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Adaptive low-depth quantum algorithms for robust multiple-phase estimation
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This paper is an algorithmic study of quantum phase estimation with multiple eigenvalues. We present
robust multiple-phase estimation (RMPE) algorithms with Heisenberg-limited scaling. The proposed algorithms
improve significantly from the idea of single-phase estimation methods by combining carefully designed
signal processing routines and an adaptive determination of runtime amplifying factors. They address both the
integer-power model, where the unitary U is given as a black box with only integer runtime accessible, and the
real-power model, where U is defined through a Hamiltonian H by U = exp(−2π iH ) with any real runtime
allowed. These algorithms are particularly suitable for early fault-tolerant quantum computers in the following
senses: (1) a minimal number of ancilla qubits are used, (2) an imperfect initial state with a significant residual is
allowed, (3) the prefactor in the maximum runtime can be arbitrarily small given that the residual is sufficiently
small and a gap among the dominant eigenvalues is known in advance. Even if the eigenvalue gap does not exist,
the proposed RMPE algorithms can achieve the Heisenberg limit while maintaining (1) and (2).
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I. INTRODUCTION

Quantum phase estimation (QPE) is a fundamental prob-
lem in quantum computing. In this paper, we focus on the
more complex scenario where there are multiple eigenvalues
to be estimated. This problem is essentially different from the
estimation of a single eigenvalue in many aspects, and most of
the methods for single-mode QPE cannot be directly extended
to the multiple-mode case. For example, if one directly ap-
plies Kitaev’s algorithm or the robust phase estimation (RPE)
algorithm [1–3], which are both commonly accepted bench-
marks for single-mode QPE, then different eigenmodes lead
to an aliasing effect such that the precision of the estima-
tions cannot be improved in the iterative procedure. In this
paper, we present an ensemble of adaptive methods using
low-depth circuits that solve this problem successfully. The
multiple-phase estimation problem also becomes particularly
challenging when the gap between the dominant eigenvalues
gets smaller. Our method also handles this issue effectively
by incorporating a simple line spectrum estimation algorithm,
which we developed in Ref. [4] that alleviates the constraint
on spectral gaps.

A few key metrics are needed for evaluating the perfor-
mance of multiple-phase algorithms. For example, one clearly
prefers an algorithm with a small number of qubits and a
low circuit depth while allowing for a high level of residual
in the initial state. We elaborate on this afterward and show
that the adaptive method we propose improves upon existing
methods in terms of these metrics, making it well-suited for
early fault-tolerant quantum computers.
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A. Problem settings

Formally, this paper concerns the quantum phase estima-
tion (QPE) problem with multiple eigenvalues as follows. For
a unitary matrix U , let {(e−2π iλs , |ψs〉)} be the eigenpairs of U
with λs ∈ [0, 1]. Suppose that |ψ〉 is an initial quantum state
of the form

|ψ〉 =
S∑

s=1

cs |ψs〉 + cres |ψres〉 , (1)

where S is the number of dominant eigenvalues and cres |ψres〉
is the residual. Here, by dominant, we mean that the overlaps
between these eigenstates |ψs〉 and |ψ〉 are bounded from be-
low by a constant β, i.e., min1�s�S |cs|2 � β > 0. On the other
hand, the energy of the residual |cres|2 is bounded from above
by a constant ω less than β, i.e., |cres|2 � ω < β. The goal is
to estimate the set � ≡ {λs}S

s=1 of dominant eigenvalues up to
a prescribed accuracy ε.

B. Key metrics for performance evaluation

The difficulty level of multiple eigenvalue estimation de-
pends on the gap between the dominant eigenvalues. If the
gap is small, the problem becomes difficult. When the spectral
gap is bounded from below by a constant independent of the
desired precision ε, we refer to it as the gapped case. When
no lower bound of the gap is assumed, we refer to it as the
gapless case.

Several key complexity metrics to assess a multiple-phase
estimation algorithm are listed as follows:

(1) The number of ancilla qubits required. The smaller, the
better.

(2) The amount of residual ω allowed in the initial state
|ψ〉, i.e., ω is the maximum |cres|2 allowed.

(3) The maximum runtime Tmax. It is defined as the maxi-
mum depth of the quantum circuits used by the algorithm.
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(4) The total runtime Ttotal, i.e., the sum of the circuit
depths over all executions. It has been shown in Refs. [5–7],
for example, that Ttotal has a lower bound named the Heisen-
berg limit Ttotal = 	(ε−1).

(5) Finally, the minimum gap between the eigenvalues
allowed.

Among these metrics, a small Tmax is particularly important
for early fault-tolerant quantum devices since these devices
typically have a relatively short coherence time.

Based on these metrics, an ideal phase estimation algo-
rithm should meet the following requirements:

(1) Using a small number of (even a single) ancilla qubits.
(2) Allowing the initial state |ψ〉 to be inexact and ideally

ω to be proportional or even close to β.
(3) Satisfying Tmax = O(ε−1) with the prefactor ideally

proportional to ω/β.
(4) Achieving the Heisenberg-limited scaling Ttotal =

Õ(ε−1), where Õ means omitting the polylogarithmic term.
(5) Allowing the minimum gap to be arbitrarily small.

C. The integer-power model and the real-power model

The design of multiple eigenvalue estimation algorithms
depends closely on the representation of U . In the most gen-
eral model, U is represented by a quantum circuit or even a
black box model, such as a quantum approximate optimiza-
tion algorithm (QAOA) or variational quantum eigensolver
(VQE). This model only allows access to integer powers U j

of U for j ∈ Z, j � 0, and we refer to it as the integer-
power model. A different model is U = e−2π iH , where H is
a quantum Hamiltonian with eigenvalues in [0,1]. Here, U is
often implemented with Trotterization or the splitting method,
where one of the main applications is to find the energy of the
ground state and a few low-lying excited states of H . This
model allows access to Ut := e−2π iHt for any t ∈ R+, and we
refer to it as the real-power model.

D. Related work

As a fundamental primitive of quantum algorithms, quan-
tum phase estimation has attracted a lot of research activity in
the past few decades.

1. Single eigenvalue

Several existing methods can be applied when there is
only one dominant eigenvalue, i.e., S = 1. The early algo-
rithms require a perfect eigenstate, i.e., cres = 0. One of
the most fundamental algorithms is the Hadamard test, as
shown in Fig. 1(a), which utilizes the I and S gates after
the controlled-U gate. The Hadamard test provides estima-
tions of Re〈ψ |U |ψ〉 and Im〈ψ |U |ψ〉, respectively, from the
probability of getting |0〉 while measuring the ancilla qubit.
For the Hadamard test, one needs O(ε−2) repetitions to reach
precision ε, leading to a total gate complexity Ttotal = O(ε−2).

A quadratic improvement proposed by Kitaev [8,9] uses
measurements of 〈ψ |U 2 j |ψ〉 for j = 0, 1, 2, . . . , J with J =
O(log(ε−1)), as illustrated by the circuit in Fig. 1(b). The
total runtime Ttotal = O(ε−1) of Kitaev’s method achieves the
Heisenberg limit [5–7]. However, the original version of Ki-
taev’s method only applies to perfect eigenstates, i.e., cres = 0.

|0〉 H • I/S† H

|ψ〉 U
(a)

|0〉 H • I/S† H

|ψ〉 U2j

(b)

FIG. 1. (a) Illustration for the Hadamard test. Here H denotes the
Hadamard gate. When estimating the real part of 〈ψ |U |ψ〉, we use I
(the identity) for the gate after the controlled-U gate, while S+ (the
Hermitian conjugate of the phase gate S) is used for the estimation
of the imaginary part. (b) Illustration for the Kitaev algorithm. For a
sequence of powers j, the real and imaginary parts of 〈ψ |U 2 j |ψ〉
are estimated to reach a higher precision and improve the total
complexity.

Another example that reaches the Heisenberg limit is the
QPE algorithm with quantum Fourier transform (QFT) [10],
which only involves a single execution but needs more an-
cilla qubits and a deeper circuit. Many alternatives have
also been proposed in the recent literature [11–19]. For a
more comprehensive overview about the QPE algorithms for
a single eigenvalue, we refer to the detailed discussions in
Refs. [18–20].

As we mentioned earlier, for early fault-tolerant quantum
devices, besides using a small number of (or even only a sin-
gle) qubits and reaching the Heisenberg limit Ttotal = Õ(ε−1)
for the case S = 1 and |cres|2 > 0, it is also desired to allow
the prefactor in Tmax = O(ε−1) to depend on the magnitude
of cres. The authors of Ref. [19] proposed QCELS, an opti-
mization subroutine that works with |cres|2 � 0.29 and allows
the prefactor of Tmax = O(ε−1) to scale as 
(|cres|). In a
recent work [21], we showed that a modified version of the
robust phase estimation (RPE) algorithm [1–3] can work with
|cres|2 � 2

√
3 − 3 ≈ 0.464 and it gives the near-optimal pref-

actor 
(|cres|2).

