chains as the two
nodes. To satisfy the time-reversal requirements, we design
the second non-Hermitian SSH chain to be a mirror image
of the first one, with the two kinds of coupling parameters
exchanged, i.e., J1

1 = J2
2 , J1

2 = J2
1 . By carefully selecting the

dissipation strength, we can also ensure that the shape of the
flying qubit is symmetric.

Here we provide two sets of parameters to achieve an
ideal QST, where N = 2. In Fig. 5(a), the coupling strengths
are selected as J1

1 = J2
2 = J0(1 − cos(ωt )) and J1

2 = J2
1 =

J0(1 + cos(ωt )), respectively. Here, J0 = 5 MHz is the cou-
pling constant, and ω = 0.1 MHz is the tuning frequency. The
dissipation strength γ1 = γ2 = γ = 0.6 MHz at both nodes is
constant. However, it is important to note that QST can still be
achieved even when the coupling parameters do not satisfy the
time-reversal relationship. In Fig. 5(b), the parameters we use
are as follows: J1

1 = J0 sin(ωt ), J1
2 = J0 cos(ωt ), J2

2 = J0(1 −
cos(ωt )), J2

1 = J0(1 + cos(ωt )), J0 = 5 MHz, ω = 0.1 MHz,
γ1 = 0.6 MHz, and γ2 = 0.23 MHz. As shown in Figs. 5(a)

FIG. 6. (a) The fidelity of QST in the presence of errors in the
coupling parameters. (b) With the dissipation strength at the first
node fixed, the fidelity of the QST varies with different values of
the dissipation strength at the second node. The dark shaded areas
indicate ranges with fidelity greater than 0.999.

and 5(b), it is evident that by selecting suitable parameters,
the quantum state initially located at node 1 can be transferred
to node 2. Throughout the remainder of this paper, we will
consistently employ the first set of parameters.

B. Fidelity of QST

In this section, we investigate the impact of imperfection
factors on the fidelity of QST, including coupling parameter
errors and imperfect chiral waveguides. In this paper, the
fidelity of the QST, denoted as F , is defined as the overlap
between the final state of node 2 and the ideal transfer state.
The initial state of node 1 is

|ψ (t = 0)〉1 = (|gg · · · g〉1 + |eg · · · g〉1)/
√

2. (37)

The fidelity is

F =
∣∣∣∣
ideal

〈
ψ

(
t = π

ω

)∣∣∣∣ψ
(

t = π

ω

)〉
2

∣∣∣∣, (38)

where |ψ (t = π
ω

)〉2 is final state of node 2 at the end of the pro-
tocol and |ψ (t = π

ω
)〉ideal = (|gg · · · g〉2 + eiπ |eg · · · g〉2)/

√
2

is the final state of ideal QST. Here, the phase factor eiπ is
the adiabatic phase.

1. Parameter errors

In our protocol, errors in all coupling parameters of the
chains can affect the QST. We consider the QST between two
nodes, where the errors can be represented as follows:

Ĥerror =
∑
j=1,2

N∑
n

(
δJ j

1 σ+
Aj,n

σ−
Bj,n

+ δJ j
2 σ+

Bj,n
σ−

Aj,n+1

) + H.c.

(39)

As depicted in Fig. 6(a), we numerically simulate the effect
of random errors in coupling parameters on fidelity, where
the squares represent ten random simulations and the red
triangles represent the average of ten simulations. The results
demonstrate a significant plateau where high-fidelity QST can
be achieved, indicating the robustness of our protocol in the
presence of coupling parameter errors. This observation is
in line with our expectations since the evolution of quantum
states at the nodes occurs on topological edge states. Conse-
quently, our protocol can maintain high-fidelity QST even in
the presence of errors in the coupling parameters.
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FIG. 7. (a) Fidelity as a function of the propagation phase φ for
different s factors. The chirality rates s are s = 1.0 (black squares),
s = 0.8 (red triangles), s = 0.6 (blue inverted triangles), and s = 0.4
(magenta stars). (b) The fidelity varies with the chirality rate with
φ = 2nπ , where n is an integer.

The dissipation strength γ j has an effect on the fidelity
of the QST. In Fig. 6(b), we examine the effect of different
dissipation strengths on the fidelity by fixing γ1 at node 1
and varying γ2 at node 2. The results show that the fidelity of
QST exceeds 0.999 when γ2 is within the range [0.5γ1, 2γ1],
demonstrating the robustness of our protocol in the presence
of dissipation strength errors.

2. Imperfect chirality

In all of the previous descriptions, we assume perfect chiral
waveguides where the nodes are only coupled to the right-
moving modes. Now, we extend our analysis to include the
coupling between the nodes and the left-moving modes of the
waveguide. In this case, the interaction Hamiltonian between
the two nodes and the waveguide can be described as follows:

ĤI = i
∑
j=1,2

√
2sγ jc

†
R(t − ( j − 1)τ )ei( j−1)φRσ−

Aj,N+1

+ i
∑
j=1,2

√
2(1 − s)γ jc

†
L(t + ( j − 1)τ )e−i( j−1)φL σ−

Aj,N+1

− H.c., (40)

where s is the chirality rate; sγ j and (1 − s)γ j represent the
coupling strengths between the nodes and waveguide for the
right-moving mode and left-moving mode, respectively. The

propagation phase φ = φR = φL and time delay τ will affect
the fidelity of the QST.

To ensure the validity of the Markovian assumption in our
protocol, we assume that the time delay between two nodes
is much larger than the evolution time of the system, i.e.,
γ τ 
 1. As illustrated in Fig. 7(a), we describe the effect
of the propagation phase on the fidelity of QST. When the
channel is a perfect chiral waveguide, the fidelity remains
unaffected by changes in the propagation phase. However,
for other values of s, high-fidelity QST can only be achieved
when the propagation phase is φ = 2nπ , indicating that the
distance between the two nodes is an integer multiple of the
wavelength. In Fig. 7(b), we fix the distance between the two
nodes to be an integer multiple of the wavelength. It is evident
that when the chirality rate is greater than 0.6, the fidelity of
QST exceeds 0.99. Moreover, for chirality rates greater than
0.8, the fidelity is even higher, surpassing 0.999.

IV. CONCLUSION

In conclusion, we have proposed a robust QST protocol
that takes non-Hermitian SSH chains as the nodes in quantum
networks. By analyzing the symmetry and dynamic properties
of a single node, we have demonstrated that the edge mode
in the non-Hermitian SSH chain has an imaginary spectrum.
The topological edge mode can be used to encode (decode)
the quantum state (flying qubit), which remains unaffected
by coupling imperfections. Numerical simulations show that
ideal QST can be achieved between distant nodes, even in
the presence of significant coupling parameter errors. Further-
more, we have observed high-fidelity QST at a high chirality
rate when the distance between nodes is an integer multiple
of the wavelength. This protocol introduces an alternative
approach to constructing quantum networks and can be im-
plemented on various physical platforms.
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