2. Multiple eigenvalues

The work [15] considers the problem of estimating multi-
ple eigenvalues with a signal processing subroutine and adopts
the matrix pencil method. The method can be sensitive to
noise, and the Heisenberg-limited scaling is not achieved.
The algorithm proposed in Ref. [22] also estimates multiple
eigenvalues based on time series analysis. The total cost is
O(ε−6), which is quite far from the Heisenberg limit. A more
recent work [23] extends the idea of the RPE algorithm to
multiple eigenvalues and achieves the Heisenberg limit. How-
ever, the residual term |ψres〉 is not allowed in Ref. [23], and
the prefactor power of S is quite large.

The work [24] extended the QCELS algorithm to the multi-
ple eigenvalue setting. This extension achieves the Heisenberg
limit with a single ancilla qubit and allows for a resid-
ual. The maximum circuit depth can also be reduced when
the residual amount ω is small compared with β. However,
the performance of this optimization technique relies on the
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existence of a spectral gap � between the multiple domi-
nant eigenvalues, where the minimal runtime of the circuits
is 	(�−1). Moreover, a grid search is generally needed to
solve the optimization problem due to the highly complicated
landscape, which leads to a classical cost exponential in S.

Quantum subspace diagonalization methods have also been
used for multiple eigenvalue estimation [25–30], where the
eigenvalues are obtained by solving certain projected eigen-
value problems or singular value problems. Compared with
the numerical performance demonstrated, the theoretical anal-
ysis of the subspace diagonalization methods is still rather
preliminary and pessimistic [31].

E. Contributions

This paper conducts a comprehensive study of the multiple
eigenvalue quantum phase estimation. Our main contribution
is a family of robust multiple-phase estimation (RMPE) algo-
rithms for both the gapless and the gapped cases and for both
the real-power and integer-power models. These RMPE algo-
rithms build on the overall structure of the method proposed
in Ref. [23].

For the gapless case, the proposed RMPE algorithm es-
timates the dominant S � 1 eigenvalues for any residual
overlap |cres|2 < β. It utilizes the measurement results from
Hadamard tests to the unitary operators U M� for an expo-
nentially growing sequence {M�}, one for each step �. The
estimated dominant eigenvalues of U M� allow us to narrow
down the intervals that contain the dominant eigenvalues of U ,
and the desired precision will be obtained after O(log(ε−1))
steps. One key component is a simple but new signal process-
ing routine that estimates eigenvalue locations from quantum
measurements without any gap assumption. Another key com-
ponent of the algorithm is the careful choice of {M�} to avoid
potential collision of the intervals. To achieve this for the
real-power model, we utilize noninteger {M�} that grows each
time by a factor between two and four. For the integer-power
model, we leverage results from prime number theory for
the choice of {M�} to avoid collisions. Both the real-power
and integer-power versions can tolerate a residual ω up to β

and achieve the Heisenberg limit. In summary, this algorithm
meets all five requirements, except that the prefactor of Tmax

does not scale like ω/β.
For the gapped case, we improve the algorithms with two

key modifications. First, we adopt the ESPRIT algorithm [32],
a different signal processing routine that allows for more
accurate eigenvalue estimation when a gap is available. This
allows us to build fairly accurate approximations to � even
at the initial step. Second, with this better initial estimate, the
number of iterations of the algorithm can be significantly re-
duced, resulting in Tmax to scale like ω/β. Both the real-power
and integer-power versions can tolerate residual ω = O(β )
and reach the Heisenberg limit. In summary, this algorithm
meets the first four requirements mentioned above.

Finally, for the case of a finite but small spectral gap,
we propose hybrid algorithms for both the real-power and
integer-power models. The scaling of maximal runtime is
improved to O(�−1 + ε−1), which is significantly better than
the O(�−1ε−1) complexity of the algorithms for gapped
case. Meanwhile, we still maintain the prefactor ω/β and

the Heisenberg limit. In a nutshell, the hybrid algorithm uses
the gapless signal processing subroutine in the first several
iterations as a burn-in period and then switches to the ES-
PRIT after the spectral gap is enlarged. To summarize, the
hybrid algorithms meet the first four requirements mentioned
above while improving the scaling of � compared with the
algorithms for the gapped case.

The maximal runtime and total runtime of different algo-
rithms in this paper are summarized in Table I.

Comparisons

Compared with [23], our RMPE algorithms have the fol-
lowing advantages: First, the proposed algorithms allow an
imperfect initial state with a residual term. Second, by using
a simpler signal processing routine in both the gapped and
gapless cases, we obtain a smaller prefactor in terms of the
sparsity level S: the prefactor of Ttotal is only quadratic in
terms of the sparsity level S. In contrast, the dependency on
S obtained in Ref. [23] is O(S12). Third, the proposed RMPE
algorithms work in the real-power and integer-power models,
while Ref. [23] only works with the real-power model. Fur-
thermore, when the dominant eigenvalues present a gap, Tmax

of our gapped algorithm has a prefactor of order ω/β, which
is a property not shared by the algorithm of Ref. [23].

Compared with [24], the proposed RMPE algorithms have
two advantages. First, we address the gapless case that is
not visited in Ref. [24]. Second, the classical computational
complexity is much lower: our RMPE algorithms scale poly-
nomially in S while the optimization step of the method in
Ref. [24] generally scales exponentially in S.

For clarity, a comparison of different multiphase estimation
algorithms is presented in Table II.

F. Contents

The rest of the paper is organized as follows: Section II
introduces the main structure of the proposed algorithms.
Section III discusses the gapless case in detail. In Sec. IV, we
present the easier gapped case while focusing on its difference
from the gapless case. In Sec. V, we provide the hybrid algo-
rithms for the gapped case. All these sections address both the
real-power and integer-power models.

A few comments about the notations are in order here.
For a measurable set T , we use |T | and |T |T to denote the
Lebesgue measure of T ⊂ R and T ⊂ T , respectively, where
T is the 1-dimensional torus. The η neighborhood of a set
T ⊂ R, denoted by B(T, η), is defined as

B(T, η) := ∪t∈T [t − η, t + η]. (2)

The η neighborhood of a set T ⊂ T , denoted as BT (T, η), is
defined similarly on the torus T . For a set T ⊂ R, we denote
the set {ct + d|t ∈ T } for any c, d ∈ R by cT + d .

II. ALGORITHM OUTLINE

This section describes the main algorithmic structure. The
following sections specialize this structure to the gapless and
gapped cases, respectively.

Applying the Hadamard test to U 1, . . . ,U K for some in-
teger K with input |ψ〉 provides a noisy measurement {y(k)}
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TABLE I. The summary of different algorithms presented in this paper.

Algorithm Setting Tmax Ttotal

Sec. III B Gapless, noninteger O
(

1
ε

log 1
β−ω

)
Õ
(

S2

ε(β−ω)2

)
Sec. III C Gapless, integer O

(
1
ε

log 1
β−ω

)
Õ
(

S5

ε(β−ω)2

)
Sec. IV B Gapped, noninteger O

(
(�−1+S2 )S2ω

βε

)
Õ
(

(�−1+S2 )S2

ωβε

)
Sec. IV C Gapped, integer O

(
(�−1+S4 )S2ω

βε

)
Õ
(

(�−1+S4 )S2

ωβε

)
Sec. V A Gapped, noninteger OS,β (max{ω−1�−1, ωε−1}) ÕS,β (ω−2�−1 + ω−1ε−1)

Sec. V B Gapped, integer OS,β (max{ω−1�−1, ωε−1}) ÕS,β (ω−2�−1 + ω−1ε−1)

of

〈ψ |U k|ψ〉 =
S∑

s=1

|cs|2e−2π iλsk + |cres|2 〈ψres|U k|ψres〉 ,

for k = −K, . . . , K . This is the Fourier transform of a proba-
bility measure f (x) defined as

f (x) ≡
S∑

s=1

|cs|2δλs (x) + Residual,

where Residual is a positive measure with mass |cres|2. � =
{λs}S

s=1 can then be viewed as the dominant support of the
measure f (x).

At the first step, from the noisy approximation y(k) to the
Fourier coefficient f̂ (k), which is obtained from averaging
the output of NHR repetitions of Hadamard test, one can first
extract a rough estimation E0 of � using an appropriate signal
processing routine. Roughly speaking, at this first step, we
want to estimate � to η precision. The signal processing
routine and the determination of parameter η will be detailed
in the following sections.

The algorithm then chooses a sequence of amplifying fac-
tors (m1, m2, . . . , m�). Define M0 = 1 and M� = m1m2 · · · m�.
At the �th step, we start with E�−1, the current approximation
of �. Applying the Hadamard test to U M� , . . . ,U M�K with
input |ψ〉 gives rise to noisy measurements {y�(k)} of

〈ψ |U M�k|ψ〉 =
S∑

s=1

|cs|2e−2π iM�λsk + |cres|2 〈ψres|U M�k|ψres〉 .

(3)

This can be viewed as the Fourier transform of a probability
measure f�(x):

f�(x) ≡
S∑

s=1

|cs|2δ[λsM�](x) + Residual,

where Residual is again a positive measure with mass |cres|2
and [x] ≡ (x mod 1). The data y�(k) is a noisy approxima-
tion to the Fourier coefficient f̂�(k). Again, with a signal
processing subroutine, one can obtain an estimation Y� of
the dominant support of f�(x), which is denoted by �� =
{[λsM�]}S

s=1. This estimation Y� provides information with an
increased resolution and helps improve the current estimation
E�−1 to an update E�.

More specifically, with the spectrum estimation Y�, one
divides it by M� to obtain the set 1

M�
Y�. From the prop-

erty of the signal processing methods used, 1
M�

Y� will be a

union of at most S disjoint intervals 1
M�

Y� = ∪S�

i=1I ′
�,i with

� ⊂ ∪S�

i=1(I ′
�,i + q�,i

M�
) for properly chosen integers q�,i. Here

S� � S is the number of intervals in 1
M�

Y�, and I ′
�,i is the ith dis-

joint interval in 1
M�

Y�. By carefully determining the amplifying
factors (m1, m2, . . . , m�), we show that at most one integer q�,i

satisfies (I ′
�,i + q�,i

M�
) ∩ E�−1 �= ∅. Then we define (I ′

�,i + q�,i

M�
)

as I�,i and form the updated estimation E� = ∪S�

i=1I�,i. The
determination of m� will be discussed in detail in the following
sections. Given that m� is chosen properly, the algorithm can
be summarized as in Algorithm I.

We show in the next few sections that the determination
of K , NHR, m�, and η ensures that E� = ∪S�

i=1I�,i enjoys the
following properties:

(1) {I�,i} are disjoint, and
∑S�

i=1 |I�,i| � Sη/M�.

TABLE II. The comparison of different multiphase estimate algorithms.

Allow Heisenberg Gapless Integer Short
Algorithm residual limit case power depth Remark

Ref. [15] ✗ ✗ ✗
√

?
Ref. [22]

√
✗

√ √ √
Ref. [23] ✗

√ √
✗ ✗ Large prefactor in power of S

Ref. [24]
√ √

✗ ✗
√

Large classical computational cost
Refs. [25–30]

√
? ? ? ?

Sec. III (this work)
√ √ √ √

✗

Sec. V (this work)
√ √

✗
√ √
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Algorithm 1 Structure of robust multiple-phase estimation
(RMPE) algorithm.

Input: ε: desired precision, β: the lower bound of dominant
eigenvalues, S: the number of dominant spikes, ω: upper bound for
the residual in the initial state |ψ〉
Set the initial estimation E−1.
Set M0 = 1, � = 0.
Calculate η, K , NHR, and α according to ε, β, ω, and S.
while η/M� > ε do

Choose an m� � 2 according to Lemma III.4 or Lemma III.8
and set M� = M�−1m� if � > 0.
Run the circuit in Fig. 1(a) with U replaced by U M�k for NHR/2
times each for the real and imaginary parts and 0 � k � K and
obtain the signal y�.
Obtain Y� from a signal processing routine, and then several
intervals I ′

�,1, . . . , I ′
�,S�

from 1
M�

Y�. The choice of m� ensures that

for each I ′
�,i, only one integer q�,i gives (I ′

�,i + q�,i
M�

) ∩ E�−1 �= ∅.

Set I�,i = I ′
�,i + q�,i

M�
and E� = ⋃S�

i=1 I�,i
� ← � + 1.

end while
Output: The final estimation EL as an approximated support of �.

(2) For each I�,i, the intersection I�,i ∩ � �= ∅.
(3) � ⊂ E� ⊂ B(�,

η

M�
) (real-power model) or � ⊂ E� ⊂

BT (�,
η

M�
) (integer-power model).

Since the chosen m� satisfies m� � 2, it can be de-
duced from the last property above that the while loop in
Algorithm I ends in O(log( η

ε
)) iterations with high probability.

In Sec. III B, we show that for the real-power model, one
can choose a proper m� ∈ [2, 4] according to the previous
estimations. On the other hand, for the integer-power model,
one can choose an appropriate m� with the help of prime
numbers. Detailed explanations and analyses are provided in
Sec. III C. Compared with the original version of Kitaev’s
method, where m� = 2 for all �, the adaptive calculation of
these factors enables the proposed algorithm to address QPE
problems with multiple dominant eigenvalues and a nonzero
residual.

Here, we discuss some specific aspects of the signal
processing routine used to extract Y�. At the �th iteration,
we implement NHR measurements of f̂�(k) for each k ∈
{0, 1, . . . , K} such that the averaged measurement result y�(k)
satisfies

|y�(k) − f̂�(k)| � α

for all k with high probability. The determination of pa-
rameters NHR, K , and α will be elaborated in the following
sections and is omitted for now. The problem of recovering
�� = {[λsM�]}S

s=1 from {y�(k)}K
k=0 has been extensively stud-

ied under the name line spectrum estimation, and plenty of
established results for line spectrum estimations can be used.
As explained earlier, Algorithm I requires that Y� satisfies the
following three requirements.

(1) Y� is a union of at most S disjoint intervals such that
each interval contains at least one dominant eigenvalue.

(2) �� is a subset of Y�.
(3) |Y�| � Sη for a parameter η to be determined by the

algorithm.

We provide a detailed description in Corollary III.2 and
show that these requirements can indeed be satisfied for both
the gapless case (Sec. III A) and the gapped case (Sec. IV A).

III. THE GAPLESS CASE

This section specializes Algorithm I to the gapless case,
i.e., no gap is assumed among the dominant eigenvalues.
The signal processing routine proposed in Ref. [4] satisfies
the requirements 1, 2, and 3 listed above for Y� in Sec. II.
After summarizing its main results in Sec. III A for complete-
ness, we discuss the real-power model in Sec. III B and the
integer-power model in Sec. III C. Figure 2 gives a graphical
illustration of the gapless case algorithm.

A. Signal processing routine

Recall that y� are the averaged measurements result such
that |y�(k) − f̂�(k)| � α, where f̂� is defined in (3). Here
y�(−k) is defined as the complex conjugate of y�(k) for 0 �
k � K , since f̂�(−k) is the conjugate of f̂�(k). Following [4],
the spikes �� can be estimated by the following set:

X� =
⎧⎨
⎩x :

∣∣∣∣∣∣
∑
|k|�K

y�(k)φ̂p(k)e2π ikx

∣∣∣∣∣∣ >
6β + 5ω

11
φs

⎫⎬
⎭, (4)

where σ = ( 1
π

ln 12
β−ω

)1/2, φ̂p(k) = exp[−π (kσ/K )2], k ∈ Z,

and φs = ∑
k∈Z φ̂p(k). The following theorem holds for this

choice of X�:
Theorem III.1. Suppose α <

β−ω

3 and K � 3τ , then �� ⊂
X� and maxx∈X�

dist(x,��) � τ/K , where τ = 1
π

ln 12
β−ω

.
Note that it is possible that X� is a disjoint union of more

than S intervals, and some of them may not contain a true
spike. In the following corollary, we form a set Y� with the help
of the estimations X� obtained above to meet the requirements
listed in Sec. II. The proof can be found in Appendix A 1.

Corollary III.2. Using the set X� we obtained from the
above signal processing routine, we can construct a set Y� that
satisfies the following properties when η > 3τ/K :

(1) Y� = ⋃S�

i=1 Y�,i is the disjoint union of intervals, and
|Y�| � Sη.

(2) For each interval Y�,i, the intersection I�,i ∩ �� �= ∅.
(3) �� ⊂ Y� ⊂ BT (��, η).
We emphasize that K dictates the estimation accuracy ob-

tained. Even if ω is zero, the estimation error is proportional
to 1/K . Without making K larger, it is not possible to make
the approximation more accurate in this signal-processing
routine.

B. The real-power model

In this section, we aim to recover the eigenvalues of some
Hamiltonian H assuming we have access to e−2π iHt |ψ〉 for
t ∈ R+, and Ut is an abbreviation of e−2π iHt .

Without loss of generality, we can assume � ⊂ [0, 0.9].
Otherwise, one can prescale H appropriately. Hence the ini-
tialization E−1 is defined as [0, 0.9]. In this way, the property
2 can be guaranteed at step � = 0. Otherwise, if the signal
processing subroutine gives an interval I0,i that is [γ1, γ2]
mod 1 with γ1 < 0 and γ2 > 0, one cannot tell whether there
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FIG. 2. Illustration of Algorithm I for the gapless case with S = 3. At each step, we maintain a union of at most S intervals as an estimation
of �, shown by the horizontal blue sticks in the diagram. The yellow intervals represent M−1

� Y� and its translates by integer multiples of
M−1

� . The choice of M� ensures that only one integer q�,i satisfies I ′
�,i + q�,i

M�
∩ E�−1 �= ∅. The union of these I ′

�,i + q�,i
M�

then becomes the new
estimation of � and is used for the next update. Note that the number of intervals in E� may increase. Due to the low resolution, λ1 and λ2 are
covered by the same interval in E0. As the resolution increases, they belong to two different intervals in E1 and E2.

is a true spike in [0, γ2] or [1 + γ1, 1]. However, this can be
avoided under this assumption because the eigenvalues are
estimated to error level η < 0.1 at step � = 0, and the spikes
near 0.9 and zero will not interfere with each other.

As previously mentioned, a vital step in Algorithm I is the
determination of m� such that for each I ′

�,i, only one integer
q�,i gives I ′

�,i + q�,i

M�−1m�
∩ E�−1 �= ∅. Once such m� is chosen,

then the properties 1, 2, and 3 are satisfied due to Corollary
III.2.

Now assume that the properties 1, 2, and 3 are already satis-
fied at step � − 1. For any λs ∈ �, since λs ∈ E�−1, there must
be some λs ∈ I ′

�,i mod 1
M�−1m�

. Thus there exists at least one

q�,i such that I ′
�,i + q�,i

M�−1m�
∩ E�−1 �= ∅. Choose an arbitrary

such q�,i and let I�,i = I ′
�,i + q�,i

M�−1m�
, then I�,i ⊂ B(�,

η

2M�−1
) as

long as m� � 2. We also have � ⊂ E�−1, which implies

I�,i ⊂ B

(
�,

η

2M�−1

)
⊂ B

(
E�−1,

η

2M�−1

)
.

Therefore, if the choice of m� satisfies[
B

(
E�−1,

η

2M�−1

)
+ q

M�−1m�

]
∩ E�−1 = ∅ ∀ q ∈ Z\{0},

(5)
then we can deduce that (I�,i + q

M�−1
) ∩ E�−1 = ∅ for any q ∈

Z\{0} and thus the choice of q�,i is unique. Moreover, we have

E� =
S�⋃

i=1

I�,i ⊂ B

(
�,

η

2M�−1

)
⊂ B

(
E�−1,

η

2M�−1

)
.

Summarizing the discussion above, we obtain the following
lemma:

Lemma III.3. Given the previous amplifying factor M�−1

and estimation E�−1 in Algorithm I, if the choice of m� satis-
fies (5), then the choice of q�,i in Algorithm I is unique, and
the corresponding E� satisfies

E� ⊂ B

(
�,

η

2M�−1

)
⊂ B

(
E�−1,

η

2M�−1

)
. (6)

Before establishing (5), we first state the following lemma,
whose proof can be found in Appendix A 2.

Lemma III.4. Suppose M is a positive number and a set

G =
t⋃

i=1

[
θi − ζi

M
, θi + ζi

M

]

is the union of t disjoint intervals with t � S and∑t
i=1 ζi � Sζ . If ζ � 1

8S(2S−1) , then there must be some
m ∈ [2, 4] such that

[
θi − ζi

M
− q

Mm
, θi + ζi

M
− q

Mm

]
∩
[
θ j − ζ j

M
, θ j + ζ j

M

]

= ∅ (7)

holds for all 1 � i, j � t , and q ∈ Z\{0}. In other words, it
holds that B(G,

q
Mm ) ∩ G = ∅ for any q ∈ Z\{0}.

Since E�−1 = ⋃S�−1
i=1 I�−1,i is the union of at most S disjoint

intervals and |E�−1| � Sη

M�−1
, its neighborhood B(E�−1,

η

2M�−1
)

must be t disjoint intervals with t � S and |B(E�−1,
η

2M�−1
)| �

2Sη

M�−1
. This is exactly the case in Lemma III.4 when taking

G = B(E�−1,
η

2M�−1
), M = M�−1, and ζ = η. Therefore, the

conclusion of Lemma III.4 guarantees that we can construc-
tively find an m� such that for any q ∈ Z\{0},
[

B

(
E�−1,

η

2M�−1

)
+ q

M�−1m�

]
∩ B

(
E�−1,

η

2M�−1

)
= ∅,

which is stronger than (5). Thus the requirement on m� in
Algorithm I is satisfied, i.e., for each I ′

�,i, only one integer
q�,i gives (I ′

�,i + q�,i

M�
) ∩ E�−1 �= ∅ due to the choice of m�.

According to Lemma III.4, one can choose any η � 1
8S(2S−1) .

We thus obtain the following theorem:
Theorem III.5. Define τ = 1

π
log2

12
β−ω

and let α be a

constant that satisfies α <
β−ω

3 . For any η � 1
8S(2S−1) ,
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if K � 3η−1τ and

NHR = 2

⌈
4

α2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln (K + 1)

]⌉
,

(8)

and the signal processing algorithm in Sec. III A is used for
spectrum estimation in Algorithm I, then with probability at
least 1 − ρ, the output EL satisfies

� ⊂ EL ⊂ B(�, ε). (9)

The maximum runtime and total runtime are

Tmax = O(ηKε−1), Ttotal = O(ηK2NHRε−1). (10)

Proof. For the NHR defined above, one knows from Hoeffd-
ing’s inequality that for any � and k,

P (|y�(k) − f̂�(k)| < α) > 1 − ρ(⌈
log2

η

ε

⌉+ 1
)
(K + 1)

.

(11)
Thus |y�(k) − f̂�(k)| < α is true for all � and k with proba-
bility at least 1 − ρ by the union bound, and the rest follows
from Lemmas III.3 and III.4. �

Corollary III.6. By choosing η = 1
8S(2S−1) and K =

3η−1τ , the maximum runtime is Tmax = O(log( 1
β−ω

)ε−1) and

the total complexity is Ttotal = Õ((β − ω)−2S2ε−1), which
achieves the Heisenberg limit.

C. The integer-power model

This section shows that if U is given as a black box and
only (positive) integer powers of U can be accessed, Al-
gorithm I can be applied with the help of prime numbers.
As for the initialization, we take E−1 = [0, 1]. Similar with
Sec. III C, we can verify the uniqueness of q�,i in Algorithm I
with help of the following lemma:

Lemma III.7. Given integer M�−1 and the set E�−1, if the
choice of integer m� satisfies[

BT

(
E�−1,

η

2M�−1

)
+ q

M�−1m�

]
∩ E�−1 = ∅ mod 1

for all q ∈ Z that (m�M�−1) � q, (12)

then the choice of q�,i in Algorithm I is unique, and the
corresponding E� satisfies

E� ⊂ BT

(
�,

η

2M�−1

)
⊂ BT

(
E�−1,

η

2M�−1

)
. (13)

This lemma is the modulo-1 version of Lemma III.3, which
can be directly obtained from Lemma III.3 since {m�} are all
integers and all the sets we consider here are in T . In what
follows, we denote the ith prime number by pi. Here we define
p0 = 1 to unify the notations. The factor m� in the algorithm
above can be chosen with the help of the following lemma.
The proof is provided in Appendix A 3.

Lemma III.8. For any (θ1, . . . , θt ) ∈ Rt and t (t−1)
2 + 1

prime numbers p1 < p2 < · · · < p t (t−1)
2 +1, there is at least one

pl ∈ {p1, p2, . . . , p t (t−1)
2 +1} such that

min
1�i� j�t

pl �k

∣∣∣∣|θi − θ j | − k

pl

∣∣∣∣ � 1

2p t (t−1)
2

p t (t−1)
2 +1

. (14)

Remark III.9. The result also applies to mutually prime
integers that are not necessarily prime themselves. Moreover,
this procedure only involves classical computing with poly-
nomial complexity in terms of t , so it can be implemented
efficiently.

Based on Lemma III.8, one can show that there is at
least one m� ∈ {p1, p2, . . . , p S(S−1)

2 +1} that satisfies the require-
ments for Algorithm I if

η <
(
3Sp S(S−1)

2
p S(S−1)

2 +1

)−1
.

Since pn = O(n log n) [33,34], the requirement for η is η =
O(S−5 log−2(S)). More precisely, in Ref. [35] it was proved
that pn < n(ln n + 2 ln ln n) for n � 4, thus by direct calcu-
lation one knows pn � 2n(ln n + 1) for any n � 1. Hence, it
suffices to have

η � min

{
1

6
,

1

3S5(0.31 + 2 ln S)2

}
.

To establish (13), we also need the following lemma, which
is proved in Appendix A 4.

Lemma III.10 Suppose

η <
(
3Sp S(S−1)

2
p S(S−1)

2 +1

)−1
,

then for step � (� � 1) in Algorithm I, one can choose a prime
number m� such that[

BT

(
E�−1,

η

M�−1

)
+ q

m�M�−1

]

∩ BT

(
E�−1,

η

M�−1

)
= ∅ mod 1, if (m�M�−1) � q,

(15)

which guarantees the construction of E� in the algorithm.
Similar to Theorem III.5, one directly obtains the following

theorem by applying Hoeffding’s inequality and the union
bound to Lemmas III.7 and III.10.

Theorem III.11 Define τ = 1
π

ln 12
β−ω

and let α be a con-

stant that satisfies α <
β−ω

3 . For any

η � min

{
1

6
,

1

3S5(0.31 + 2 ln S)2

}
,

if K � 3η−1τ and

NHR = 2

⌈
4

α2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln(K + 1)

]⌉
,

(16)

and the signal processing algorithm in Sec. III A is used for
spectrum estimation in Algorithm I, then with probability at
least 1 − ρ, the output EL satisfies

� ⊂ EL ⊂ BT (�, ε). (17)

The maximum runtime and total runtime are

Tmax = O(ηKε−1), Ttotal = O(ηK2NHRε−1). (18)
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FIG. 3. Illustration of Algorithm I in the gapped case with S = 2. Based on prior knowledge of the separation between λ1 and λ2, one
can obtain much tighter initial-stage estimations than the gapless case (see Fig. 2) if the residual ω is small. As a result, much fewer steps are
needed to reach the desired precision ε, and the maximum runtime is reduced.

Corollary III.12 By choosing

η = min

{
1

6
,

1

3S5(0.31 + 2 ln S)2

}

and K = 3η−1τ , the maximum runtime is Tmax =
Õ(log( 1

β−ω
)ε−1) and the total complexity is Ttotal =

Õ((β − ω)−2S5ε−1), which achieves the Heisenberg limit.

IV. THE GAPPED CASE

This section specializes Algorithm I to the simpler gapped
case, i.e., there is a minimum separation among the dominant
eigenvalues defined as

� = min
1�s�s′�S, n∈Z

|λs − λs′ − n|. (19)

We first review the famous signal processing routine ESPRIT
in Sec. IV A. In particular, the number of frequencies K
needed only depends on S and �. With the help of this specific
version of ESPRIT, we show that Algorithm I meets the re-
quirements 1, 2, 3, and 4. In particular, the maximum runtime
Tmax can scale like ω/β. The real-power and integer-power
models are investigated in Secs. IV B and IV C, respectively.
A graphical illustration of the algorithm for the gapless case
is given in Fig. 3.

A. Signal processing routine

Since a finite-size gap between the dominant eigenvalues is
available, multiple signal processing algorithms can be used in
this setting, such as those in Refs. [36–38]. Here, we adopt
a particular version of the ESPRIT algorithm discussed in
Ref. [38].

Suppose that K � 4S is even. Recall that, at the �th step,
the data y�(k) collected from the Hadamard test results satisfy
|y�(k) − f̂�(k)| � α, where f̂� is defined in (3). The first step

in ESPRIT is to construct the following Hankel matrix:

H� =

⎡
⎢⎢⎢⎣

y�(0) y�(1) . . . y�

(
K
2

)
y�(1) y�(2) . . . y�

(
K
2 + 1

)
...

...
. . .

...

y�

(
K
2

)
y�

(
K
2 + 1

) · · · y�(K )

⎤
⎥⎥⎥⎦.

Then one applies the singular value decomposition (SVD) to
H� and obtains

H� = [U�,U ⊥
� ]�[V�,V ⊥

� ]∗,

where U� has S columns. Let the first K/2 rows of U� be U (0)
�

and let its last K/2 rows be U (1)
� . The last step is to compute

the eigenvalues {μ1, . . . , μS} of the matrix (U (0)
� )†U (1)

� , where
(U (0)

� )† is the Moore-Penrose pseudo-inverse of U (0)
� . The

output is the set

�̃� :=
{
− 1

2π
arg (μ1), . . . ,− 1

2π
arg (μS )

}
.

The following theorem is proved in Ref. [38] for this par-
ticular version of ESPRIT:

Theorem 4.1. Suppose K � 4S is even and K � 4
�̃

, where
�̃ � �� := min1�i< j�S |M�λi − M�λ j |s. For any constant
C ∈ (2, K�̃

2 ), if

ω + α � Cβ

8(C − 1)
√

2S

√
1 − 2(C − 1)S

CK
, (20)

then

md(�̃�,��)

� 40S2

β

√
C3(2 + K )

(C − 1)3K

(
1 − 2CS

(C − 1)K

)−1

(ω + α), (21)

where md(·, ·) denotes the matching distance between two
finite sets with the same cardinality.

We emphasize that the approximation error is controlled
by the noise in the gapped case. The number K of frequencies
only needs to be proportional to S, which is considered a fixed
number. This means that the maximum depth of the circuit can
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be kept fixed. Only more repetitions are needed to bring down
the noise level.

When ω is sufficiently small compared with β, (20) can
always be satisfied by properly choosing α. The set Y� needed
in the main algorithm can then be defined as

Y� = BT

(
�̃�,

η

2

)
,

with η satisfying

80S2

β

√
C3(2 + K )

(C − 1)3K

(
1 − 2CS

(C − 1)K

)−1

(ω + α) < η.

This Y� is guaranteed to satisfy the three properties stated in
Corollary III.2.

In the following sections, we provide modified versions of
the algorithms described in Sec. III and show that, when ω is
close to zero, one can further reduce the maximal runtime by
a factor 	(ω/β ).

B. The real-power model

The following theorem states the Tmax and Ttotal bounds
for our RMPE algorithm for the real-power model under the
gapped case. The proof can be found in Appendix A 5.

Theorem IV.2. Let �̃ < min{ 1
8S(2S−1) ,�}, K > 4/�̃, and η

be any number such that

80S2

β

√
C3(2 + K )

(C − 1)3K

(
1 − 2CS

(C − 1)K

)−1

ω

< η <
1

8S(2S − 1)
, (22)

where C is a constant such that C ∈ (2, K�̃
2 ). Suppose that α

satisfy

α < min

{
Cβ

8(C − 1)
√

2S

√
1 − 2(C − 1)S

CK
,

β

80S2

√
(C − 1)3K

C3(2 + K )

(
1 − 2CS

(C − 1)K

)
η

}
− ω, (23)

and NHR satisfy

NHR = 2

⌈
4

α2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln (K + 1)

]⌉
,

(24)

and the ESPRIT routine described in Sec. IV A is used for
spectrum estimation in Algorithm I, then with probability at
least 1 − ρ, the output EL satisfies

� ⊂ EL ⊂ B(�, ε). (25)

The maximum runtime and total runtime are

Tmax = O
(
ηKε−1

)
, Ttotal = O

(
ηK2NHRε−1

)
. (26)

When the left inequality of (22) is tight, i.e., η = 
( ω
β

S2),
we have the following corollary that gives a smaller prefactor
of Tmax compared with Corollary III.6:

Corollary IV.3. By setting η = 
( ω
β

S2), the complexity
bounds given in the theorem are

Tmax = O((�−1 + S2)S2ωβ−1ε−1),

Ttotal = Õ((�−1 + S2)S2ω−1β−1ε−1). (27)

The prefactor of Tmax is proportional to ωβ−1, the ratio be-
tween the energy of the residual in |ψ〉 and the energy lower
bound of the dominant eigenmodes.

Therefore, the maximum circuit depth prefactor can be
made small when this ratio is sufficiently small. However,
Ttotal will increase for small ω, so there is a trade-off between
maximal runtime and total runtime, and one should choose η

and ω appropriately in practice.
It is worth noticing that ω is not fixed when the initial state

|ψ〉 is given. Instead, we can adjust ω as long as ω � |cres|2
and (22) is feasible.

C. The integer-power model

Similar to Sec. III C, one can implement the algorithm with
only integer powers of U . The following theorem states the
Tmax and Ttotal bounds for our RMPE algorithm for the integer-
power model under the gapped case. We give the proof of it in
Appendix A 6.

Theorem IV.4. Let

�̃ < min

{
1

2p 1
2 S(S−1) p 1

2 S(S−1)+1

,�

}
,

K > 4/�̃, and η be any number such that

80S2

β

√
C3(2 + K )

(C − 1)3K

(
1 − 2CS

(C − 1)K

)−1

ω

< η <
1

4Sp S(S−1)
2

p S(S−1)
2 +1

,

where C is a constant such that C ∈ (2, K�
2 ). Let α satisfy

α < min

{
Cβ

8(C − 1)
√

2S

√
1 − 2(C − 1)S

CK
,

β

80S2

√
(C − 1)3K

C3(2 + K )

(
1 − 2CS

(C − 1)K

)
η

}
− ω,

and

NHR = 2

⌈
4

α2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln(K + 1)

]⌉
.

(28)

Suppose ESPRIT is used for spectrum estimation in Algo-
rithm I and m� is chosen according to Lemma III.10, then with
probability at least 1 − ρ, the output EL satisfies

� ⊂ EL ⊂ B(�, ε). (29)

The maximum runtime and total runtime are

Tmax = O
(
ηKε−1

)
, Ttotal = O

(
ηK2NHRε−1

)
. (30)

062408-9



HAOYA LI, HONGKANG NI, AND LEXING YING PHYSICAL REVIEW A 108, 062408 (2023)

Corollary IV.5. When ω is sufficiently close to zero, one
can take η = 
( ω

β
S2) and K = 
( 4

�̃
), then we have

Tmax = Õ((�−1 + S4)S2ωβ−1ε−1),

Ttotal = Õ((�−1 + S4)S2ω−1β−1ε−1), (31)

Here, the maximum circuit depth prefactor again scales like
O(ωβ−1).

V. HYBRID ALGORITHM WITH IMPROVED PREFACTOR

Assuming a finite spectral gap �, the results in Sec. IV
give a prefactor ωβ−1 in Tmax (see Corollaries IV.3 and IV.5).
However, when the gap � is a small, the prefactor �−1 in
Tmax is undesirable. On the other hand, the results in Sec. III
work for an arbitrarily small spectral gap but cannot provide
a prefactor as in Corollaries IV.3 and IV.5 due to the signal
processing technique used.

In this section, we propose to combine the methods in
Secs. III and IV under the general framework of Algorithm I.
Intuitively, if the gap � is small, one first applies the signal
processing technique in Sec. III A for certain iterations as
a burn-in period and then switches to the ESPRIT routine
in Sec. IV A. We prove that this hybrid method provides an
improved prefactor in Tmax.

A. The real-power model

The following theorem gives the detailed description and
complexity bound of the hybrid algorithm when we have
access to the real powers of the given unitary U , which is
proved in Sec. A 7.

Theorem V.1. Let �̃ be any number in (0, 1
8S(2S−1) ), M̃ :=

�̃/�, integer K2 > 4/�̃, and η be any number such that

80S2

β

√
C3(2 + K2)

(C − 1)3K2

(
1 − 2CS

(C − 1)K2

)−1

ω

< η <
1

8S(2S − 1)
, (32)

where C is a constant such that C ∈ (2, K2�̃
2 ).

In Algorithm I, when M� � M̃, we use the signal pro-
cessing subroutine in Sec. III with parameters τ = 1

π
ln 12

β−ω
,

α1 = β−ω

3 , K1 = �3η−1τ�, and

NHR,1 = 2

⌈
4

α2
1

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln (K1 + 1)

]⌉
.

(33)

When M� > M̃, we use ESPRIT as the signal processing
subroutine with parameters �̃, α2, K2, NHR,2, where

α2 < min

{
Cβ

8(C − 1)
√

2S

√
1 − 2(C − 1)S

CK2
,

β

80S2

√
(C − 1)3K2

C3(2 + K2)

(
1 − 2CS

(C − 1)K2

)
η

}
− ω, (34)

NHR,2 = 2

⌈
4

α2
2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln(K2 + 1)

]⌉
.

(35)

Under this setting, the maximal runtime of the algorithm is

Tmax = O

(
max

{
log

(
1

β

)
η−1�̃�−1, η�̃−1ε−1

})
, (36)

and the total runtime is

Ttotal = Õ(η−2β−2�̃�−1 + ηω−2�̃−2ε−1). (37)

Corollary V.2 If we choose �̃ = 1
8S(2S−1) and η =


(ωβ−1S2) in Theorem V.1, then the maximal and total
runtime of the algorithm are

Tmax = OS,β (max{ω−1�−1, ωε−1}),

Ttotal = ÕS,β (ω−2�−1 + ω−1ε−1). (38)

In the case that S and 1
β

are moderate values that can be treated
as constants, this scaling O is better than the one in Corollary
IV.3. This improves the complexity from �−1ε−1 to �−1 +
ε−1 while retaining the prefactor ω in front of ε−1 in Tmax.

B. The integer-power model

Now, we give the analysis of the hybrid algorithm for the
integer-power model. The proof for the following result can
be found in Appendix A 8.

Theorem V.3. Let M̃ � 2 such that

�̃ := M̃� <
1

4Sp S(S−1)
2

p S(S−1)
2 +1

.

Let η � 1
6 such that

80S2

β

√
C3(2 + K2)

(C − 1)3K2

(
1 − 2CS

(C − 1)K2

)−1

ω

< η <
1

4Sp S(S−1)
2

p S(S−1)
2 +1

, (39)

where K2 is an integer that satisfies K2 > 4/�̃ and C is a
constant such that C ∈ (2, K2�̃

2 ).
Under the framework of Algorithm I, the hybrid algorithm

uses the signal processing subroutine in Sec. III A with pa-
rameters τ = 1

π
ln 12

β−ω
, α1 = β−ω

3 , K1 = �3η−1τ�, and

NHR,1 = 2

⌈
4

α2
1

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln (K1 + 1)

]⌉
,

(40)

when M� � M̃.
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When M� > M̃, the hybrid algorithm uses ESPRIT (see
Sec. IV A) as the signal processing subroutine with parameters
�̃, α2, K2, and NHR,2, where

α2 < min

{
Cβ

8(C − 1)
√

2S

√
1 − 2(C − 1)S

CK2
,

β

80S2

√
(C − 1)3K2

C3(2 + K2)

(
1 − 2CS

(C − 1)K2

)
η

}
− ω, (41)

and

NHR,2 = 2

⌈
4

α2
2

[
ln

4

ρ
+ ln

(⌈
log2

η

ε

⌉
+ 1

)
+ ln (K2 + 1)

]⌉
.

(42)

Then with probability at least 1 − ρ, the output EL satisfies

� ⊂ EL ⊂ B(�, ε). (43)

The maximal runtime of the algorithm is

Tmax = ÕS (max{η−1�̃�−1, η�̃−1ε−1}) (44)

and the total runtime is

Ttotal = ÕS (η−2�̃�−1NHR,1 + η�̃−2ε−1NHR,2). (45)

Corollary V.4. If we choose

�̃ = 1

4Sp S(S−1)
2

p S(S−1)
2 +1

and η = 
(ωβ−1S2) in Theorem V.3, then the maximal and
total runtime of the algorithm are

Tmax = OS,β (max{ω−1�−1, ωε−1}),

Ttotal = ÕS,β (ω−2�−1 + ω−1ε−1). (46)

The asymptotic scaling of Corollary V.4 is better than the one
obtained in Corollary IV.5: the maximum runtime is improved
from �−1ε−1 to �−1 + ε−1, while the ε−1 term still enjoys the
prefactor ω.

VI. DISCUSSIONS

This paper proposes robust multiple-phase estimation
(RMPE) algorithms for estimating multiple eigenvalues. The
proposed algorithms address both the gapless case in Sec. III
and the gapped case in Secs. IV and V and for both the
integer-power and real-power models.

When the problem is gapless, according to Sec. III, the
number of frequencies K needs to be increased if one needs an
estimation with a smaller error level η from the signal process-
ing routine, which prevents us from reducing the maximum
runtime even when the magnitude of the residual ω is close to
zero. When a finite-size spectral gap is assumed, the number
of frequencies K is a constant independent of η. An immediate
direction is to explore signal processing algorithms that can
improve K’s dependence on η and the spectral gap. This
enables us to reduce the prefactor in the maximum runtime
when ω is small.

Another relevant problem comes from the bound in Lemma
III.8:

max
1�l� t (t−1)

2 +1
min

1�i� j�t
pl �k

∣∣∣∣|θi − θ j | − k

pl

∣∣∣∣ � 1

2p t (t−1)
2

p t (t−1)
2 +1

,

for any {ω}t
i=1. However, one can also show that

inf
(θi )t

i=1

max
1�l�t ′

min
1�i� j�t

pl �k

∣∣∣∣|θi − θ j | − k

pl

∣∣∣∣ = γt
(
t ′) > 0, (47)

for any t ′ > t . The conclusion of Lemma III.8 is thus

γt

(
1

2
t (t − 1) + 1

)
� 1

2p t (t−1)
2

p t (t−1)
2 +1

.

It would be interesting to find a sharper estimation for γt (t ′)
and, thereby, the optimal choice of t ′ in terms of the overall
complexity.
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APPENDIX: PROOFS

1. Proof of Corollary III.2

Proof. All the sets in the proof are in a modulo-1 sense
because X� can be viewed as a subset of T . Since X� is the
level set of a continuous function, it can be written as the
disjoint union of finitely many intervals:

X� =
q⋃

i=1

(ai, bi ),

where 0 � a1 � b1 � a2 � · · · � aq � bq � 1. Let J = {1 �
j � q : a j − b j−1 < τ/K}, where a1 − b0 < τ/K means
a1 + 1 − bq < τ/K since the intervals are in modulo-1 sense.
Then we may define

Y� =
(

q⋃
i=1

[ai, bi]

)
∪
⎛
⎝⋃

j∈J

[
b j−1, a j

]⎞⎠.

In this way, we have �� ⊂ X� ⊂ Y�, and Y� ⊂ BT (X�,
τ

2L ) ⊂
BT (��,

3τ
2L ) ⊂ BT (��,

η

2 ), which means |Y�| � 3Sτ/K � Sη.
By definition, Y� is the disjoint union of some intervals of

the form [ain , b jn ], where ain − b jn−1 � ain − bin−1 � τ/K and
similarly ain+1 − b jn � τ/K . If it does not contain any spike,
then 1

2 (ain + bin ) will be at least τ/K away from any spike.
However, we know 1

2 (ain + bin ) ∈ X�, which contradicts with
Theorem III.1. �
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2. Proof of Lemma III.4

Proof. For fixed i and j, we define the following set:

Ri j := [2, 4]∩
{

m : ∃ q ∈ Z\{0} such that
∣∣∣θi − θ j − q

Mm

∣∣∣
� 1

M

(
ζi + ζ j

)}
, (A1)

which is the set of all m that violate (7).
First, consider the case i = j. From the bound of ζ , we

can deduce 1
Mm � 1

4M � 2Sζ

M > 1
M (2ζi ), and thus Rii = ∅ for

every i.
For the case i �= j, we can assume θi > θ j without loss of

generality because clearly Ri j = Rji. Notice that the existence
of such i and j implies t � 2. In this case, the bound of
ζ again gives θi − θ j + 1

Mm > 1
Mm � 1

4M � Sζ

M > 1
M (ζi + ζ j ),

which means that only positive q can violate (7). Therefore,
we can rewrite (A1) as

Ri j = [2, 4]∩
⎛
⎝ ∞⋃

q=1

[
q

M(θi − θ j ) + (ζi + ζ j )
,

q

M(θi − θ j ) − (ζi + ζ j )

]⎞⎠. (A2)

We consider two cases to estimate |Ri j |. In the case that
M(θi − θ j ) � 1

4 − (ζi + ζ j ), we have

q

M(θi − θ j ) + (ζi + ζ j )
� 4

for every q, so |Ri j | = 0. Another case is that M(θi − θ j ) >
1
4 − (ζi + ζ j ), then the maximal q that

q

M(θi − θ j ) + (ζi + ζ j )
� 4

is qmax � 4[M(θi − θ j ) + (ζi + ζ j )]. Therefore,

|Ri j | �
qmax∑
q=1

∣∣∣∣ q

M(θi − θ j ) − (ζi+ ζ j )
− q

M(θi− θ j )+ (ζi + ζ j )

∣∣∣∣
= 2(ζi + ζ j )

∑qmax
q=1 q

[M(θi − θ j ) − (ζi + ζ j )][M(θi − θ j ) + (ζi + ζ j )]

� 2(ζi + ζ j ){4[M(θi − θ j ) + (ζi + ζ j )]}2

[M(θi − θ j ) − (ζi + ζ j )][M(θi − θ j ) + (ζi + ζ j )]

= 32(ζi + ζ j )

(
1 + 2(ζi + ζ j )

M(θi − θ j ) − (ζi + ζ j )

)

< 32(ζi + ζ j )

(
1 + 2(ζi + ζ j )

1
4 − 2(ζi + ζ j )

)

= 32(ζi + ζ j )

1 − 8(ζi + ζ j )
. (A3)

Taking all pairs (i, j) into account, we have∣∣∣∣∣∣
⋃

1�i, j�t

Ri j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⋃

1�i< j�t

Ri j

∣∣∣∣∣∣ �
∑

1�i< j�t

32(ζi + ζ j )

1 − 8(ζi + ζ j )

<
∑

1�i< j�t

32(ζi + ζ j )

1 − 8Sζ
= 32(t − 1)

1 − 8Sζ

t∑
i=1

ζi

� 32(S − 1)Sζ

1 − 8Sζ
� 2 = 4 − 2, (A4)

which means that

[2, 4]\
⎛
⎝ ⋃

1�i, j�t

Ri j

⎞
⎠ �= ∅, (A5)

and any element m of this set satisfies (7). �

3. Proof of Lemma III.8

Proof. When i = j, it is straightforward to see∣∣∣∣|θi − θ j | − k

pl

∣∣∣∣ � 1

2p t (t−1)
2

p t (t−1)
2 +1

when pl � k, and the case t = 1 is thus verified. In the follow-
ing, we assume t � 2 and prove

min
1�i< j�t

pl �k

∣∣∣∣|θi − θ j | − k

pl

∣∣∣∣ � 1

2p t (t−1)
2

p t (t−1)
2 +1

by contradiction. Suppose there is some (θ1, . . . , θt ) ∈
Rt such that (14) does not hold. Then for any pl ∈
{p1, p2, . . . , p t (t−1)

2 +1}, there are some (il , jl ) such that

||θi − θ j | − kl

pl
| < 1

/(
2p t (t−1)

2
p t (t−1)

2 +1

)
.

for some pl � kl . Since there are at most t (t − 1)/2 different
values that |θi − θ j | can take, but there are t (t − 1)/2 + 1
different prime numbers pl , there must be some l and l ′ with
l �= l ′ such that

|kl/pl − kl ′/pl ′ | < 1
/(

p t (t−1)
2

p t (t−1)
2 +1

)
.

Hence, kl/pl = kl ′/pl ′ , otherwise

|kl/pl − kl ′/pl ′ | � 1/pl pl ′ � 1
/(

p t (t−1)
2

p t (t−1)
2 +1

)
,

which contradicts

|kl/pl − kl ′/pl ′ | < 1
/(

p t (t−1)
2

p t (t−1)
2 +1

)
.

But pl and pl ′ are different prime numbers, so kl/pl = kl ′/pl ′

if and only if kl = mpl and kl ′ = mpl ′ for some integer m,
which contradicts with pl � kl and pl ′ � kl ′ . The contradiction
indicates that (14) must hold. �

4. Proof of Lemma III.10

Proof. Since |E�−1|T � Sη

M�−1
, one has |M�−1E�−1|T � Sη

and∣∣∣∣M�−1BT

(
E�−1,

η

M�−1

)∣∣∣∣
T

= |BT (M�−1E�−1, η)|T � 3Sη.
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Let BT (M�−1E�−1, η) = ∪1�i�t [θi − ηi, θi + ηi], then
∑

i ηi � 3
2 Sη. According to Lemma III.8, one can choose m� ∈

{p1, p2, . . . , p S�−1 (S�−1−1)
2 +1

} such that∣∣∣∣θi − θ j − q

m�

∣∣∣∣
T

� 1

2p S�−1(S�−1−1)
2

p S�−1(S�−1−1)
2 +1

>
3Sη

2
� ηi + η j, if m� � q.

This implies that (
BT (M�−1E�−1, η) + q

m�

)
∩ BT (M�−1E�−1, η) = ∅ mod 1, if m� � q,

which is equivalent to[
BT

(
E�−1,

η

M�−1

)
+ q

m�M�−1

]
∩ BT

(
E�−1,

η

M�−1

)
= ∅ mod 1, if m� � q. (A6)

Now we prove (15) inductively. For � = 1, it is implied by (A6) since M0 = 1. Suppose (15) already holds for � − 1, then
from Lemma III.7 we know E�−1 ⊂ BT (E�−2,

η

2M�−2
), and thus BT (E�−1,

η

M�−1
) ⊂ BT (E�−2,

η

M�−1
+ η

2M�−2
) ⊂ BT (E�−2,

η

M�−2
).

Therefore, from the induction hypothesis, one can deduce that[
BT

(
E�−1,

η

M�−1

)
+ q′

M�−1

]
∩ BT

(
E�−1,

η

M�−1

)
= ∅ mod 1, if M�−1 � q′, (A7)

where we used m�−1M�−2 = M�−1. If we let q = m�q′ in (A7),
then M�−1 � q′ is equivalent to m� | q, (m�M�−1) � q, so (15)
is proved combining (A6) and (A7).

5. Proof of Theorem IV.2

Proof. We prove that Algorithm I will work at each step
�. The procedure is almost identical to Theorem III.5. We
only need to check that after step � − 1 we can choose
an m� ∈ [2, 4] that satisfies both (5) and the gap �� :=
min1�i< j�S |M�λi − M�λ j |s is greater than �̃ so that ESPRIT
can work within the error bound given in Theorem IV.1. In
step � − 1 of Algorithm I, we can already bound λi in a in-
terval with length less than η/M�−1, which can be denoted by
λi ∈ [θi − η

2M�−1
, θi + η

2M�−1
]. Therefore, �� � �̃ is equivalent

to make the S intervals

{[
θi − η

2M�−1
− �̃

m�M�−1
, θi + η

2M�−1
+ �̃

m�M�−1

]}S

i=1

(A8)

disjoint in the modulo-1/M�−1m� sense. Since m� � 2, we
can relax the term �̃/m�M�−1 as �̃/2M�−1. Note that (5) is
equivalent to saying that the S intervals

[
θi − 3η

4M�−1
, θi + 3η

4M�−1

]
(1 � i � S) (A9)

are disjoint in the modulo-1/M�−1m� sense. Therefore, we
conclude that we can find a proper m� by letting M = M�−1

and ζi = max{ η+�̃

2 ,
3η

4 } in Lemma III.4, since
∑S

i=1 ζi =
S max{ η+�̃

2 ,
3η

4 } � 1
8S(2S−1) . After proving that the ESPRIT

algorithm described in Sec. IV A can be used in Algorithm I
given the existence of the spectral gap, the rest of the proof of
the complexity bounds are the same as Theorem III.5. �

6. Proof of Theorem IV.4

Proof. From ESPRIT’s assumptions and properties, E1 al-
ready has S disjoint intervals, each containing an actual spike.
All steps in the proof of Lemma III.10 go through except that
one needs to check the assumptions for Theorem IV.1 for each
iteration in Algorithm I. In other words, one must check that
the minimum separation among �� is bounded from below by
�̃. We prove this by enhancing the induction hypothesis in the
proof of Lemma III.10 with an additional condition:

min
1�s�s′�S, n∈Z

|M�(λs − λs′ ) − n| � �̃. (A10)

When � = 0, this follows from the definition of �̃. Now
assume that this holds for � − 1. By the choice of m� in the
proof of Lemma III.10, one has

min
1�s�s′�S
q∈Z,m��q

∣∣∣∣θs − θs′ − q

m�

∣∣∣∣ � 1

2p 1
2 S(S−1) p 1

2 S(S−1)+1

,

where θs is the center of the sth interval in E�−1, which is
also the sth element in �̃�−1 defined in Theorem IV.1. By the
property of Y�, one has

min
1�s�s′�S
q∈Z,m��q

∣∣∣∣M�−1(λs − λs′ ) − q

m�

∣∣∣∣
� min

1�s�s′�S
q∈Z,m��q

∣∣∣∣θs − θs′ − q

m�

∣∣∣∣− Sη � 1

4p 1
2 S(S−1) p 1

2 S(S−1)+1

.

Thus

min
1�s�s′�S
q∈Z,m��q

|M�(λs − λs′ ) − q| � m�

4p 1
2 S(S−1) p 1

2 S(S−1)+1

� 1

2p 1
2 S(S−1) p 1

2 S(S−1)+1

� �̃.

(A11)
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By the induction hypothesis, one also has

min
1�s�s′�S,n∈Z

|M�−1(λs − λs′ ) − n| � �̃,

which means

min
1�s�s′�S,q′∈Z

|M�(λs − λs′ ) − m�q′| � m��̃ > �̃,

and combining with (A11) one obtains

min
1�s�s′�S,n∈Z

|M�(λs − λs′ ) − n| � �̃.

The other steps in the proof of Lemma III.10 can be used
directly to show that the algorithm works, and the arguments
for the complexity bounds are the same as those in Theorem
III.11. �

7. Proof of Theorem V.1

Proof. Here, we only need to take care of the choice of
the sequence of {m�}, since the rest of the proof is the same
as Theorems III.5 and IV.2. According to Lemma III.4, we
need to choose m� such that (5) holds. In addition, when
M� > M̃, we also have to guarantee the spectral gap �� =
min1�i< j�S |M�λi − M�λ j |s is greater than �̃ to meet the re-
quirements of ESPRIT in Theorem IV.1.

At the stage of choosing m�, we know that E�−1 =⋃S�−1
i=1 I�−1,i is the union of at most S disjoint inter-

vals and |E�−1| � Sη/M�−1. Therefore, its neighborhood
B(E�−1,

max{�̃,η}
2M�−1

) must be t disjoint intervals with t � S and∣∣∣∣B
(

E�−1,
max{�̃, η}

2M�−1

)∣∣∣∣ � 2S max{�̃, η}
M�−1

.

This is exactly the case in Lemma III.4 when taking G =
B(E�−1,

max{�̃,η}
2M�−1

), M = M�−1, and ζ = max{�̃, η}. Therefore,
the conclusion of Lemma III.4 guarantees that we can con-
structively find an m� such that[

B

(
E�−1,

max{�̃, η}
2M�−1

)
+ q

M�−1m�

]

∩ B

(
E�−1,

max{�̃, η}
2M�−1

)
= ∅ ∀ q ∈ Z\{0}, (A12)

which is stronger than (5).
Moreover, (A12) means that |λi + q

M�
− λ j | � �̃/M�−1

for λi, λ j ∈ � and q ∈ Z\{0}, since � ∈ E�−1. Therefore,
it holds that |M�λi − M�λ j + q| � �̃ for q ∈ Z\{0}. When
M� > M̃, we also have |M�λi − M�λ j | � M�� � �̃, which
means

�� = min
1�i< j�S

|M�λi − M�λ j |s � M̃� = �̃,

and this meets the requirement of ESPRIT.
At the stage of M� � M̃, we have reached the accuracy of

ε1 = M̃−1, so Theorem III.5 gives that the maximal runtime is

Tmax,1 = O
(
ηK1ε

−1
1

) = O

(
log

(
1

β

)
η−1�̃�−1

)
,

and the total runtime is

Ttotal,1 = O
(
ηK2

1 ε−1
1 NHR,1

) = Õ(η−2β−2�̃�−1).

At the stage of M� > M̃, according to Theorem IV.2 the max-
imal runtime is

Tmax,2 = O(ηK2ε
−1) = O(η�̃−1ε−1),

and the total runtime is

Ttotal,2 = O
(
ηK2

2 ε−1NHR,2
) = Õ(ηω−2�̃−2ε−1).

Then we can conclude by Tmax = max{Tmax,1, Tmax,2} and
Ttotal = Ttotal,1 + Ttotal,2. �

8. Proof of Theorem V.3

Proof. Let �̃ be the largest � such that M� � M̃. From
the definition of NHR,1 above, one knows from Hoeffding’s
inequality that for any � � �̃ and |k| � K1,

P (|y�(k) − f̂�(k)| < α) > 1 − ρ(⌈
log2

η

ε

⌉+ 1
)
(K1 + 1)

,

(A13)
and for any � > �̃ and |k| � K2,

P (|y�(k) − f̂�(k)| < α) > 1 − ρ(⌈
log2

η

ε

⌉+ 1
)
(K2 + 1)

,

(A14)

Thus |y�(k) − f̂�(k)| < α is true for all � and k with probabil-
ity at least 1 − ρ by the union bound. We condition on this
event in the rest of the proof.

We first show that the spectral gap can be sufficiently
enlarged by applying a burn-in process using the method in
Sec. III. The proof is similar to that of Theorem IV.4. We
enhance the induction hypothesis in Lemma III.10 by an ad-
ditional condition

�� � min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
. (A15)

When � = 0, this follows from the definition of ��. Now
assume that this holds for � − 1. By the choice of m� in the
proof of Lemma III.10, one has

min
1�s�s′�t
q∈Z,m��q

∣∣∣∣θs − θs′ − q

m�

∣∣∣∣ � 1

2p 1
2 S(S−1) p 1

2 S(S−1)+1

,

where θs is the center of the sth interval in E�−1, and t is the
number of intervals in E�−1. For any λ and λ′ in �, if λ and λ′
belong to different intervals indexed by s and s′, one has

min
q∈Z,m��q

∣∣∣∣M�−1
(
λ − λ′)− q

m�

∣∣∣∣ � min
1�s�s′�t
q∈Z,m��q

∣∣∣∣θs − θs′ − q

m�

∣∣∣∣
−Sη � 1

4p 1
2 S(S−1) p 1

2 S(S−1)+1

,

by the property of Y�. Thus,

min
q∈Z,m��q

|M�(λ − λ′) − q| � m�

4p 1
2 S(S−1) p 1

2 S(S−1)+1

� min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
.

(A16)
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On the other hand, if λ and λ′ belong to the same interval, then
|M�−1(λ − λ′)| � Sη and |M�(λ − λ′)| � m�Sη � 1/4, so

min
q∈Z,m��q

|M�(λ − λ′) − q|

= |M�(λ − λ′)| � M�� � min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
.

(A17)

By the induction hypothesis, one also has

min
n∈Z

|M�−1(λ − λ′) − n| � min

{
M�−1�,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
,

which means

min
q′∈Z

|M�(λ − λ′) − m�q′| � min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
,

and combining with (A16) and (A17) one obtains

min
n∈Z

|M�(λ − λ′) − n| � min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
.

When � = �̃ + 1, one has

min
n∈Z

|M�(λ − λ′) − n| � min

{
M��,

1

2p S(S−1)
2

p S(S−1)
2 +1

}
� �̃.

With the same proof as Theorem IV.4, one can show that,
for any � > �̃, E� has S disjoint intervals, each containing an
actual spike and that

min
1�s�s′�S,n∈Z

|M�(λs − λs′ ) − n| � �̃,

which ensures that the ESPRIT subroutine can be applied for
any � > �̃.

In the first stage, i.e., when M� � M̃, the maximal
runtime is

Tmax,1 = O(M�̃K1) = OS

(
η−1 log

(
1

β

)
�̃�−1

)
,

and the total runtime is

Ttotal,1 = O
(
M�̃K2

1 NHR,1
) = OS

(
η−2 log2

(
1

β

)
�̃�−1NHR,1

)
.

For the second stage, i.e.,when M� > M̃, according to Theo-
rem IV.4 the maximal runtime is

Tmax,2 = O
(
ηK2ε

−1
) = O(η�̃−1ε−1),

and the total runtime is

Ttotal,2 = O
(
ηK2

2 ε−1NHR,2
) = O(η�̃−2ε−1NHR,2).

Thus, the overall maximum runtime is

Tmax = ÕS (max{η−1�̃�−1, η�̃−1ε−1}),

and the overall total runtime is

Ttotal = ÕS (η−2�̃�−1NHR,1 + η�̃−2ε−1NHR,2).
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